Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis ORIGINAL ARTICLE Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis Ana E. Espinosa De Ycaza, Robert A. Rizza, K. Sreekumaran Nair, and Michael D. Jensen Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905 Downloaded from https://academic.oup.com/jcem/article/101/4/1719/2804555 by guest on 24 September 2021 Context: Dehydroepiandrosterone (DHEA) and T hormones are advertised as antiaging, antiobe- sity products. However, the evidence that these hormones have beneficial effects on adipose tissue metabolism is limited. Objective: The objective of the study was to determine the effect of DHEA and T supplementation on systemic lipolysis during a mixed-meal tolerance test (MMTT) and an iv glucose tolerance test (IVGTT). Design: This was a 2-year randomized, double-blind, placebo-controlled trial. Setting: The study was conducted at a general clinical research center. Participants: Sixty elderly women with low DHEA concentrations and 92 elderly men with low DHEA and bioavailable T concentrations participated in the study. Interventions: Elderly women received 50 mg DHEA (n ϭ 30) or placebo (n ϭ 30). Elderly men received 75 mg DHEA (n ϭ 30),5mgT(nϭ 30), or placebo (n ϭ 32). Main Outcome Measures: In vivo measures of systemic lipolysis (palmitate rate of appearance) during a MMTT or IVGTT. Results: At baseline there was no difference in insulin suppression of lipolysis measured during MMTT and IVGTT between the treatment groups and placebo. For both sexes, a univariate analysis showed no difference in changes in systemic lipolysis during the MMTT or IVGTT in the DHEA group and T group when compared with placebo. There was no change in the results after adjusting for the resting energy expenditure, except for a small, but significant (P ϭ .03) lowering of MMTT nadir palmitate rate of appearance in women who received DHEA. Conclusion: In elderly individuals with concentrations of DHEA (men and women) or T (men) below the normal range for young adults, supplementation of these hormones has no effect on insulin suppression of systemic lipolysis. (J Clin Endocrinol Metab 101: 1719–1728, 2016) he production of the androgens dehydroepiandros- ever, association does not mean causality. Hence, replace- T terone (DHEA) and T declines with aging (1–3). ment of androgens in elderly men and women who have Whether this decline has detrimental consequences to plasma concentrations of DHEA and T below the normal overall health is unknown, but DHEA and T are being range for young adults may not improve fat distribution or used to improve muscle mass/strength and reduce body adipose function. fat. There are well-documented, sex-specific associations The studies that tested the effects of androgens on body between androgen levels and body fat distribution; how- composition, adipose metabolism, adipocyte differentia- ISSN Print 0021-972X ISSN Online 1945-7197 Abbreviations: AT, adipose tissue; AUC, area under the curve; CV, coefficient of variation; Printed in USA DHEA, dehydroepiandrosterone; DHEAS, sulfated dehydroepiandrosterone; FFA, free fatty Copyright © 2016 by the Endocrine Society acid; IVGTT, iv glucose tolerance test; MMTT, mixed-meal tolerance test; Ra, rate of ap- Received November 24, 2015. Accepted February 12, 2016. pearance; REE, resting energy expenditure. First Published Online February 17, 2016 doi: 10.1210/jc.2015-4062 J Clin Endocrinol Metab, April 2016, 101(4):1719–1728 press.endocrine.org/journal/jcem 1719 1720 Espinosa De Ycaza et al Effect of DHEA and Testosterone on Lipolysis J Clin Endocrinol Metab, April 2016, 101(4):1719–1728 tion, and lipolysis have given inconsistent results (4–12). and an iv insulin profile. They first underwent an insulin-mod- Several human studies report that DHEA and T stimulate ified IVGTT followed by a second inpatient visit for MMTT. We 3 ␮ lipolysis (8, 12, 13). used a continuous infusion of [9,10- H]palmitate (0.3 Ci/min) during both IVGTT and MMTT to assess palmitate kinetics. The We conducted a randomized, double-blind, placebo- details of the protocol used for IVGTT and MMTT have been controlled trial to evaluate the effects on body composi- published (17). The medications (T patch, DHEA, and placebo) tion, quality of life, glucose, and fat metabolism of DHEA were continued during the inpatient visits and were given each replacement in elderly men and women and T replacement morning. Of the initially randomized volunteers, eight elderly in elderly men, with low concentrations of these hor- women and nine elderly men did not complete the studies of mones. We found no significant, clinically relevant effects palmitate kinetics. During these studies palmitate concentration and specific ac- on body composition, quality of life, and insulin sensitivity tivity were measured at baseline (before the meal or iv insulin) after 24 months of supplementation with DHEA or T (14, and every 30 minutes for 3 hours during the MMTT and at 20, Downloaded from https://academic.oup.com/jcem/article/101/4/1719/2804555 by guest on 24 September 2021 15). The group that received T had an increase in meal 31, 45, 90, and 120 minutes during the IVGTT. Suppression of fatty acid storage in the sc abdominal adipose tissue (AT) lipolysis during either test is reported as the nadir palmitate rate compared with femoral sc AT (16). Although we could not of appearance (Ra) or the area under the curve (AUC) for the detect an effect of DHEA or T on postabsorptive lipolysis palmitate Ra. The AUC for palmitate concentration and AUC for Ra was the AUC for these parameters estimated throughout the (16), we cannot infer the same for postprandial lipolysis. entire duration of the MMTT or IVGTT. Furthermore, the differences in meal fatty acid storage The techniques used for each of the hormone concentration, previously reported (16) could be offset by androgen-in- substrate, and palmitate assays have been previously reported duced changes in insulin suppression of lipolysis in the (16, 17). Nonsteady-state formulas were used to calculate palmi- postprandial state. As part of this 2-year study of DHEA tate Ra for the postprandial and IVGTT studies (18). and T replacement in elderly men and women, we col- The methods used to measure hormone levels are described below. lected data to test the hypotheses that T or DHEA sup- Total T was measured using a competitive chemiluminescent plementation had an effect on systemic lipolysis during a immunoassay on the DxI 800 automated immunoassay system mixed-meal tolerance test (MMTT) or an insulin-modi- (Beckman Instruments). Intraassay coefficients of variation fied iv glucose tolerance test (IVGTT). (CVs) are 6.5% at 69 ng/dL and 3.3% at 862 ng/dL. Interassay CVs are 7.4% at 116 ng/dL, 8.6% at 407 ng/dL, and 4.0% at 761 ng/dL. Bioavailable T was measured by the differential precipitation Materials and Methods of SHBG by ammonium sulfate after the equilibration of the serum sample with tracer amounts of tritium-labeled T. The re- Herein we report pre- and postintervention postprandial and sults are expressed as the percentage of T free or albumin bound insulin-suppressed free fatty acid (FFA) data from 135 elderly (not precipitated with SHBG) compared with an albumin stan- adults (Ͼ60 y) who participated in a published trial (14) assess- dard. The product of this percentage and the total T measure- ing the effect of 2 years of placebo vs supplementation with ment is the total bioavailable T. Intraassay CV was 5.4 at 14.1% DHEA or T on body composition, glucose metabolism, and bone of bioavailable T. Interassay CVs are 7.5 at 28.4%, 4.9 at 41.9%, density. This study was approved by the Mayo Institutional Re- and 4.9 at 50.8% of bioavailable T. view Board. Participants providing informed consent included SHBG was measured by a solid phase, two-site chemilumi- 60 elderly women with sulfated DHEA levels less than 0.95 nescent assay on the Siemens Immulite 2000 automated immu- ␮g/mL and 92 elderly men with bioavailable T levels less than noassay system (Siemens Healthcare Diagnostics). Intraassay 103 ng/dL and sulfated DHEA levels less than 1.57 ␮g/mL. Bio- CVs are 2.7% and 3.1% at 5.5 and 95.9 nmol/L, respectively. available T levels of less than 103 ng/dL correspond to levels less Interassay CVs are 4.0% at 5.4 and 5.9% at 74 nmol/L. than 2 SD of the mean, normal concentration for young men, and DHEA sulfate was measured by a solid-phase, competitive DHEA levels less than 1.57 ␮g/mL, corresponding to levels less chemiluminescent enzyme immunoassay (EIA) on the Siemens than 1.5 SD of the mean, normal concentration for young men Immulite 2000 automated immunoassay system (Siemens (20–30 y of age). Women were randomly assigned to receive DHEA (n ϭ 30) or Healthcare Diagnostics). The intraassay CVs are 5.7%, 5.7%, ␮ placebo (n ϭ 30), and men were randomly assigned to receive 5.7%, and 5.1% at 26.4, 77, 203, and 493 g/dL. The inter- DHEA (n ϭ 30), T (n ϭ 30), or placebo (n ϭ 32) (14). T was given assay CVs are 5.2%, 3.6%, and 5.4% at 80.1, 211, and 515 ␮ as a 5-mg patch applied daily and thus resulted in continuous g/dL, respectively. delivery of T to the men. DHEA was taken as tablets each morn- ing, 50 mg for women and 75 mg for men. The FFA flux study Statistical analysis procedures have been previously described in detail (16, 17). Baseline characteristics and descriptive data are presented as Briefly, participants underwent outpatient and inpatient visits at median (interquartile range) for continuous variables and pro- baseline and 24 months after replacement with placebo, DHEA, portion for categorical variables.
Recommended publications
  • COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone During SARS-Cov-2 Infection
    pharmaceuticals Review COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection Katarzyna Kotfis 1,* , Kacper Lechowicz 1 , Sylwester Drozd˙ zal˙ 2 , Paulina Nied´zwiedzka-Rystwej 3 , Tomasz K. Wojdacz 4, Ewelina Grywalska 5 , Jowita Biernawska 6, Magda Wi´sniewska 7 and Miłosz Parczewski 8 1 Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] 2 Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 3 Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; [email protected] 4 Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-252 Szczecin, Poland; [email protected] 5 Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 6 Department of Anesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; [email protected] 7 Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 8 Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; [email protected] * Correspondence: katarzyna.kotfi[email protected]; Tel.: +48-91-466-11-44 Abstract: In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared Citation: Kotfis, K.; Lechowicz, K.; a global pandemic by the World Health Organization (WHO). The clinical course of the disease is Drozd˙ zal,˙ S.; Nied´zwiedzka-Rystwej, unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to P.; Wojdacz, T.K.; Grywalska, E.; acute respiratory distress syndrome (ARDS).
    [Show full text]
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • Reproductive DHEA-S
    Reproductive DHEA-S Analyte Information - 1 - DHEA-S Introduction DHEA-S, DHEA sulfate or dehydroepiandrosterone sulfate, it is a metabolite of dehydroepiandrosterone (DHEA) resulting from the addition of a sulfate group. It is the sulfate form of aromatic C19 steroid with 10,13-dimethyl, 3-hydroxy group and 17-ketone. Its chemical name is 3β-hydroxy-5-androsten-17-one sulfate, its summary formula is C19H28O5S and its molecular weight (Mr) is 368.5 Da. The structural formula of DHEA-S is shown in (Fig.1). Fig.1: Structural formula of DHEA-S Other names used for DHEA-S include: Dehydroisoandrosterone sulfate, (3beta)-3- (sulfooxy), androst-5-en-17-one, 3beta-hydroxy-androst-5-en-17-one hydrogen sulfate, Prasterone sulfate and so on. As DHEA-S is very closely connected with DHEA, both hormones are mentioned together in the following text. Biosynthesis DHEA-S is the major C19 steroid and is a precursor in testosterone and estrogen biosynthesis. DHEA-S originates almost exclusively in the zona reticularis of the adrenal cortex (Fig.2). Some may be produced by the testes, none is produced by the ovaries. The adrenal gland is the sole source of this steroid in women, whereas in men the testes secrete 5% of DHEA-S and 10 – 20% of DHEA. The production of DHEA-S and DHEA is regulated by adrenocorticotropin (ACTH). Corticotropin-releasing hormone (CRH) and, to a lesser extent, arginine vasopressin (AVP) stimulate the release of adrenocorticotropin (ACTH) from the anterior pituitary gland (Fig.3). In turn, ACTH stimulates the adrenal cortex to secrete DHEA and DHEA-S, in addition to cortisol.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: PRODUCT IDENTIFICATION PRODUCT NAME DHEA (Prasterone) (Micronized) PRODUCT CODE 0733 SUPPLIER MEDISCA Inc. Tel.: 1.800.932.1039 | Fax.: 1.855.850.5855 661 Route 3, Unit C, Plattsburgh, NY, 12901 3955 W. Mesa Vista Ave., Unit A-10, Las Vegas, NV, 89118 6641 N. Belt Line Road, Suite 130, Irving, TX, 75063 MEDISCA Pharmaceutique Inc. Tel.: 1.800.665.6334 | Fax.: 514.338.1693 4509 Rue Dobrin, St. Laurent, QC, H4R 2L8 21300 Gordon Way, Unit 153/158, Richmond, BC V6W 1M2 MEDISCA Australia PTY LTD Tel.: 1.300.786.392 | Fax.: 61.2.9700.9047 Unit 7, Heritage Business Park 5-9 Ricketty Street, Mascot, NSW 2020 EMERGENCY PHONE CHEMTREC Day or Night Within USA and Canada: 1-800-424-9300 NSW Poisons Information Centre: 131 126 USES Adjuvant; Androgen SECTION 2: HAZARDS IDENTIFICATION GHS CLASSIFICATION Toxic to Reproduction (Category 2) PICTOGRAM SIGNAL WORD Warning HAZARD STATEMENT(S) Reproductive effector, prohormone. Suspected of damaging fertility or the unborn child. May cause harm to breast-fed children. Causes serious eye irritation. Causes skin and respiratory irritation. Very toxic to aquatic life with long lasting effects. AUSTRALIA-ONLY HAZARDS Not Applicable. PRECAUTIONARY STATEMENT(S) Prevention Wash thoroughly after handling. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe dusts or mists. Do not eat, drink or smoke when using this product. Avoid contact during pregnancy/while nursing. Wear protective gloves, protective clothing, eye protection, face protection. Avoid release to the environment. Response IF ON SKIN (HAIR): Wash with plenty of water.
    [Show full text]
  • A10 Anabolic Steroids Hardcore Info
    CONTENTS GENERAL INFORMATION 3 Anabolic steroids – What are they? 4 How do they Work? – Aromatisation 5 More molecules – More problems 6 The side effects of anabolic steroids 7 Women and anabolic steroids 8 Injecting steroids 9 Abscesses – Needle Exchanges 10 Intramuscular injection 11 Injection sites 12 Oral steroids – Cycles – Stacking 13 Diet 14 Where do steroids come from? Spotting a counterfeit 15 Drug Information – Drug dosage STEROIDS 16 Anadrol – Andriol 17 Anavar – Deca-Durabolin 18 Dynabolon – Durabolin – Dianabol 19 Esiclene – Equipoise 20 Primobolan Depot – Proviron – Primobolan orals – Pronobol 21 Sustanon – Stromba, Strombaject – Testosterone Cypionate Testosterone Enanthate 22 Testosterone Propionate – Testosterone Suspension 23 Trenbolone Acetate – Winstrol OTHER DRUGS 24 Aldactone – Arimidex 25 Clenbuterol – Cytomel 26 Ephedrine Hydrochloride – GHB 27 Growth Hormone 28 Insulin 30 Insulin-Like Growth Factor-1 – Human Chorionic Gonadotrophin 31 Tamoxifen – Nubain – Recreational Drugs 32 Steroids and the Law 34 Glossary ANABOLIC STEROIDS People use anabolic steroids for various reasons, some use them to build muscle for their job, others just want to look good and some use them to help them in sport or body building. Whatever the reason, care needs to be taken so that as little harm is done to the body as possible because despite having muscle building effects they also have serious side effects especially when used incorrectly. WHAT ARE THEY? Anabolic steroids are man made versions of the hormone testosterone. Testosterone is the chemical in men responsible for facial hair, deepening of the voice and sex organ development, basically the masculine things Steroids are in a man. used in medicine to treat anaemia, muscle weakness after These masculine effects surgery etc, vascular are called the androgenic disorders and effects of testosterone.
    [Show full text]
  • Gender-Affirming Hormone Therapy
    GENDER-AFFIRMING HORMONE THERAPY Julie Thompson, PA-C Medical Director of Trans Health, Fenway Health March 2020 fenwayhealth.org GOALS AND OBJECTIVES 1. Review process of initiating hormone therapy through the informed consent model 2. Provide an overview of masculinizing and feminizing hormone therapy 3. Review realistic expectations and benefits of hormone therapy vs their associated risks 4. Discuss recommendations for monitoring fenwayhealth.org PROTOCOLS AND STANDARDS OF CARE fenwayhealth.org WPATH STANDARDS OF CARE, 2011 The criteria for hormone therapy are as follows: 1. Well-documented, persistent (at least 6mo) gender dysphoria 2. Capacity to make a fully informed decision and to consent for treatment 3. Age of majority in a given country 4. If significant medical or mental health concerns are present, they must be reasonably well controlled fenwayhealth.org INFORMED CONSENT MODEL ▪ Requires healthcare provider to ▪ Effectively communicate benefits, risks and alternatives of treatment to patient ▪ Assess that the patient is able to understand and consent to the treatment ▪ Informed consent model does not preclude mental health care! ▪ Recognizes that prescribing decision ultimately rests with clinical judgment of provider working together with the patient ▪ Recognizes patient autonomy and empowers self-agency ▪ Decreases barriers to medically necessary care fenwayhealth.org INITIAL VISITS ▪ Review history of gender experience and patient’s goals ▪ Document prior hormone use ▪ Assess appropriateness for gender affirming medical
    [Show full text]
  • The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A
    The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A. Sandoval, Ling Ping, Ray Anthony Neill, Sachiko Morrey, and Stephen N. Davis ␮ ⅐ ؊1 ⅐ ؊1 We previously determined that both antecedent hy- mol/l kg min ; P < 0.05). In summary, day-1 poglycemia and elevated cortisol levels blunt neu- antecedent hypoglycemia blunted neuroendocrine and roendocrine and metabolic responses to subsequent metabolic responses to next-day hypoglycemia. How- hypoglycemia in conscious, unrestrained rats. The adre- ever, simultaneous DHEA-S infusion during antecedent nal steroid dehydroepiandrosterone sulfate (DHEA-S) hypoglycemia preserved neuroendocrine and metabolic has been shown in several studies to oppose corticoste- counterregulatory responses during subsequent hypo- roid action. The purpose of this study was to determine glycemia in conscious rats. Diabetes 53:679–686, 2004 if DHEA-S could preserve counterregulatory responses during repeated hypoglycemia. We studied 40 male Sprague-Dawley rats during a series of 2-day protocols. he Diabetes Control and Complications Trial Day 1 consisted of two 2-h episodes of 1) hyperinsuline- mic (30 pmol ⅐ kg؊1 ⅐ min؊1) euglycemia (6.2 ؎ 0.2 established that intensive glucose control in type ANTE EUG), 2) hyperinsulinemic eug- 1 diabetic patients can slow the progression or ;12 ؍ mmol/l; n -plus simultaneous Tsignificantly reduce the onset of diabetic micro (8 ؍ lycemia (6.0 ؎ 0.1 mmol/l; n intravenous infusion of DHEA-S (30 mg/kg; ANTE EUG vascular complications (e.g., retinopathy, nephropathy, ؉ DHEA-S), 3) hyperinsulinemic hypoglycemia (2.8 ؎ neuropathy) (1). Unfortunately, the study also established ANTE HYPO), or 4) hyperinsulinemic that intensive glucose treatment causes an approximate ;12 ؍ mmol/l; n 0.1 -with simulta- threefold increase in the frequency of severe hypoglyce (8 ؍ hypoglycemia (2.8 ؎ 0.1 mmol/l; n neous intravenous infusion of DHEA-S (30 mg/kg; ANTE mia (2).
    [Show full text]
  • DHEA Sulfate, and Aging: Contribution of the Dheage Study to a Sociobiomedical Issue
    Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue Etienne-Emile Baulieua,b, Guy Thomasc, Sylvie Legraind, Najiba Lahloue, Marc Rogere, Brigitte Debuiref, Veronique Faucounaug, Laurence Girardh, Marie-Pierre Hervyi, Florence Latourj, Marie-Ce´ line Leaudk, Amina Mokranel, He´ le` ne Pitti-Ferrandim, Christophe Trivallef, Olivier de Lacharrie` ren, Stephanie Nouveaun, Brigitte Rakoto-Arisono, Jean-Claude Souberbiellep, Jocelyne Raisonq, Yves Le Boucr, Agathe Raynaudr, Xavier Girerdq, and Franc¸oise Foretteg,j aInstitut National de la Sante´et de la Recherche Me´dicale Unit 488 and Colle`ge de France, 94276 Le Kremlin-Biceˆtre, France; cInstitut National de la Sante´et de la Recherche Me´dicale Unit 444, Hoˆpital Saint-Antoine, 75012 Paris, France; dHoˆpital Bichat, 75877 Paris, France; eHoˆpital Saint-Vincent de Paul, 75014 Paris, France; fHoˆpital Paul Brousse, 94804 Villejuif, France; gFondation Nationale de Ge´rontologie, 75016 Paris, France; hHoˆpital Charles Foix, 94205 Ivry, France; iHoˆpital de Biceˆtre, 94275 Biceˆtre, France; jHoˆpital Broca, 75013 Paris, France; kCentre Jack-Senet, 75015 Paris, France; lHoˆpital Sainte-Perine, 75016 Paris, France; mObservatoire de l’Age, 75017 Paris, France; nL’Ore´al, 92583 Clichy, France; oInstitut de Sexologie, 75116 Paris, France; pHoˆpital Necker, 75015 Paris, France; qHoˆpital Broussais, 75014 Paris, France; and rHoˆpital Trousseau, 75012 Paris, France Contributed by Etienne-Emile Baulieu, December 23, 1999 The secretion and the blood levels of the adrenal steroid dehydro- number of consumers. Extravagant publicity based on fantasy epiandrosterone (DHEA) and its sulfate ester (DHEAS) decrease pro- (‘‘fountain of youth,’’ ‘‘miracle pill’’) or pseudoscientific asser- foundly with age, and the question is posed whether administration tion (‘‘mother hormone,’’ ‘‘antidote for aging’’) has led to of the steroid to compensate for the decline counteracts defects unfounded radical assertions, from superactivity (‘‘keep young,’’ associated with aging.
    [Show full text]
  • Treated with Steroids Derived from Dehydroepiandrosterone
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6617-6619, July 1995 Medical Sciences Ergosteroids: Induction of thermogenic enzymes in liver of rats treated with steroids derived from dehydroepiandrosterone HENRY LARDY, BRUCE PARTRIDGE, NANCY KNEER, AND YONG WEI Institute for Enzyme Research, University of Wisconsin, 1710 University Avenue, Madison, WI 53705 Contributed by Henry Lardy, April 24, 1995 ABSTRACT Dehydroepiandrosterone (DHEA), an inter- above normal concentrations (16); they become hirsute and mediate in the biosynthesis of testosterone and estrogens, exhibit other signs of masculinization. exerts several physiological effects not involving the sex It was demonstrated by Tagliaferro et al. (20) that feeding hormones. When fed to rats it induces the thermogenic DHEA to rats enhanced heat production and decreased enzymes mitochondrial sn-glycerol-3-phosphate dehydroge- efficiency of food utilization. We therefore measured its effect nase and cytosolic malic enzyme in their livers. Animals and on the production of liver mitochondrial sn-glycerol-3- humans, and their excised tissues, are known to hydroxylate phosphate dehydrogenase and cytosolic malic enzyme, two DHEA at several positions and to interconvert 7a-hydroxy- enzymes that had been demonstrated (21-24) to be induced by DHEA, 7,8-hydroxy-DHEA, 7-oxo-DHEA, and the correspond- a classic thermogenic agent, the thyroid hormone. Both en- ing derivatives of androst-5-enediol. We report here that these zymes were increased severalfold in livers of rats fed a diet 7-oxygenated derivatives are active inducers of these thermo- containing 0.2-0.5% DHEA for 6 days (25, 26). A possible genic enzymes in rats and that the 7-oxo derivatives are more mechanism by which these enzymes function to decrease active than the parent steroids.
    [Show full text]
  • Spironolactone for Adult Female Acne
    ® PPracticalEDIATRIC DERMATOLOGY Pearls From the Cutis Board Spironolactone for Adult Female Acne Many cases of acne are hormonal in nature, meaning that they occur in adolescent girls and women and are aggravated by hormonal fluctuations such as those that occur during the menstrual cycle or in the setting of underlying hormonal imbalances as seen in polycystic ovary syndrome. For these patients, antihormonal therapy such as spironolactone is a valid and efficacious option. Herein, initiation and utilization of this medication is reviewed. Adam J. Friedman, MD copy What should you do during the first Evaluation of these women with acne for the visit for a patient you may start possibility of hormonal imbalance may be necessary, on spironolactone? with the 2 most common causes of hyperandrogen- Some women will come in asking about spironolac- ismnot being polycystic ovary syndrome and congeni- tone for acne, so it is important to identify potential tal adrenal hyperplasia. The presence of alopecia, candidates for antihormonal therapy: hirsutism, acanthosis nigricans, or other signs of • Women with acne flares that cycle androgen excess, in combination with dysmenor- with menstruation Dorhea or amenorrhea, may be an indication that the • Women with adult-onset acne or persistent- patient has an underlying medical condition that recurrent acne past teenaged years, even needs to be addressed. Blood tests including testos- in the absence of clinical or laboratory signs terone, dehydroepiandrosterone, follicle-stimulating of hyperandrogenism hormone, and luteinizing hormone would be appro- • Women on oral contraceptives (OCs) who priate screening tests and should be performed dur- exhibit moderate to severe acne, especially ing the menstrual period or week prior; the patient with a hormonal patternCUTIS clinically should not be on an OC or have been on one within • Women not responding to conventional ther- the last 6 weeks of testing.
    [Show full text]
  • Low Testosterone (Hypogonadism)
    Low Testosterone (Hypogonadism) Testosterone is an anabolic-androgenic steroid hormone which is made in the testes in males (a minimal amount is also made in the adrenal glands). Testosterone has two major functions in the human body. Testosterone production is regulated by hormones released from the brain. The brain and testes work together to keep testosterone in the normal range (between 199 ng/dL and 1586 ng/dL) Testosterone is needed to form and maintain the male sex organs, regulate sex drive (libido) and promote secondary male sex characteristics such as voice deepening and development of facial and body hair. Testosterone facilitates muscle growth as well as bone development and maintenance. Low testosterone levels in the blood are seen in males with a medical condition known as Hypogonadism. This may be due to a signaling problem between the brain and testes that can cause production to slow or stop. Hypogonadism can also be caused by a problem with production in the testes themselves. Causes Primary: This type of hypogonadism — also known as primary testicular failure — originates from a problem in the testicles. Secondary: This type of hypogonadism indicates a problem in the hypothalamus or the pituitary gland — parts of the brain that signal the testicles to produce testosterone. The hypothalamus produces gonadotropin- releasing hormone, which signals the pituitary gland to make follicle-stimulating hormone (FSH) and luteinizing hormone. Luteinizing hormone then signals the testes to produce testosterone. Either type of hypogonadism may be caused by an inherited (congenital) trait or something that happens later in life (acquired), such as an injury or an infection.
    [Show full text]
  • Development of a Derivatization Method for Investigating
    Scientia Pharmaceutica Article Development of a Derivatization Method for Investigating Testosterone and Dehydroepiandrosterone Using Tandem Mass Spectrometry in Saliva Samples from Young Professional Soccer Players Pre- and Post-Training Mansour A. Alzahrani 1,*, Ghareeb O. Alshuwaier 2, Khalid S. Aljaloud 2 , Colin Gibson 3, Abedawn Khalaf 3, Aliyah S. Alhawiti 1 and David G. Watson 1,* 1 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; [email protected] 2 College of Sports Sciences and Physical Activity, King Saud University, Building 69, Code 11441, Riyadh P.O. Box 1949, Saudi Arabia; [email protected] (G.O.A.); [email protected] (K.S.A.) 3 Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK; [email protected] (C.G.); [email protected] (A.K.) * Correspondence: [email protected] (M.A.A.); [email protected] (D.G.W.) Received: 7 March 2019; Accepted: 3 April 2019; Published: 19 April 2019 Abstract: In the last decade, high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with electrospray ionization (ESI) has been widely used for determining low concentrations of steroids, and derivatization has often been employed to enhance detection. In the present study, endogenous steroids were extracted using a Strata-XL polymeric reverse phase cartridge. The isolated steroids were reacted with 2-hydrazino-1-methylpyridine (HMP) at 50 ◦C for 30 min. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used in a positive mode with multiple reaction monitoring (MRM) for the quantification of testosterone (T) and its precursor, dehydroepiandrosterone (DHEA), in saliva samples collected from twenty young Saudi professional soccer players.
    [Show full text]