Implementing Openmp on a High Performance Embedded Multicore Mpsoc

Total Page:16

File Type:pdf, Size:1020Kb

Implementing Openmp on a High Performance Embedded Multicore Mpsoc Implementing OpenMP on a high performance embedded multicore MPSoC Barbara Chapman, Lei Huang Eric Biscondi, Eric Stotzer, Ashish Shrivastava and Alan Gatherer University of Houston Texas Instruments Houston, TX, USA Houston, TX, USA Email: {chapman,leihuang}@cs.uh.edu Email: {eric-biscondi,estotzer,ashu,gatherer}@ti.com Abstract components of an application. We are also considering how code expressed in OpenMP may be translated to run on dif- In this paper we discuss our initial experiences adapting ferent kinds of embedded devices. Since we also require the OpenMP to enable it to serve as a programming model for explicit specification of interfaces and data transfers between high performance embedded systems. A high-level program- components, the result will be a hybrid distributed/shared ming model such as OpenMP has the potential to increase programming model that can be used to model both the programmer productivity, reducing the design/development individual tasks within an embedded application as well costs and time to market for such systems. However, as their interactions. Our implementation is based upon OpenMP needs to be extended if it is to meet the needs of OpenUH, our robust Open64-based compiler infrastructure, embedded application developers, who require the ability to which will be connected with a native code generator to express multiple levels of parallelism, real-time and resource permit us to evaluate them on a real-world system. constraints, and to provide additional information in support This paper is organized as follows. In Section 2, we give of optimization. It must also be capable of supporting the a brief overview of the state of the art in programming mapping of different software tasks, or components, to the embedded systems. Then we describe OpenMP, its imple- devices configured in a given architecture. mentation, and our compiler. Section 4 gives our current ideas on the enhancements needed to this API. We next 1. Introduction describe the current state of our implementation, followed by early results. Finally, our conclusions are discussed in The rapid penetration of multicore and simultaneous Section 7. multithreading hardware technology in the marketplace is changing the nature of application development in all areas 2. Embedded Systems Design of computing. The use of multicore technology, which offers more compute power with lower energy consumption, will increase the design space and significantly increase the 2.1. Hardware performance of Multiprocessor Systems-on-Chip (MPSoCs) that are targeted at embedded applications. Software for Embedded system designers already rely extensively on embedded systems will become more complex, as multi- architectural parallelism to accomplish their goals. MP- core hardware will enable more functions to be implemented SoCs are composed of multiple heterogeneous processing on the same device. This complexity will make the pro- elements or cores, such as RISC processors, digital sig- duction of software the critical path in embedded systems nal processors (DSP), application specific instruction pro- development and make hardware/software designing, parti- cessors (ASIP), field programmable gate arrays (FPGA), tioning, scheduling, correctness verification, quality control stream processors, SIMD processors, accelerators, etc. In and quality assurance more difficult. addition to the heterogeneity of their cores, an MPSoC’s In this paper, we discuss our initial work to adapt an memory system can be heterogeneous where blocks of existing shared memory programming interface, OpenMP, memory are accessible to a subset of the processors. Texas to enable the specification of high performance embedded Instruments DaVinci [1] and OMAP 3 [2] are RISC + applications. We are considering new language features that DSP configurations. Texas Instruments TNETV3020 [3] allow non-functional characteristics or constraints, such as and TMS320TCI6488 [4], Along with an increase in the deadlines, priorities, power constraints, etc., to be specified number and heterogeneity of cores, MPSoCs with multiple as well as notation to enable a high-level description of the subsystems that are able to exploit both asymmetric chip This work is supported by the National Science Foundation, under contracts multiprocessing (AMP) and symmetric chip multiprocessing CCF-0833201 and by Texas Instruments. (SMP) will begin to appear in the near future [5]. 2.2. Embedded Applications extended the C language to address the parallelism on their custom devices (e.g. Clearspeed’s Cn and Intel’s Ct). Embedded systems applications can be broadly classified Data and compute intensive embedded applications can as event-driven or compute and data intensive. In event- often be described using the stream programming model. driven applications, such as automotive embedded systems, Characteristics include large streams of data with high the behavior is characterized by a defined sequence of data rates to and from data sources and among processing responses to a given incoming event from the environment. elements. Examples include signal and image processing of While the actions performed may not be compute or data voice and video data, data compression and encryption, cell intensive, they tend to have strict real time constraints. In phones, cell phone base stations, financial modeling and contrast, compute and data intensive applications, such as HDTV editing consoles. A streaming program typically has wireless infrastructure, telecommunication systems, biomed- two levels. The stream level controls the order of kernel ical devices and multimedia processing, must be designed execution and transfer of data streams for each kernel. to handle and perform computations on large streams of The kernel level represents the actual computation for each data. As the computational complexity increase for such stream element. The appeal of this model is apparent from systems, better design methodologies are needed to find a plethora of related research [11], [12]. an optimal software/hardware configuration while meeting cost, performance, and power constraints. Because growth in 3. OpenMP and OpenUH complexity is perhaps the most significant trend in wireless and multimedia applications, more and more functionality OpenMP is a widely-adopted shared memory parallel is being implemented in software to help shorten the design programming interface providing high level programming cycle. Furthermore, the use of streamlined Application Spe- constructs that enable the user to easily expose an appli- cific Instruction Set Processors (ASIPs) are often employed cation’s task and loop level parallelism in an incremental instead of general purpose microprocessors to help limit fashion. Its range of applicability was significantly extended costs and improve power efficiency [6]. recently by the addition of explicit tasking features [13]. OpenMP has already been proposed as the starting point for 2.3. Programming Embedded Systems a programming model for heterogeneous systems by Intel, ClearSpeed, PGI and CAPS SA. The approach taken today to create embedded systems The idea behind OpenMP is that the user specifies the is not conducive to productivity. Embedded applications are parallelization strategy for a program at a high level by typically developed in a programming language that is close annotating the program code; the implementation works out to the hardware, such as C or assembly, in order to meet the detailed mapping of the computation to the machine. It is strict performance requirements. It is considered impractical the user’s responsibility to perform any code modifications to program high performance embedded applications using needed prior to the insertion of OpenMP constructs. In Java or C# due to resource constraints of the device. The particular, it requires that dependences that might inhibit dominant trend in considering enhancements for MPSoCs parallelization are detected and where possible, removed is to adapt existing programming languages to fit the strict from the code. The major features are directives that specify requirements of applications in the embedded domain, rather that a well-structured region of code should be executed by than designing new parallel programming languages. There a team of threads, who share in the work. Such regions may are no industry standards for programming MPSoCs, al- be nested. Worksharing directives are provided to effect a though a few have been proposed. In particular, the Mul- distribution of work among the participating threads. ticore Association has proposed a message passing model which they refer to as Communications API (CAPI)[7], but 3.1. Implementation of OpenMP this model is not yet completed. In the main, loosely-coupled approaches for designing Most OpenMP compilers translate OpenMP into mul- and developing software are taken, where the codes for tithreaded code with calls to a custom runtime library different devices are programmed separately, using differ- in a straightforward manner, either via outlining [14] or ent programming languages and runtime environments and inlining [15]. Since many execution details are often not system-specific mechanisms are used to enable the necessary known in advance, much of the actual work of assigning interactions. For example, GPU-based programming models computations must be performed dynamically. Part of the [8], [9] are dedicated to GPU devices and are not appropriate implementation complexity lies in ensuring that the presence for general
Recommended publications
  • Microprocessor
    MICROPROCESSOR www.MPRonline.com THE REPORTINSIDER’S GUIDE TO MICROPROCESSOR HARDWARE EEMBC’S MULTIBENCH ARRIVES CPU Benchmarks: Not Just For ‘Benchmarketing’ Any More By Tom R. Halfhill {7/28/08-01} Imagine a world without measurements or statistical comparisons. Baseball fans wouldn’t fail to notice that a .300 hitter is better than a .100 hitter. But would they welcome a trade that sends the .300 hitter to Cleveland for three .100 hitters? System designers and software developers face similar quandaries when making trade-offs EEMBC’s role has evolved over the years, and Multi- with multicore processors. Even if a dual-core processor Bench is another step. Originally, EEMBC was conceived as an appears to be better than a single-core processor, how much independent entity that would create benchmark suites and better is it? Twice as good? Would a quad-core processor be certify the scores for accuracy, allowing vendors and customers four times better? Are more cores worth the additional cost, to make valid comparisons among embedded microproces- design complexity, power consumption, and programming sors. (See MPR 5/1/00-02, “EEMBC Releases First Bench- difficulty? marks.”) EEMBC still serves that role. But, as it turns out, most The Embedded Microprocessor Benchmark Consor- EEMBC members don’t openly publish their scores. Instead, tium (EEMBC) wants to help answer those questions. they disclose scores to prospective customers under an NDA or EEMBC’s MultiBench 1.0 is a new benchmark suite for use the benchmarks for internal testing and analysis. measuring the throughput of multiprocessor systems, Partly for this reason, MPR rarely cites EEMBC scores including those built with multicore processors.
    [Show full text]
  • Heterogeneous Task Scheduling for Accelerated Openmp
    Heterogeneous Task Scheduling for Accelerated OpenMP ? ? Thomas R. W. Scogland Barry Rountree† Wu-chun Feng Bronis R. de Supinski† ? Department of Computer Science, Virginia Tech, Blacksburg, VA 24060 USA † Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA [email protected] [email protected] [email protected] [email protected] Abstract—Heterogeneous systems with CPUs and computa- currently requires a programmer either to program in at tional accelerators such as GPUs, FPGAs or the upcoming least two different parallel programming models, or to use Intel MIC are becoming mainstream. In these systems, peak one of the two that support both GPUs and CPUs. Multiple performance includes the performance of not just the CPUs but also all available accelerators. In spite of this fact, the models however require code replication, and maintaining majority of programming models for heterogeneous computing two completely distinct implementations of a computational focus on only one of these. With the development of Accelerated kernel is a difficult and error-prone proposition. That leaves OpenMP for GPUs, both from PGI and Cray, we have a clear us with using either OpenCL or accelerated OpenMP to path to extend traditional OpenMP applications incrementally complete the task. to use GPUs. The extensions are geared toward switching from CPU parallelism to GPU parallelism. However they OpenCL’s greatest strength lies in its broad hardware do not preserve the former while adding the latter. Thus support. In a way, though, that is also its greatest weak- computational potential is wasted since either the CPU cores ness. To enable one to program this disparate hardware or the GPU cores are left idle.
    [Show full text]
  • Programmers' Tool Chain
    Reduce the complexity of programming multicore ++ Offload™ for PlayStation®3 | Offload™ for Cell Broadband Engine™ | Offload™ for Embedded | Custom C and C++ Compilers | Custom Shader Language Compiler www.codeplay.com It’s a risk to underestimate the complexity of programming multicore applications Software developers are now presented with a rapidly-growing range of different multi-core processors. The common feature of many of these processors is that they are difficult and error-prone to program with existing tools, give very unpredictable performance, and that incompatible, complex programming models are used. Codeplay develop compilers and programming tools with one primary goal - to make it easy for programmers to achieve big performance boosts with multi-core processors, but without needing bigger, specially-trained, expensive development teams to get there. Introducing Codeplay Based in Edinburgh, Scotland, Codeplay Software Limited was founded by veteran games developer Andrew Richards in 2002 with funding from Jez San (the founder of Argonaut Games and ARC International). Codeplay introduced their first product, VectorC, a highly optimizing compiler for x86 PC and PlayStation®2, in 2003. In 2004 Codeplay further developed their business by offering services to processor developers to provide them with compilers and programming tools for their new and unique architectures, using VectorC’s highly retargetable compiler technology. Realising the need for new multicore tools Codeplay started the development of the company’s latest product, the Offload™ C++ Multicore Programming Platform. In October 2009 Offload™: Community Edition was released as a free-to-use tool for PlayStation®3 programmers. Experience and Expertise Codeplay have developed compilers and software optimization technology since 1999.
    [Show full text]
  • Parallel Programming
    Parallel Programming Libraries and implementations Outline • MPI – distributed memory de-facto standard • Using MPI • OpenMP – shared memory de-facto standard • Using OpenMP • CUDA – GPGPU de-facto standard • Using CUDA • Others • Hybrid programming • Xeon Phi Programming • SHMEM • PGAS MPI Library Distributed, message-passing programming Message-passing concepts Explicit Parallelism • In message-passing all the parallelism is explicit • The program includes specific instructions for each communication • What to send or receive • When to send or receive • Synchronisation • It is up to the developer to design the parallel decomposition and implement it • How will you divide up the problem? • When will you need to communicate between processes? Message Passing Interface (MPI) • MPI is a portable library used for writing parallel programs using the message passing model • You can expect MPI to be available on any HPC platform you use • Based on a number of processes running independently in parallel • HPC resource provides a command to launch multiple processes simultaneously (e.g. mpiexec, aprun) • There are a number of different implementations but all should support the MPI 2 standard • As with different compilers, there will be variations between implementations but all the features specified in the standard should work. • Examples: MPICH2, OpenMPI Point-to-point communications • A message sent by one process and received by another • Both processes are actively involved in the communication – not necessarily at the same time • Wide variety of semantics provided: • Blocking vs. non-blocking • Ready vs. synchronous vs. buffered • Tags, communicators, wild-cards • Built-in and custom data-types • Can be used to implement any communication pattern • Collective operations, if applicable, can be more efficient Collective communications • A communication that involves all processes • “all” within a communicator, i.e.
    [Show full text]
  • Openmp API 5.1 Specification
    OpenMP Application Programming Interface Version 5.1 November 2020 Copyright c 1997-2020 OpenMP Architecture Review Board. Permission to copy without fee all or part of this material is granted, provided the OpenMP Architecture Review Board copyright notice and the title of this document appear. Notice is given that copying is by permission of the OpenMP Architecture Review Board. This page intentionally left blank in published version. Contents 1 Overview of the OpenMP API1 1.1 Scope . .1 1.2 Glossary . .2 1.2.1 Threading Concepts . .2 1.2.2 OpenMP Language Terminology . .2 1.2.3 Loop Terminology . .9 1.2.4 Synchronization Terminology . 10 1.2.5 Tasking Terminology . 12 1.2.6 Data Terminology . 14 1.2.7 Implementation Terminology . 18 1.2.8 Tool Terminology . 19 1.3 Execution Model . 22 1.4 Memory Model . 25 1.4.1 Structure of the OpenMP Memory Model . 25 1.4.2 Device Data Environments . 26 1.4.3 Memory Management . 27 1.4.4 The Flush Operation . 27 1.4.5 Flush Synchronization and Happens Before .................. 29 1.4.6 OpenMP Memory Consistency . 30 1.5 Tool Interfaces . 31 1.5.1 OMPT . 32 1.5.2 OMPD . 32 1.6 OpenMP Compliance . 33 1.7 Normative References . 33 1.8 Organization of this Document . 35 i 2 Directives 37 2.1 Directive Format . 38 2.1.1 Fixed Source Form Directives . 43 2.1.2 Free Source Form Directives . 44 2.1.3 Stand-Alone Directives . 45 2.1.4 Array Shaping . 45 2.1.5 Array Sections .
    [Show full text]
  • Openmp Made Easy with INTEL® ADVISOR
    OpenMP made easy with INTEL® ADVISOR Zakhar Matveev, PhD, Intel CVCG, November 2018, SC’18 OpenMP booth Why do we care? Ai Bi Ai Bi Ai Bi Ai Bi Vector + Processing Ci Ci Ci Ci VL Motivation (instead of Agenda) • Starting from 4.x, OpenMP introduces support for both levels of parallelism: • Multi-Core (think of “pragma/directive omp parallel for”) • SIMD (think of “pragma/directive omp simd”) • 2 pillars of OpenMP SIMD programming model • Hardware with Intel ® AVX-512 support gives you theoretically 8x speed- up over SSE baseline (less or even more in practice) • Intel® Advisor is here to assist you in: • Enabling SIMD parallelism with OpenMP (if not yet) • Improving performance of already vectorized OpenMP SIMD code • And will also help to optimize for Memory Sub-system (Advisor Roofline) 3 Don’t use a single Vector lane! Un-vectorized and un-threaded software will under perform 4 Permission to Design for All Lanes Threading and Vectorization needed to fully utilize modern hardware 5 A Vector parallelism in x86 AVX-512VL AVX-512BW B AVX-512DQ AVX-512CD AVX-512F C AVX2 AVX2 AVX AVX AVX SSE SSE SSE SSE Intel® microarchitecture code name … NHM SNB HSW SKL 6 (theoretically) 8x more SIMD FLOP/S compared to your (–O2) optimized baseline x - Significant leap to 512-bit SIMD support for processors - Intel® Compilers and Intel® Math Kernel Library include AVX-512 support x - Strong compatibility with AVX - Added EVEX prefix enables additional x functionality Don’t leave it on the table! 7 Two level parallelism decomposition with OpenMP: image processing example B #pragma omp parallel for for (int y = 0; y < ImageHeight; ++y){ #pragma omp simd C for (int x = 0; x < ImageWidth; ++x){ count[y][x] = mandel(in_vals[y][x]); } } 8 Two level parallelism decomposition with OpenMP: fluid dynamics processing example B #pragma omp parallel for for (int i = 0; i < X_Dim; ++i){ #pragma omp simd C for (int m = 0; x < n_velocities; ++m){ next_i = f(i, velocities(m)); X[i] = next_i; } } 9 Key components of Intel® Advisor What’s new in “2019” release Step 1.
    [Show full text]
  • Introduction to Openmp Paul Edmon ITC Research Computing Associate
    Introduction to OpenMP Paul Edmon ITC Research Computing Associate FAS Research Computing Overview • Threaded Parallelism • OpenMP Basics • OpenMP Programming • Benchmarking FAS Research Computing Threaded Parallelism • Shared Memory • Single Node • Non-uniform Memory Access (NUMA) • One thread per core FAS Research Computing Threaded Languages • PThreads • Python • Perl • OpenCL/CUDA • OpenACC • OpenMP FAS Research Computing OpenMP Basics FAS Research Computing What is OpenMP? • OpenMP (Open Multi-Processing) – Application Program Interface (API) – Governed by OpenMP Architecture Review Board • OpenMP provides a portable, scalable model for developers of shared memory parallel applications • The API supports C/C++ and Fortran on a wide variety of architectures FAS Research Computing Goals of OpenMP • Standardization – Provide a standard among a variety shared memory architectures / platforms – Jointly defined and endorsed by a group of major computer hardware and software vendors • Lean and Mean – Establish a simple and limited set of directives for programming shared memory machines – Significant parallelism can be implemented by just a few directives • Ease of Use – Provide the capability to incrementally parallelize a serial program • Portability – Specified for C/C++ and Fortran – Most majors platforms have been implemented including Unix/Linux and Windows – Implemented for all major compilers FAS Research Computing OpenMP Programming Model Shared Memory Model: OpenMP is designed for multi-processor/core, shared memory machines Thread Based Parallelism: OpenMP programs accomplish parallelism exclusively through the use of threads Explicit Parallelism: OpenMP provides explicit (not automatic) parallelism, offering the programmer full control over parallelization Compiler Directive Based: Parallelism is specified through the use of compiler directives embedded in the C/C++ or Fortran code I/O: OpenMP specifies nothing about parallel I/O.
    [Show full text]
  • Parallel Programming with Openmp
    Parallel Programming with OpenMP OpenMP Parallel Programming Introduction: OpenMP Programming Model Thread-based parallelism utilized on shared-memory platforms Parallelization is either explicit, where programmer has full control over parallelization or through using compiler directives, existing in the source code. Thread is a process of a code is being executed. A thread of execution is the smallest unit of processing. Multiple threads can exist within the same process and share resources such as memory OpenMP Parallel Programming Introduction: OpenMP Programming Model Master thread is a single thread that runs sequentially; parallel execution occurs inside parallel regions and between two parallel regions, only the master thread executes the code. This is called the fork-join model: OpenMP Parallel Programming OpenMP Parallel Computing Hardware Shared memory allows immediate access to all data from all processors without explicit communication. Shared memory: multiple cpus are attached to the BUS all processors share the same primary memory the same memory address on different CPU's refer to the same memory location CPU-to-memory connection becomes a bottleneck: shared memory computers cannot scale very well OpenMP Parallel Programming OpenMP versus MPI OpenMP (Open Multi-Processing): easy to use; loop-level parallelism non-loop-level parallelism is more difficult limited to shared memory computers cannot handle very large problems An alternative is MPI (Message Passing Interface): require low-level programming; more difficult programming
    [Show full text]
  • Intel Threading Building Blocks
    Praise for Intel Threading Building Blocks “The Age of Serial Computing is over. With the advent of multi-core processors, parallel- computing technology that was once relegated to universities and research labs is now emerging as mainstream. Intel Threading Building Blocks updates and greatly expands the ‘work-stealing’ technology pioneered by the MIT Cilk system of 15 years ago, providing a modern industrial-strength C++ library for concurrent programming. “Not only does this book offer an excellent introduction to the library, it furnishes novices and experts alike with a clear and accessible discussion of the complexities of concurrency.” — Charles E. Leiserson, MIT Computer Science and Artificial Intelligence Laboratory “We used to say make it right, then make it fast. We can’t do that anymore. TBB lets us design for correctness and speed up front for Maya. This book shows you how to extract the most benefit from using TBB in your code.” — Martin Watt, Senior Software Engineer, Autodesk “TBB promises to change how parallel programming is done in C++. This book will be extremely useful to any C++ programmer. With this book, James achieves two important goals: • Presents an excellent introduction to parallel programming, illustrating the most com- mon parallel programming patterns and the forces governing their use. • Documents the Threading Building Blocks C++ library—a library that provides generic algorithms for these patterns. “TBB incorporates many of the best ideas that researchers in object-oriented parallel computing developed in the last two decades.” — Marc Snir, Head of the Computer Science Department, University of Illinois at Urbana-Champaign “This book was my first introduction to Intel Threading Building Blocks.
    [Show full text]
  • Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation
    Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation Li Chen1, Lei Liu1, Shenglin Tang1, Lei Huang2, Zheng Jing1, Shixiong Xu1, Dingfei Zhang1, Baojiang Shou1 1 Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China {lchen,liulei2007,tangshenglin,jingzheng,xushixiong, zhangdingfei, shoubaojiang}@ict.ac.cn; 2 Department of Computer Science, University of Houston; Houston, TX, USA [email protected] 5 Abstract. Unified Parallel C (UPC), a parallel extension to ANSI C, is designed for high performance computing on large-scale parallel machines. With General-purpose graphics processing units (GPUs) becoming an increasingly important high performance computing platform, we propose new language extensions to UPC to take advantage of GPU clusters. We extend UPC with hierarchical data distribution, revise the execution model of UPC to mix SPMD with fork-join execution model, and modify the semantics of upc_forall to reflect the data-thread affinity on a thread hierarchy. We implement the compiling system, including affinity-aware loop tiling, GPU code generation, and several memory optimizations targeting NVIDIA CUDA. We also put forward unified data management for each UPC thread to optimize data transfer and memory layout for separate memory modules of CPUs and GPUs. The experimental results show that the UPC extension has better programmability than the mixed MPI/CUDA approach. We also demonstrate that the integrated compile-time and runtime optimization is effective to achieve good performance on GPU clusters. 1 Introduction Following closely behind the industry-wide move from uniprocessor to multi-core and many-core systems, HPC computing platforms are undergoing another major change: from homogeneous to heterogeneous platform.
    [Show full text]
  • Lecture 12: Introduction to Openmp (Part 1)
    Lecture 12: Introduction to OpenMP (Part 1) 1 What is OpenMP Open specifications for Multi Processing Long version: Open specifications for MultiProcessing via collaborative work between interested parties from the hardware and software industry, government and academia. • An Application Program Interface (API) that is used to explicitly direct multi-threaded, shared memory parallelism. • API components: – Compiler directives – Runtime library routines – Environment variables • Portability – API is specified for C/C++ and Fortran – Implementations on almost all platforms including Unix/Linux and Windows • Standardization – Jointly defined and endorsed by major computer hardware and software vendors – Possibility to become ANSI standard 2 Brief History of OpenMP • In 1991, Parallel Computing Forum (PCF) group invented a set of directives for specifying loop parallelism in Fortran programs. • X3H5, an ANSI subcommittee developed an ANSI standard based on PCF. • In 1997, the first version of OpenMP for Fortran was defined by OpenMP Architecture Review Board. • Binding for C/C++ was introduced later. • Version 3.1 is available since 2011. 3 4 Thread • A process is an instance of a computer program that is being executed. It contains the program code and its current activity. • A thread of execution is the smallest unit of processing that can be scheduled by an operating system. • Differences between threads and processes: – A thread is contained inside a process. Multiple threads can exist within the same process and share resources such as memory. The threads of a process share the latter’s instructions (code) and its context (values that its variables reference at any given moment). – Different processes do not share these resources.
    [Show full text]
  • Programming Your GPU with Openmp*
    Programming Your GPU with OpenMP* Simon McIntosh-Smith, Matt Martineau, Andrei Poenaru, Patrick Atkinson University of Bristol [email protected] 1 * The name “OpenMP” is the property of the OpenMP Architecture Review Board. 1 Preliminaries: Part 2 • Our plan for the day .. Active learning! – We will mix short lectures with short exercises. – You will use your laptop to connect to a multiprocessor server. • Please follow these simple rules – Do the exercises that we assign and then change things around and experiment. – EmBrace active learning! –Don’t cheat: Do Not look at the solutions before you complete an exercise … even if you get really frustrated. 2 • Collaboration between GW4 Alliance (universities of Bristol, Bath, Cardiff, Exeter), the UK Met Office, Cray, and Arm • ~£3 million, funded by EPSRC • Expected to be the first large-scale, Arm-based production supercomputer • 10,000+ Armv8 cores • Also contains some Intel Xeon Phi (KNL), Intel Xeon (Broadwell), and NVIDIA P100 GPUs • Cray compilers provide the OpenMP implementation for GPU offloading 3 Plan Module Concepts Exercises OpenMP overview • OpenMP recap • None … we’ll use demo • Hardcore jargon of OpenMP mode so we can move fast The device model in • Intro to the Target directive • Vadd program OpenMP with default data movement Understanding • Intro to nvprof • nvprof ./vadd execution Working with the • CPU and GPU execution • Vadd with combined target directive models and the fundamental directive using nvprof to combined directive understand execution Basic memory •
    [Show full text]