Simmons Conics

Total Page:16

File Type:pdf, Size:1020Kb

Simmons Conics Forum Geometricorum b Volume 6 (2006) 213–224. bbb FORUM GEOM ISSN 1534-1178 Simmons Conics Bernard Gibert Abstract. We study the conics introduced by T. C. Simmons and generalize some of their properties. 1. Introduction In [1, Tome 3, p.227], we find a definition of a conic called “ellipse de Simmons” with a reference to E. Vigari´e series of papers [8] in 1887-1889. According to Vigari´e, this “ellipse” was introduced by T. C. Simmons [7], and has foci the first isogonic center or Fermat point (X13 in [5]) and the first isodynamic point (X15 in [5]). The contacts of this “ellipse” with the sidelines of reference triangle ABC are the vertices of the cevian triangle of X13. In other words, the perspector of this conic is one of its foci. The given trilinear equation is : π π π α sin A + + β sin( B + + γ sin C + =0. 3 3 3 It appears that this conic is not always an ellipse and, curiously, the correspond- ing conic with the other Fermat and isodynamic points is not mentioned in [1]. In this paper, working with barycentric coordinates, we generalize the study of inscribed conics and circumconics whose perspector is one focus. 2. Circumconics and inscribed conics Let P =(u : v : w) be any point in the plane of triangle ABC which does not lie on one sideline of ABC. Denote by L(P ) its trilinear polar. The locus of the trilinear pole of a line passing through P is a circumconic de- noted by Γc(P ) and the envelope of trilinear polar of points of L(P ) is an inscribed conic Γi(P ). In both cases, P is said to be the perspector of the conic and L(P ) its perspectrix. Note that L(P ) is the polar line of P in both conics. The centers of Γc(P ) and Γi(P ) are Ωc(P )=(u(v + w − u):v(w + u − v):w(u + v − w)), Ωi(P )=(u(v + w):v(w + u):w(u + v)) respectively. Ωc(P ) is also the perspector of the medial triangle and the anticevian triangle AP BP CP of P . Ωi(P ) is the complement of the isotomic conjugate of P . Publication Date: June 26, 2006. Communicating Editor: Paul Yiu. 214 B. Gibert 2.1. Construction of the axes of Γc(P ) and Γi(P ). Let X be the fourth intersection of the conic and the circumcircle (X is the trilinear pole of the line KP). The axes of Γc(P ) are the parallels at Ωc(P ) to the bisectors of the lines BC and AX.A similar construction in the cevian triangle PaPbPc of P gives the axes of Γi(P ). 2.2. Construction of the foci of Γc(P ) and Γi(P ). The line BC and its perpen- dicular at Pa meet one axis at two points. The circle with center Ωi(P ) which is orthogonal to the circle having diameter these two points meets the axis at the re- quested foci. A similar construction in the anticevian triangle of P gives the foci of Γc(P ). 3. Inscribed conics with focus at the perspector Theorem 1. There are two and only two non-degenerate inscribed conics whose perspector P is one focus : they are obtained when P is one of the isogonic centers. ∗ Proof. If P is one focus of Γi(P ), the other focus is the isogonal conjugate P of P and the center is the midpoint of PP∗. This center must be the isotomic conjugate of the anticomplement of P . A computation shows that P must lie on three circum-strophoids with singularity at one vertex of ABC. These strophoids are orthopivotal cubics as seen in [4, p.17]. They are the isogonal transforms of the three Apollonian circles which intersect at the two isodynamic points. Hence, the strophoids intersect at the isogonic centers. These conics will be called the (inscribed) Simmons conics denoted by S13 = Γi(X13) and S14 =Γi(X14). Elements of the conics S13 S14 perspector and focus X13 X14 other real focus X15 X16 center X396 X395 focal axis parallel to the Euler line idem non-focal axis L(X14) L(X13) directrix L(X13) L(X14) other directrix L(X18) L(X17) Remark. The directrix associated to the perspector/focus in both Simmons conics is also the trilinear polar of this same perspector/focus. This will be generalized below. Theorem 2. The two (inscribed) Simmons conics generate a pencil of conics which contains the nine-point circle. The four (not always real) base points of the pencil form a quadrilateral inscribed in the nine point circle and whose diagonal triangle is the anticevian triangle of X523, the infinite point of the perpendiculars to the Euler line. In Figure 1 we have four real base points on the nine point circle and on two parabolas P1 and P2. Hence, all the conics of the pencil have axes with the same directions (parallel and perpendicular to the Euler line) and are centered on the rectangular hyperbola Simmons conics 215 P2 X16 NPC X13 A G B C X15 P1 X14 S14 S13 Figure 1. Simmons ponctual pencil of conics which is the polar conic of X30 (point at infinity of the Euler line) in the Neuberg cubic. This hyperbola passes through the in/excenters, X5, X30, X395, X396, X523, X1749 and is centered at X476 (Tixier point). See Figure 2. This is the diagonal conic with equation : 2 2 2 2 2 2 (b − c )(4SA − b c )x =0. cyclic It must also contain the vertices of the anticevian triangle of any of its points and, in particular, those of the diagonal triangle above. Note that the polar lines of any of its points in both Simmons inconics are parallel. Theorem 3. The two (inscribed) Simmons conics generate a tangential pencil of conics which contains the Steiner inellipse. Indeed, their centers X396 and X395 lie on the line GK. The locus of foci of all inconics with center on this line is the (second) Brocard cubic K018 which is nK0(K, X523) (See [3]). These conics must be tangent to the trilinear polar of the root X523 which is the line through the centers X115 and X125 of the Kiepert and Jerabek hyperbolas. Another approach is the following. The fourth common tangent to two inconics is the trilinear polar of the intersection of the trilinear polars of the two perspec- tors. In the case of the Simmons inconics, the intersection is X523 at infinity (the perspector of the Kiepert hyperbola) hence the common tangent must be the trilin- ear polar of this point. In fact, more generally, any inconic with perspector on the 216 B. Gibert L(X17) X16 P1 K018 S14 X395 A NPC X230 X13 K X396 X125 X111 L(X13) G X15 X14 B S13 X115 P2 C Polar conic L(X18) of X30 L(X14) Figure 2. The two Simmons inconics S13 and S14 Kiepert hyperbola must be tangent to this same line (the perpector of each conic must lie on the Kiepert hyperbola since it is the isotomic conjugate of the anti- complement of the center of the conic). In particular, since G lies on the Kiepert hyperbola, the Steiner inellipse must also be tangent to this line. This is also the case of the inconic with center K, perspector H sometimes called K-ellipse (see [1]) although it is not always an ellipse. Remarks. (1) The contacts of this common tangent with S13 and S14 lie on the lines through G and the corresponding perspector. See Figures 2 and 3. (2) This line X115X125 meets the sidelines of ABC at three points on K018. (3) The focal axes meet the non-focal axes at the vertices of a rectangle with center X230 on the orthic axis and on the line GK. These vertices are X396, X395 and two other points P1, P2 on the cubic K018 and collinear with X111, the singular focus of the cubic. (4) The orthic axis is the mediator of the non-focal axes. Simmons conics 217 P A X1648 S13 X13 S14 G X115 X111 X15 X14 Steiner B inellipse C Figure 3. Simmons tangential pencil of conics (5) The pencil contains one and only one parabola P we will call the Simmons parabola. This is the in-parabola with perspector X671 (on the Steiner ellipse), 1 focus X111 (Parry point), touching the line X115X125 at X1648. 4. Circumconics with focus at the perspector A circumconic with perspector P is inscribed in the anticevian triangle PaPbPc of P . In other words, it is the inconic with perspector P in PaPbPc. Thus, P is a focus of the circumconic if and only if it is a Fermat point of PaPbPc. According to a known result 2, it must then be a Fermat point of ABC. Hence, Theorem 4. There are two and only two non-degenerate circumconics whose per- spector P is one focus : they are obtained when P is one of the isogonic centers. They will be called the Simmons circumconics denoted by Σ13 =Γc(X13) and Σ14 =Γc(X14). See Figure 4. The fourth common point of these conics is X476 (Tixier point) on the circum- circle. The centers and other real foci are not mentioned in the current edition of [6] and their coordinates are rather complicated. The focal axes are those of the Simmons inconics. 1 X1648 is the tripolar centroid of X523 i.e. the isobarycenter of the traces of the line X115X125. It lies on the line GK.
Recommended publications
  • Self-Inverse Gemini Triangles
    INTERNATIONAL JOURNAL OF GEOMETRY Vol. 9 (2020), No. 1, 25 - 39 SELF-INVERSE GEMINI TRIANGLES CLARK KIMBERLING and PETER MOSES Abstract. In the plane of a triangle ABC, every triangle center U = u : v : w (barycentric coordinates) is associated with a central triangle having A-vertex AU = −u : v + w : v + w. The triangle AU BU CU is a self-inverse Gemini triangle. Let mU (X) be the image of a point X under the collineation that maps A; B; C; G respectively onto AU ;BU ;CU ;G, where G is the centroid of ABC. Then mU (mU (X)) = X: Properties of the self-inverse mapping mU are presented, with attention to associated conics (e.g., Jerabek, Kiepert, Feuerbach, Nagel, Steiner), as well as cubics of the types pK(Y; Y ) and pK(U ∗ Y; Y ). 1. Introduction The term Gemini triangle, introduced in the Encyclopedia of Triangle Centers (ETC [7], just before X(24537)), applies to certain triangles defined by barycentric coordinates. In keeping with the meaning of gemini, these triangles tend to occur in pairs. Specifically, for a given reference triangle ABC with sidelengths a; b; c, a Germini triangle A0B0C0 is a cen- tral triangle ([6], pp. 53-56) with A-vertex given by (1.1) A0 = f(a; b; c): g(b; c; a): g(b; a; c); where f and g are center functions ([6], p. 46). Because A0B0C0 is a central triangle, the vertices B0 and C0 can be read from (1.1) as B0 = g(c; b; a): f(b; c; a): g(c; a; b) C0 = g(a; b; c): g(a; c; b): f(c; a; b): Now suppose that U = u : v : w is a triangle center, and let 0 −u v + w v + w 1 MU = @ w + u −v w + u A : u + v u + v −w Keywords and phrases Triangle, Gemini triangle, barycentric coordinates, collineation, conic, cubic, circumcircle, Jerabek, Kiepert, Feuerbach, Nagel, Steiner (2010)Mathematics Subject Classification: 51N15, 51N20 Received: 13.10.2019.
    [Show full text]
  • A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel
    A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel Abstract. The Siebeck–Marden theorem relates the roots of a third degree polynomial and the roots of its derivative in a geometrical way. A few geometric arguments imply that every inellipse for a triangle is uniquely related to a certain logarithmic potential via its focal points. This fact provides a new direct proof of a general form of the result of Siebeck and Marden. Given three noncollinear points a, b, c ∈ C, we can consider the cubic polynomial P(z) = (z − a)(z − b)(z − c), whose derivative P (z) has two roots f1, f2. The Gauss–Lucas theorem is a well-known result which states that given a polynomial Q with roots z1,...,zn, the roots of its derivative Q are in the convex hull of z1,...,zn. In the simple case where we have only three roots, there is a more precise result. The roots f1, f2 of the derivative polynomial are situated in the interior of the triangle abc and they have an interesting geometric property: f1 and f2 are the focal points of the unique ellipse that is tangent to the sides of the triangle abc at its midpoints. This ellipse is called the Steiner inellipse associated to the triangle abc. In the rest of this note, we use the term inellipse to denote an ellipse situated in a triangle that is tangent to all three of its sides. This geometric connection between the roots of P and the roots of P was first observed by Siebeck (1864) [12] and was reproved by Marden (1945) [8].
    [Show full text]
  • An Area Inequality for Ellipses Inscribed in Quadrilaterals
    1 Introduction It is well known(see [CH], [K], or [MP]) that there is a unique ellipse in- scribed in a given triangle, T , tangent to the sides of T at their respective midpoints. This is often called the midpoint or Steiner inellipse, and it can be characterized as the inscribed ellipse having maximum area. In addition, one has the following inequality. If E denotes any ellipse inscribed in T , then Area (E) π , (trineq) Area (T ) ≤ 3√3 with equality if and only if E is the midpoint ellipse. In [MP] the authors also discuss a connection between the Steiner ellipse and the orthogonal least squares line for the vertices of T . Definition: The line, £, is called a line of best fit for n given points z1, ..., zn n 2 in C, if £ minimizes d (zj ,l) among all lines l in the plane. Here d (zj,l) j=1 denotes the distance(Euclidean)P from zj to l. In [MP] the authors prove the following results, some of which are also proven in 1 n Theorem A: Suppose zj are points in C,g = zj is the centroid, and n j=1 n n 2 2 2 P Z = (zj g) = zj ng . j=1 − j=1 − (a)P If Z = 0, thenP every line through g is a line of best fit for the points z1, ..., zn. (b) If Z = 0, then the line, £, thru g that is parallel to the vector from 6 (0, 0) to √Z is the unique line of best fit for z1, ..., zn.
    [Show full text]
  • Permutation Ellipses
    Journal for Geometry and Graphics Volume 24 (2020), No. 2, 233–247 Permutation Ellipses Clark Kimberling1, Peter J. C. Moses2 1Department of Mathematics, University of Evansville, Evansville, Indiana 47722, USA [email protected] 2Engineering Division, Moparmatic Co., Astwood Bank, Nr. Redditch, Worcestershire, B96 6DT, UK [email protected] Abstract. We use homogeneous coordinates in the plane of a triangle to define a family of ellipses having the centroid of the triangle as center. The family, which includes the Steiner circumscribed and inscribed ellipses, is closed under many operations, including permutation of coordinates, complements and anticomple- ments, duality, and inversion. Key Words: barycentric coordinates, Steiner circumellipse, Steiner inellipse, com- plement and anticomplement, dual conic, inversion in ellipse, Frégier ellipse MSC 2020: 51N20, 51N15 1 Introduction In 1827, something revolutionary happened in triangle geometry. A descendant of Martin Luther named Möbius introduced barycentric coordinates. Suddenly, points and lines in the plane of a triangle ABC with sidelengths a, b, c had a new kind of representation, and traditional geometric relationships found new algebraic kinds of expression. The lengths a, b, c came to be regarded as variables or indeterminates, and a criterion for collinearity of three points became the zeroness of a determinant, as did the concurrence of three lines. More recently, algebraic concepts have been imposed on the objects of triangle geometry. You can make up a suitable function f(a, b, c) and say “Let P be the point with barycentric coordinates f(a, b, c): f(b, c, a): f(c, a, b)” and then use algebra to find geometrically notable properties of P .
    [Show full text]
  • Steiner's Hat: a Constant-Area Deltoid Associated with the Ellipse
    KoG•24–2020 R. Garcia, D. Reznik, H. Stachel, M. Helman: Steiner’s Hat: a Constant-Area Deltoid ... https://doi.org/10.31896/k.24.2 RONALDO GARCIA, DAN REZNIK Original scientific paper HELLMUTH STACHEL, MARK HELMAN Accepted 5. 10. 2020. Steiner's Hat: a Constant-Area Deltoid Associated with the Ellipse Steiner's Hat: a Constant-Area Deltoid Associ- Steinerova krivulja: deltoide konstantne povrˇsine ated with the Ellipse pridruˇzene elipsi ABSTRACT SAZETAKˇ The Negative Pedal Curve (NPC) of the Ellipse with re- Negativno noˇziˇsnakrivulja elipse s obzirom na neku nje- spect to a boundary point M is a 3-cusp closed-curve which zinu toˇcku M je zatvorena krivulja s tri ˇsiljka koja je afina is the affine image of the Steiner Deltoid. Over all M the slika Steinerove deltoide. Za sve toˇcke M na elipsi krivulje family has invariant area and displays an array of interesting dobivene familije imaju istu povrˇsinui niz zanimljivih svoj- properties. stava. Key words: curve, envelope, ellipse, pedal, evolute, deltoid, Poncelet, osculating, orthologic Kljuˇcnerijeˇci: krivulja, envelopa, elipsa, noˇziˇsnakrivulja, evoluta, deltoida, Poncelet, oskulacija, ortologija MSC2010: 51M04 51N20 65D18 1 Introduction Main Results: 0 0 Given an ellipse E with non-zero semi-axes a;b centered • The triangle T defined by the 3 cusps Pi has invariant at O, let M be a point in the plane. The Negative Pedal area over M, Figure 7. Curve (NPC) of E with respect to M is the envelope of • The triangle T defined by the pre-images Pi of the 3 lines passing through points P(t) on the boundary of E cusps has invariant area over M, Figure 7.
    [Show full text]
  • Steiner's Hat: a Constant-Area Deltoid Associated with the Ellipse
    STEINER’S HAT: A CONSTANT-AREA DELTOID ASSOCIATED WITH THE ELLIPSE RONALDO GARCIA, DAN REZNIK, HELLMUTH STACHEL, AND MARK HELMAN Abstract. The Negative Pedal Curve (NPC) of the Ellipse with respect to a boundary point M is a 3-cusp closed-curve which is the affine image of the Steiner Deltoid. Over all M the family has invariant area and displays an array of interesting properties. Keywords curve, envelope, ellipse, pedal, evolute, deltoid, Poncelet, osculat- ing, orthologic. MSC 51M04 and 51N20 and 65D18 1. Introduction Given an ellipse with non-zero semi-axes a,b centered at O, let M be a point in the plane. The NegativeE Pedal Curve (NPC) of with respect to M is the envelope of lines passing through points P (t) on the boundaryE of and perpendicular to [P (t) M] [4, pp. 349]. Well-studied cases [7, 14] includeE placing M on (i) the major− axis: the NPC is a two-cusp “fish curve” (or an asymmetric ovoid for low eccentricity of ); (ii) at O: this yielding a four-cusp NPC known as Talbot’s Curve (or a squashedE ellipse for low eccentricity), Figure 1. arXiv:2006.13166v5 [math.DS] 5 Oct 2020 Figure 1. The Negative Pedal Curve (NPC) of an ellipse with respect to a point M on the plane is the envelope of lines passing through P (t) on the boundary,E and perpendicular to P (t) M. Left: When M lies on the major axis of , the NPC is a two-cusp “fish” curve. Right: When− M is at the center of , the NPC is 4-cuspE curve with 2-self intersections known as Talbot’s Curve [12].
    [Show full text]
  • An Elementary Proof of Marden's Theorem
    An Elementary Proof of Marden’s Theorem Dan Kalman What I call Marden’s Theorem is one of my favorite results in mathematics. It es- tablishes a fantastic relation between the geometry of plane figures and the relative positions of roots of a polynomial and its derivative. Although it has a much more general statement, here is the version that I like best: Marden’s Theorem. Let p(z) be a third-degree polynomial with complex coefficients, and whose roots z1,z2, and z3 are noncollinear points in the complex plane. Let T be the triangle with vertices at z1,z2, and z3. There is a unique ellipse inscribed in T and tangent to the sides at their midpoints. The foci of this ellipse are the roots of p(z). I call this Marden’s Theorem because I first read it in M. Marden’s wonderful book [6]. But this material appeared previously in Marden’s earlier paper [5]. In both sources Marden attributes the theorem to Siebeck, citing a paper from 1864 [8]. In- deed, Marden reports appearances of various versions of the theorem in nine papers spanning the period from 1864 to 1928. Of particular interest in what follows below is an 1892 paper by Maxime Bocherˆ [1]. In his presentation Marden states the theorem in a more general form than given m1 above, corresponding to the logarithmic derivative of a product (z − z1) (z − m2 m3 z2) (z − z3) where the only restriction on the exponents m j is that they be nonzero, and with a general conic section taking the place of the ellipse.
    [Show full text]
  • Mixed Intersection of Cevians and Perspective Triangles
    15TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS ©2012 ISGG 1–5 AUGUST, 2012, MONTREAL, CANADA MIXED INTERSECTION OF CEVIANS AND PERSPECTIVE TRIANGLES Boris ODEHNAL Dresden University of Technology, Germany ABSTRACT: Any point P in the plane of a triangle ∆ = (A,B,C) can be considered as the intersection of certain Cevians, whether P is a triangle center or not. Taking two centers, say Y and Z, we find six Cevians with a total of 11 points of intersection, among them ∆’s vertices and Y and Z. The remaining six points form two triangles ∆1 and ∆2 which are both perspective to the base triangle ∆ and to each other. The three centers of perspectivity are triangle centers of ∆ and collinear, independent of the choice of Y and Z. Furthermore any pair out of ∆, ∆1, and ∆2 has the same perspectrix which yields a closed chain of Desargues’ (103,103) configurations. Then special affine appearances of Desargues’ configurations can be obtained by a suitable choice of Y and Z. Any choice of a fixed center Y leads to exactly one center Z as the fourth point of intersection of two conic sections circumscribed to ∆ such that the perspectors P1, P2, and consequently P12 are points at infinity. For fixed center Y we obtain a quadratic transformation in ∆’s plane which transforms central lines to central conic sections. Keywords: triangle, Cevian, perspective triangles, Desargues configuration, triangle center, cross- point 1. INTRODUCTION C Many triangle centers appear as the intersection of certain Cevians. For example the incenter X1 X4 is the intersection of the interior angle bisectors h of a triangle ∆ with vertices A, B, C.
    [Show full text]
  • 104.08 Finding Triangles with Given Circum-Medial Triangle
    The Mathematical Gazette March 2020 104.08 Finding triangles with given circum-medial triangle Let △A1B1C1 be an arbitrary triangle and P an arbitrary point not on its circumcircle Σ. The ‘other’ intersection points of the ‘cevians’ A1PB,,1P C1P with Σ, the points AB,,,C make the so-called circumcevian triangle of △A1B1C1 with respect to PP. If is the centroid of △A1B1C1 then △ABC is called * the circum-medial triangle of △A1B1C1 (see Figure 1: P = centroid G1). C1 A B1 B G1 A1 C FIGURE 1: How to reverse the process of constructing the circum-medial triangle? A recent paper [1] was concerned with iterating the construction of the circum-medial triangle (it turned out that the shape of the triangles converges to equilaterality). Here, we reverse the process. Specifically, given △ABC we look for △A1B1C1 such that △ABC is the circum-medial triangle of △A1B1C1. It turns out that there are in general two solutions, namely, the circumcevian triangles of △ABC with respect to the foci of the Steiner inellipse of △ABC. Theorem 1: Given △ABCGand a point 1 not on its circumcircle Σ, let △A1B1C1 be its circumcevian triangle with respect to G1. Then G1 is the centroid of △A1B1C1 if, and only if, it is a focus of the Steiner inellipse of △ABC. Remark: Since an ellipse has two foci, this yields the two mentioned solutions (see Figure 2), except in the case where △ABC is equilateral, when * Unfortunately, not every language has such short and precise terms for the corresponding triangles. For instance in German there is no such term, one would have to describe the whole process with many words.
    [Show full text]
  • Dao Thanh Oai, Generalizations of Some Famous Classical Euclidean
    International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 c IJCDM September 2016, Volume 1, No.3, pp.13-20. Received 15 July 2016. Published on-line 22 July 2016 web: http://www.journal-1.eu/ c The Author(s) This article is published with open access1. Generalizations of some famous classical Euclidean geometry theorems Dao Thanh Oai Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Vietnam e-mail: [email protected] Abstract. In this note, we introduce generalizations of some famous classical Euclidean geometry theorems. We use problems in order to state the theorems. Keywords. Euclidean geometry, Triangle geometry. Mathematics Subject Classification (2010). 51-04, 68T01, 68T99. Problem 1 ([1],[2], A generalization the Lester circle theorem associated with the Neuberg cubic). Let P be a point on the Neuberg cubic. Let PA be the reflection of P in line BC, and define PB and PC cyclically. It is known that the lines APA, BPB, CPC concur. Let Q(P ) be the point of concurrence. Then two Fermat points, P , Q(P ) lie on a circle. Remark: Let P is the circumcenter, it is well-know that Q(P ) is the Nine point center, the conjucture becomes Lester circle theorem, you can see the Lester circle theorem in([3],[4]). Problem 2 ([5],[6], A generalization of the Parry circle theorem associated with two isogonal conjugate points). Let a rectangular circumhyperbola of ABC, let L be the isogonal conjugate line of the hyperbola. The tangent line to the hyperbola at X(4) meets L at point K.
    [Show full text]
  • An Area Inequality for Ellipses Inscribed in Quadrilaterals
    Journal of Mathematical Inequalities Volume 4, Number 3 (2010), 431–443 AN AREA INEQUALITY FOR ELLIPSES INSCRIBED IN QUADRILATERALS ALAN HORWITZ (Communicated by S. S. Gomis) Area(E) Abstract. If E is any ellipse inscribed in a convex quadrilateral, –D, then we prove that Area(–D) π , and equality holds if and only if –D is a parallelogram and E is tangent to the sides of –D 4 at the midpoints. We also prove that the foci of the unique ellipse of maximal area inscribed in a parallelogram, –D, lie on the orthogonal least squares line for the vertices of –D. This does not hold in general for convex quadrilaterals. 1. Introduction It is well known (see [1], [4], or [5]) that there is a unique ellipse inscribed in a given triangle, T , tangent to the sides of T at their respective midpoints. This is often called the midpoint or Steiner inellipse, and it can be characterized as the inscribed ellipse having maximum area. In addition, one has the following inequality. If E denotes any ellipse inscribed in T ,then Area(E) π √ , (1) Area(T) 3 3 with equality if and only if E is the midpoint ellipse. In [5] the authors also discuss a connection between the Steiner ellipse and the orthogonal least squares line for the vertices of T . DEFINITION 1. The line, £, is called a line of best fitforn given points z1,...,zn n 2 in C,if£ minimizes ∑ d (z j,l) among all lines l in the plane. Here d (z j,l) denotes j=1 the distance(Euclidean) from z j to l .
    [Show full text]
  • Perspective Fields-Part2 Size
    Part 2 – Algebraic Approach and Theory © Chris van Tienhoven [email protected] There is a most special application for Perspective Fields. Because points are generated structurally in Perspective Fields this also can be seen in the formulas of the points. All points in the field we described earlier (defined by X13, X2, X15, X6) have the same algebraic structure in the formulas of their barycentric coordinates: f (a,b,c) = i a2 SA + j SB SC + k a2∆ Where: ∆ = Area of Reference Triangle a,b,c are lenghts of sides Reference Triangle SA = (-a2 + b2 + c2 ) / 2 SB = ( a2 - b2 + c2 ) / 2 SC = ( a2 + b2 - c2 ) / 2 i, j, k are variables uniquely defining the points in a Perspective Field So every point in the field can be defined as a triple (i : j : k). Because only the ratios of variables i, j, k are of importance the triple can be considered as alternate homogeneous coordinates for fieldpoints. The importance of this is that a fieldpoint now is: independant of sides and angles of the referencetriangle and uniquely defined just by 3 numbers. Look at next picture to see what structure comes out. 2 Homogeneous Coordinates (i : j : k) with respect to barycentric coordinates f (a,b,c) = i a2 SA + j SB SC + k a2∆ Note that for all Fieldpoints: . on X4-X6-Line 1st coordinate = 0 . on BrocardAxis 2nd coordinate = 0 . on Euler Line 3rd coordinate = 0 Note that this formula-structure is only valid for Fieldpoints. Non-fieldpoints will have a different formula-structure. 3 Point of departure: .
    [Show full text]