Parallel Diurnal Fluctuation of Testosterone, Androstenedione

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Diurnal Fluctuation of Testosterone, Androstenedione Clin Chem Lab Med 2017; 55(9): 1315–1323 Marco Mezzullo, Alessia Fazzini, Alessandra Gambineri, Guido Di Dalmazia, Roberta Mazza, Carla Pelusi, Valentina Vicennati, Renato Pasquali, Uberto Pagotto and Flaminia Fanelli* Parallel diurnal fluctuation of testosterone, androstenedione, dehydroepiandrosterone and 17OHprogesterone as assessed in serum and saliva: validation of a novel liquid chromatography-tandem mass spectrometry method for salivary steroid profiling DOI 10.1515/cclm-2016-0805 by a four paired collection protocol (8 am, 12 am, 4 pm and Received September 7, 2016; accepted November 22, 2016; 8 pm) in 19 healthy subjects. previously published online January 11, 2017 Results: The assay allowed the quantitation of T, A, DHEA Abstract and 17OHP down to 3.40, 6.81, 271.0 and 23.7 pmol/L, respectively, with accuracy between 83.0 and 106.1% for Background: Salivary androgen testing represents a valu- all analytes. A parallel diurnal rhythm in saliva and serum able source of biological information. However, the proper was observed for all androgens, with values decreasing measurement of such low levels is challenging for direct from the morning to the evening time points. Salivary immunoassays, lacking adequate accuracy. In the last few androgen levels revealed a high linear correlation with years, many conflicting findings reporting low correlation serum counterparts in both sexes (T: R > 0.85; A: R > 0.90; with the serum counterparts have hampered the clinical DHEA: R > 0.73 and 17OHP: R > 0.89; p < 0.0001 for all). application of salivary androgen testing. Liquid chroma- Conclusions: Our LC-MS/MS method allowed a sensitive tography-tandem mass spectrometry (LC-MS/MS) makes it evaluation of androgen salivary levels and represents an possible to overcome previous analytical limits, providing optimal technique to explore the relevance of a compre- new insights in endocrinology practice. hensive androgen profile as measured in saliva for the Methods: Salivary testosterone (T), androstenedione (A), study of androgen secretion modulation and activity in dehydroepiandrosterone (DHEA) and 17OHprogesterone physiologic and pathologic states. (17OHP) were extracted from 500 µL of saliva, separated in Keywords: androstenedione; dehydroepiandrosterone 9.5 min LC-gradient and detected by positive electrospray (DHEA); liquid chromatography-tandem mass spectro- ionization – multiple reaction monitoring. The diurnal metry; 17OHProgesterone; saliva; testosterone. variation of salivary and serum androgens was described aPresent address: Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany Introduction *Corresponding author: Flaminia Fanelli, PhD, Endocrinology Unit, Department of Medical and Surgical Sciences, Centre for Applied Androgens are key regulators of many physiologic func- Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Alma tions and their measurement represents an essential Mater University of Bologna, via Massarenti 9 – 40138 Bologna, Italy, Tel.: +390512143950, E-mail: [email protected]. diagnostic step in clinical practice. Serum testosterone http://orcid.org/0000-0003-2601-2694 (T) level has long been used as a diagnostic parameter Marco Mezzullo, Alessia Fazzini, Alessandra Gambineri, Guido Di both in male and female disorders. In males, total T frac- Dalmazi, Roberta Mazza, Carla Pelusi, Valentina Vicennati, Renato tion is strictly associated with hypogonadic states [1] and Endocrinology Unit, Department Pasquali and Uberto Pagotto: with age-related metabolic impairment [2]. Though a diag- of Medical and Surgical Sciences, Centre for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Alma Mater nostic cut-off of 12.1 nmol/L for serum T insufficiency is University of Bologna, Bologna, Italy. largely accepted [1], considerable heterogeneity has been http://orcid.org/0000-0001-6748-3041 (M. Mezzullo) described in the association between T levels and clinical 1316 Mezzullo et al.: Analytical and biological validation of a LC-MS/MS method for salivary androgen profiling presentations, mostly explained by the intra- and inter- quantitation, LC-MS/MS represents the optimal technique individual variability in sex hormone binding globulin to explore the relevance of a comprehensive androgen levels [1]. Moreover, co-morbidities or concurring condi- profile as measured in saliva for the study of androgen tions such as aging, obesity, diabetes, hyperthyroidism, secretion modulation and activity. estrogen and glucocorticoid treatment, alter the propor- In this paper, we developed and validated a LC-MS/ tion between total and free T fraction, making the former MS method dedicated to the assessment of salivary T, A, a poor indicator of androgen activity. In females, elevated DHEA and 17OHP. We also provided a biological valida- serum T levels can be associated with classic and non- tion by investigating the relationship between salivary classic adrenal hyperplasia, Cushing syndrome, ovarian and circulating levels along the daytime both in male and and adrenal androgen secreting tumors, ovarian hyper- female healthy adults. thecosis, severe insulin resistance and chiefly to the var- iegated frame of the polycystic ovary syndrome (PCOS) [3]. Recent evidence contributed to a reconsideration of the relevance of total T testing as a biomarker of androgen Materials and methods imbalance, suggesting an important and specific role for Chemicals serum free T [4] and for other androgens such as andros- tenedione (A) [5] and dihydrotestosterone (DHT) [6]. The Gradient-grade methanol, N-hexane, ethyl-acetate, acetonitrile, gold standard methodologies for a reliable assessment of formic acid and granular food-grade activated charcoal were pur- circulating free hormones are the equilibrium dialysis and chased from Merck (Darmstadt, Germany). Ultrapure water was the ultrafiltration combined with isotopic dilution mass obtained by a MilliQ Gradient A10 System (Merck). T, A, DHEA and spectrometry [7], but both techniques are time consum- 17OHP pure standards were from Steraloids (Newport, RI, USA), testosterone-[2,2,4,6,6-2H ] (deuterium content 98.7%, d5-T) and ing and impracticable in a routine setting. Immunoassays 5 17OHProgesterone-[2,2,4,6,6,21,21,21-2H ] (deuterium content 98.7%, based on the analog displacement fit the high-throughput 8 d8-17OHP) were from CDN Isotopes (Pointe-Claire, Canada), andros- necessity of large clinical laboratories, although they have 2 tenedione-[2,2,4,6,6- H5] (deuterium content 98%, d5-A) was pur- been shown to be fairly inaccurate [8]. For these reasons, chased from Cambridge Isotope Laboratories (Tewksbury, MA, USA), 2 free T is usually calculated by the Vermeulen formula [9]. DHEA-[2,2,3,4,4,6- H6] (deuterium content 97.0%, d6-DHEA) was from Salivary hormone testing has often been postulated Sigma-Aldrich (St. Louis, MO, USA). as a valid alternative to serum free fraction measurement [10]; however, sensitivity and specificity limitations of available immunoassays have hampered the diffusion of Specimens salivary T testing in clinical settings [11], mostly because of the derived lack of harmonization among different assays Nineteen healthy drug free, normal weight (body mass index range: 18.0–25.0 kg/m2) volunteers, twelve males (25–65 years) and seven results [12–15]. As for female hyperandrogenism, specific- females (30–45 years) were recruited from the hospital staff after giv- ity and sensitivity issues explain the conflicting findings ing their informed consent. The study was approved by the Local Ethics on the subsistence of a correlation between very low sali- Committee. Exclusion criteria were the presence of any oral inflamma- vary and circulating T [16, 17]. To date, only a few studies tory processes with or without evident bleeding and/or any dental care focusing on salivary T testing in females have been con- treatment within 30 days before the collection. Subjects were asked to avoid drinking, eating and brushing their teeth in the 30 min before ducted by using the liquid chromatography-tandem mass saliva collection. Subjects underwent a paired blood and saliva collec- spectrometry (LC-MS/MS) technique [18, 19]. The monitor- tion at 8 am, 12 am, 4 pm and 8 pm on a working day. The lunch time was ing of salivary A and 17OHProgesterone (17OHP) levels was scheduled between 12:30 am and 1 pm. Blood was withdrawn in Vacu- shown to be useful in the evaluation of hydrocortisone ette Z serum beads clot activator tubes (Greiner Bio-One, Kremsmun- replacement therapy for congenital adrenal hyperplasia ster, Germany), allowed to settle for 20 min and centrifuged (2000 g, (CAH), both in pediatric [20] and in adult patients [21, 22]. 10 min, room temperature (RT). About 2 mL of saliva were collected by direct spitting in 15 mL polypropylene tubes (Sarstedt, Nümbrecht, Ger- Salivary dehydroepiandrosterone (DHEA) potential was many). Samples were transferred to 1.5 mL tubes (Eppendorf, Hamburg, explored in the monitoring of aging and stress [23]. With Germany) and stored at − 80 °C until analysis. the exception of T, the relationship between salivary A, DHEA and 17OHP levels and the serum counterparts has not been investigated using LC-MS/MS. In particular, it Calibrators and in house quality control (QCs) has not been clarified whether salivary levels duly reflect the circadian fluctuation observed in serum androgens Gravimetrically determined stock solutions were prepared in metha- [24, 25]. By allowing sensitive and selective multi-analyte
Recommended publications
  • Dehydroepiandrosterone – Is the Fountain of Youth Drying Out?
    Physiol. Res. 52: 397-407, 2003 MINIREVIEW Dehydroepiandrosterone – Is the Fountain of Youth Drying Out? P. CELEC 1,2, L. STÁRKA3 1Faculty of Medicine, 2Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia and 3Institute of Endocrinology, Prague, Czech Republic Received September 15, 2002 Accepted October 7, 2002 Summary Dehydroepiandrosterone (DHEA) and its sulphate-bound form (DHEAS) are important steroids mainly of adrenal origin. Their physiological and pathophysiological functions are not yet fully identified, although a number of various possible features have been hypothesized. Most popular is the description of the “hormone of youth” as the long-term dynamics of DHEA levels are characterized by a sharp age-related decline in the late adulthood and later. Low levels of DHEA are, however, associated not only with the ageing process but also with diabetes mellitus, cardiovascular diseases and some neurological or immunological entities. In the past decade, a number of brief studies have concentrated on these relationships and also on the role of exogenous DHEA in health, disease and human well-being. This article tries to summarize some of the most important facts achieved recently. Key words Dehydroepiandrosterone • Intracrinology • Hormone replacement therapy • Steroids Introduction functions: 1) DHEA is an endogenous metabolite that cannot be patented so that pharmaceutical companies are In 1934 Butenandt and Dannenbaum isolated not interested in supporting research in this field. dehydroepiandrosterone (DHEA) from urine and in 1944 2) DHEA can be described as a “human molecule” Munson and colleagues identified its 3β-sulphate because other investigated species have much lower (DHEAS). Even now, nearly 70 years later, we still do concentrations.
    [Show full text]
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis
    ORIGINAL ARTICLE Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis Ana E. Espinosa De Ycaza, Robert A. Rizza, K. Sreekumaran Nair, and Michael D. Jensen Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905 Downloaded from https://academic.oup.com/jcem/article/101/4/1719/2804555 by guest on 24 September 2021 Context: Dehydroepiandrosterone (DHEA) and T hormones are advertised as antiaging, antiobe- sity products. However, the evidence that these hormones have beneficial effects on adipose tissue metabolism is limited. Objective: The objective of the study was to determine the effect of DHEA and T supplementation on systemic lipolysis during a mixed-meal tolerance test (MMTT) and an iv glucose tolerance test (IVGTT). Design: This was a 2-year randomized, double-blind, placebo-controlled trial. Setting: The study was conducted at a general clinical research center. Participants: Sixty elderly women with low DHEA concentrations and 92 elderly men with low DHEA and bioavailable T concentrations participated in the study. Interventions: Elderly women received 50 mg DHEA (n ϭ 30) or placebo (n ϭ 30). Elderly men received 75 mg DHEA (n ϭ 30),5mgT(nϭ 30), or placebo (n ϭ 32). Main Outcome Measures: In vivo measures of systemic lipolysis (palmitate rate of appearance) during a MMTT or IVGTT. Results: At baseline there was no difference in insulin suppression of lipolysis measured during MMTT and IVGTT between the treatment groups and placebo. For both sexes, a univariate analysis showed no difference in changes in systemic lipolysis during the MMTT or IVGTT in the DHEA group and T group when compared with placebo.
    [Show full text]
  • Reproductive DHEA-S
    Reproductive DHEA-S Analyte Information - 1 - DHEA-S Introduction DHEA-S, DHEA sulfate or dehydroepiandrosterone sulfate, it is a metabolite of dehydroepiandrosterone (DHEA) resulting from the addition of a sulfate group. It is the sulfate form of aromatic C19 steroid with 10,13-dimethyl, 3-hydroxy group and 17-ketone. Its chemical name is 3β-hydroxy-5-androsten-17-one sulfate, its summary formula is C19H28O5S and its molecular weight (Mr) is 368.5 Da. The structural formula of DHEA-S is shown in (Fig.1). Fig.1: Structural formula of DHEA-S Other names used for DHEA-S include: Dehydroisoandrosterone sulfate, (3beta)-3- (sulfooxy), androst-5-en-17-one, 3beta-hydroxy-androst-5-en-17-one hydrogen sulfate, Prasterone sulfate and so on. As DHEA-S is very closely connected with DHEA, both hormones are mentioned together in the following text. Biosynthesis DHEA-S is the major C19 steroid and is a precursor in testosterone and estrogen biosynthesis. DHEA-S originates almost exclusively in the zona reticularis of the adrenal cortex (Fig.2). Some may be produced by the testes, none is produced by the ovaries. The adrenal gland is the sole source of this steroid in women, whereas in men the testes secrete 5% of DHEA-S and 10 – 20% of DHEA. The production of DHEA-S and DHEA is regulated by adrenocorticotropin (ACTH). Corticotropin-releasing hormone (CRH) and, to a lesser extent, arginine vasopressin (AVP) stimulate the release of adrenocorticotropin (ACTH) from the anterior pituitary gland (Fig.3). In turn, ACTH stimulates the adrenal cortex to secrete DHEA and DHEA-S, in addition to cortisol.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: PRODUCT IDENTIFICATION PRODUCT NAME DHEA (Prasterone) (Micronized) PRODUCT CODE 0733 SUPPLIER MEDISCA Inc. Tel.: 1.800.932.1039 | Fax.: 1.855.850.5855 661 Route 3, Unit C, Plattsburgh, NY, 12901 3955 W. Mesa Vista Ave., Unit A-10, Las Vegas, NV, 89118 6641 N. Belt Line Road, Suite 130, Irving, TX, 75063 MEDISCA Pharmaceutique Inc. Tel.: 1.800.665.6334 | Fax.: 514.338.1693 4509 Rue Dobrin, St. Laurent, QC, H4R 2L8 21300 Gordon Way, Unit 153/158, Richmond, BC V6W 1M2 MEDISCA Australia PTY LTD Tel.: 1.300.786.392 | Fax.: 61.2.9700.9047 Unit 7, Heritage Business Park 5-9 Ricketty Street, Mascot, NSW 2020 EMERGENCY PHONE CHEMTREC Day or Night Within USA and Canada: 1-800-424-9300 NSW Poisons Information Centre: 131 126 USES Adjuvant; Androgen SECTION 2: HAZARDS IDENTIFICATION GHS CLASSIFICATION Toxic to Reproduction (Category 2) PICTOGRAM SIGNAL WORD Warning HAZARD STATEMENT(S) Reproductive effector, prohormone. Suspected of damaging fertility or the unborn child. May cause harm to breast-fed children. Causes serious eye irritation. Causes skin and respiratory irritation. Very toxic to aquatic life with long lasting effects. AUSTRALIA-ONLY HAZARDS Not Applicable. PRECAUTIONARY STATEMENT(S) Prevention Wash thoroughly after handling. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe dusts or mists. Do not eat, drink or smoke when using this product. Avoid contact during pregnancy/while nursing. Wear protective gloves, protective clothing, eye protection, face protection. Avoid release to the environment. Response IF ON SKIN (HAIR): Wash with plenty of water.
    [Show full text]
  • 2013 House Judiciary Hb 1070
    2013 HOUSE JUDICIARY HB 1070 2013 HOUSE STANDING COMMITTEE MINUTES House Judiciary Committee Prairie Room, State Capitol HB 1070 January 14, 2013 Job #17167 D Conference Committee � · Committee Clerk Signature A-. .;' /) .1� ' I A.J4-��'N'f?4<'71<P2/ I Explanation or reason for introduction of bill/resolution: Relating to the scheduling of controlled substances. Minutes: Chairman Koppelman: Opened the hearing on HB 1070. Mark Hardy, Assistant Executive Director of the NO State Board of Pharmacy: (See testimony #1and 2) He went over these handouts. Rep. Klemin: I don't see an emergency clause in the bill and there is none in the amendment. Did I miss it? Mark Hardy: I want to put an emergency clause on the bill. Rep. Klemin: I think you have to have another section at the end of the bill saying this is an emergency. Rep. Kretschmar: How often do these new drugs come out and should be on it? Mark Hardy: As far as the schedule 1 substances; it is a revolving door and we are always trying to stay in front of what the chemists and what the drug makers are doing. As far as schedule 2 through 5; it is a continuous thing through the DEA. When it becomes a federally controlled substance it takes precedence. Rep. Larson: You have not been aware of the bill I was sponsoring regarding synthetic drugs yet? Mark Hardy: No. The Attorney General briefed me on the Bill #1133. Rep. Larson: The reason for my bill is not get into all of the pharmaceutical names of the chemicals, but anybody that possess or manufacturers a analog in order to try and copy these drugs would be guilty of those offences without having to know the specific chemical compound that might be morphed by unscrupulous people trying to see these products.
    [Show full text]
  • A10 Anabolic Steroids Hardcore Info
    CONTENTS GENERAL INFORMATION 3 Anabolic steroids – What are they? 4 How do they Work? – Aromatisation 5 More molecules – More problems 6 The side effects of anabolic steroids 7 Women and anabolic steroids 8 Injecting steroids 9 Abscesses – Needle Exchanges 10 Intramuscular injection 11 Injection sites 12 Oral steroids – Cycles – Stacking 13 Diet 14 Where do steroids come from? Spotting a counterfeit 15 Drug Information – Drug dosage STEROIDS 16 Anadrol – Andriol 17 Anavar – Deca-Durabolin 18 Dynabolon – Durabolin – Dianabol 19 Esiclene – Equipoise 20 Primobolan Depot – Proviron – Primobolan orals – Pronobol 21 Sustanon – Stromba, Strombaject – Testosterone Cypionate Testosterone Enanthate 22 Testosterone Propionate – Testosterone Suspension 23 Trenbolone Acetate – Winstrol OTHER DRUGS 24 Aldactone – Arimidex 25 Clenbuterol – Cytomel 26 Ephedrine Hydrochloride – GHB 27 Growth Hormone 28 Insulin 30 Insulin-Like Growth Factor-1 – Human Chorionic Gonadotrophin 31 Tamoxifen – Nubain – Recreational Drugs 32 Steroids and the Law 34 Glossary ANABOLIC STEROIDS People use anabolic steroids for various reasons, some use them to build muscle for their job, others just want to look good and some use them to help them in sport or body building. Whatever the reason, care needs to be taken so that as little harm is done to the body as possible because despite having muscle building effects they also have serious side effects especially when used incorrectly. WHAT ARE THEY? Anabolic steroids are man made versions of the hormone testosterone. Testosterone is the chemical in men responsible for facial hair, deepening of the voice and sex organ development, basically the masculine things Steroids are in a man. used in medicine to treat anaemia, muscle weakness after These masculine effects surgery etc, vascular are called the androgenic disorders and effects of testosterone.
    [Show full text]
  • Title 21–Food and Drugs
    Title 21–Food and Drugs (This book contains part 1300 to End) Part CHAPTER II—Drug Enforcement Administration, Depart- ment of Justice .................................................................. 1301 CHAPTER III—Office of National Drug Control Policy ............ 1401 1 VerDate Mar<15>2010 11:22 May 06, 2014 Jkt 232078 PO 00000 Frm 00011 Fmt 8008 Sfmt 8008 Y:\SGML\232078.XXX 232078 ehiers on DSK2VPTVN1PROD with CFR VerDate Mar<15>2010 11:22 May 06, 2014 Jkt 232078 PO 00000 Frm 00012 Fmt 8008 Sfmt 8008 Y:\SGML\232078.XXX 232078 ehiers on DSK2VPTVN1PROD with CFR CHAPTER II—DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE Part Page 1300 Definitions .............................................................. 5 1301 Registration of manufacturers, distributors, and dispensers of controlled substances ..................... 21 1302 Labeling and packaging requirements for con- trolled substances ................................................ 54 1303 Quotas ..................................................................... 56 1304 Records and reports of registrants .......................... 64 1305 Orders for schedule I and II controlled substances 82 1306 Prescriptions ........................................................... 90 1307 Miscellaneous .......................................................... 102 1308 Schedules of controlled substances ......................... 105 1309 Registration of manufacturers, distributors, im- porters and exporters of list I chemicals .............. 129 1310 Records and reports of listed
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • The Role of Highly Selective Androgen Receptor (AR) Targeted
    P h a s e I I S t u d y o f I t r a c o n a z o l e i n B i o c h e m i c a l R e l a p s e Version 4.0: October 8, 2014 CC# 125513 CC# 125513: Hedgehog Inhibition as a Non-Castrating Approach to Hormone Sensitive Prostate Cancer: A Phase II Study of Itraconazole in Biochemical Relapse Investigational Agent: Itraconazole IND: IND Exempt (IND 116597) Protocol Version: 4.0 Version Date: October 8, 2014 Principal Investigator: Rahul Aggarwal, M.D., HS Assistant Clinical Professor Division of Hematology/Oncology, Department of Medicine University of California San Francisco 1600 Divisadero St. San Francisco, CA94115 [email protected] UCSF Co-Investigators: Charles J. Ryan, M.D., Eric Small, M.D., Professor of Medicine Professor of Medicine and Urology Lawrence Fong, M.D., Terence Friedlander, M.D., Professor in Residence Assistant Clinical Professor Amy Lin, M.D., Associate Clinical Professor Won Kim, M.D., Assistant Clinical Professor Statistician: Li Zhang, Ph.D, Biostatistics Core RevisionHistory October 8, 2014 Version 4.0 November 18, 2013 Version 3.0 January 28, 2013 Version 2.0 July 16, 2012 Version 1.0 Phase II - Itraconazole Page 1 of 79 P h a s e I I S t u d y o f I t r a c o n a z o l e i n B i o c h e m i c a l R e l a p s e Version 4.0: October 8, 2014 CC# 125513 Protocol Signature Page Protocol No.: 122513 Version # and Date: 4.0 - October 8, 2014 1.
    [Show full text]
  • The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A
    The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A. Sandoval, Ling Ping, Ray Anthony Neill, Sachiko Morrey, and Stephen N. Davis ␮ ⅐ ؊1 ⅐ ؊1 We previously determined that both antecedent hy- mol/l kg min ; P < 0.05). In summary, day-1 poglycemia and elevated cortisol levels blunt neu- antecedent hypoglycemia blunted neuroendocrine and roendocrine and metabolic responses to subsequent metabolic responses to next-day hypoglycemia. How- hypoglycemia in conscious, unrestrained rats. The adre- ever, simultaneous DHEA-S infusion during antecedent nal steroid dehydroepiandrosterone sulfate (DHEA-S) hypoglycemia preserved neuroendocrine and metabolic has been shown in several studies to oppose corticoste- counterregulatory responses during subsequent hypo- roid action. The purpose of this study was to determine glycemia in conscious rats. Diabetes 53:679–686, 2004 if DHEA-S could preserve counterregulatory responses during repeated hypoglycemia. We studied 40 male Sprague-Dawley rats during a series of 2-day protocols. he Diabetes Control and Complications Trial Day 1 consisted of two 2-h episodes of 1) hyperinsuline- mic (30 pmol ⅐ kg؊1 ⅐ min؊1) euglycemia (6.2 ؎ 0.2 established that intensive glucose control in type ANTE EUG), 2) hyperinsulinemic eug- 1 diabetic patients can slow the progression or ;12 ؍ mmol/l; n -plus simultaneous Tsignificantly reduce the onset of diabetic micro (8 ؍ lycemia (6.0 ؎ 0.1 mmol/l; n intravenous infusion of DHEA-S (30 mg/kg; ANTE EUG vascular complications (e.g., retinopathy, nephropathy, ؉ DHEA-S), 3) hyperinsulinemic hypoglycemia (2.8 ؎ neuropathy) (1). Unfortunately, the study also established ANTE HYPO), or 4) hyperinsulinemic that intensive glucose treatment causes an approximate ;12 ؍ mmol/l; n 0.1 -with simulta- threefold increase in the frequency of severe hypoglyce (8 ؍ hypoglycemia (2.8 ؎ 0.1 mmol/l; n neous intravenous infusion of DHEA-S (30 mg/kg; ANTE mia (2).
    [Show full text]