Insertions of the Lumbrical and Interosseous Muscles in the The

Total Page:16

File Type:pdf, Size:1020Kb

Insertions of the Lumbrical and Interosseous Muscles in the The Okajimas Folia Anat. Jpn.. 69(2-3): 77-84, August, 1992 Insertions of the Lumbrical and Interosseous Muscles in the Human Foot By Hideki OUKOUCHI, Takuro MURAKAMI and Akio KIKUTA Section of Human Morphology, Department of Anatomy, Okayama University Medical School, 2-5-1 Shikata-cho. Okayama 700, Japan -Received for Publications, February 5, 1992- Key Words: Human foot, Lumbrical muscle, Plantar interosseous muscle, Dorsal interosseous muscle, Dorsal aponeurosis, neurosis, Dorsal digital expansion Summary: The lumbrical and interosseous muscles in twenty-five feet of Japanese adult cadavers were dissected. The lumbrical muscles mainly continued into the dorsal aponeuroses or the terminal tendons of the extensor digitorum longus muscle, though they occassionally issued some accessory and slender tendons inserting into the bases of the proximal phalanges. Rarely, the lumbrical muscle showed an atavistic anomaly. In this anomaly, the lumbrical muscle was divided into two tails which continued into the bases of the proximal phalanges of the contiguous toes. The plantar and dorsal interosseous muscles were mainly attached to the bases of the proximal phalanges. Frequently, the plantar and dorsal interosseous muscles issued some accessory and small tendons continuing into the dorsal aponeuroses. This fact suggests that the plantar and dorsal interosseous muscles in the foot, like the palmar and dorsal interosseous muscles in the hand, are composite muscles derived from the flexor brevis, contrahens and other muscles. The lumbrical muscles of the human foot are human foot (Fig. 1, 2, 3). These muscles were num- generally regarded as being inserted into the pro- bered from the medial side of the foot (Figs. 1, 2, 3). ximal phalanges (Henle, 1871; Frohse and Frãnkel, No morphological difference of the lumbrical, dorsal 1913; Paturet, 1951; Mortenson and Pettersen, 1966; interosseous and plantar interosseous muscles was Gardner, Gray and O'Rahilly, 1971; Tillman and observed between the male and female cadavers and TOndury, 1987). However, our recent dissection also between the right and left feet. of Japanese feet has revealed that the lumbrical The dorsal aponeurosis of the toe consisted of the muscles mainly end in the dorsal aponeuroses. These tendons of the extensor digitorum longus and brevis are reported in the present paper. The insertions of muscles and the outer and inner tendinous mem- the interosseous muscles are also described and dis- branes arising, together with the deep plantar meta- cussed in relation to their phylogenetic compositions. tarsal ligaments, from the plantar aspect of the neck of the metatarsal bone (Figs. 4, 5, 6). The inner tendinous membranes ran around the neck of the Materials and Methods metatarsal bone, and enclosed the tendons of the extensor digitorum longus and brevis muscles at a Twenty-five feet of Japanese adult cadavers of level between the neck of the metatarsal bone and both sexes, which had been fixed with 10% formalin the head of the proximal phalanx (Fig. 5). Thus, the by vascular perfusion and dehydrated with 60-70% inner tendons extended bilaterally along the proxi- ethanol, were dissected with sharpened forceps under mal phalanx (wing tendons) (Figs. 4, 6). The outer a dissection light microscope. tendinous membrane was thick and band-like, and firmly surrounded the plantar and dorsal interosseous muscles and the enclosed tendons of the extensor Results muscles (see above) (Figs. 5, 6). This band-like outer membrane (annular ligament) only extended at a There were four lumbrical, four dorsal interos- level of the neck of the metatarsal bone (Figs. 4. 6). seous and three plantar interosseous muscles in the The lumbrical muscles arose from the tendons of Address for correspondence: Takuro Murakami, Human Morphology Section, Department of Anatomy, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700, Japan. 77 78 H. Oukouchi et al . Fig. 2. Arrangements, origins and insertions of the dorsal inter- osseous muscles in the human foot (right foot Fig. 1. Schematicdiagram showing the arrangements, origins , plantar aspect). D1—D4 first to fourth dorsal interosseous muscles . and insertionsof the lumbricalmuscles in the human foot MB metatarsal bones, PP proximal phalanges. (rightfoot, plantar aspect). L1—L4 first to fourthlumbrical muscles.DP distal phalanges,FH tendonof the flexor at a level of the metatarso-phalangeal joints, some hallucislongus muscle, FL tendonsof the flexordigitorum accessory and slender tendons which were inserted longusmuscle, MB metatarsalbones, MP middle phal- into the bases or basal portions of the proximal anges,PP proximalphalanges, WT wingtendons of the phanges (Fig. 4) (Table 1). dorsalaponeuroses. In one of the twenty-five feet, the third and fourth lumbrical muscles were divided into two (medial the flexor digitorum longus muscle, as far back as and lateral) tails, which reached the contiguous their angles of separation, and, with the exception sides of the adjacent fingers (Fig. 7). More strictly, of the first one which arose only from the medial the medial and lateral tails of the fourth lumbrical border of the first tendon of the flexor digitorum muscle and the lateral tail of the third lumbrical longus muscle, each sprang from two adjacent ten- muscle were further divided into the two tendons dons (Fig. 1). which were inserted into the wing tendons of the The lumbrical muscles ran plantar to the deep dorsal aponeuroses and the bases of the proximal plantar metatarsal ligaments, and ended, at a level phalanges; the medial tail of the third lumbrical of metatarsophalangeal joints, in tendons which, muscle was solely inserted into the base of the pro- passed distally on the medial sides of the four lesser ximal phalanx (Fig. 7). toes and formed the distal ridges of the medial wing The dorsal interosseous muscles were bipennate tendons (see above) of these toes (Figs. 1, 4, 6). muscles, each arising by two heads from the adjacent Occasionally, the tendons of the lumbrical muscles sides of two metatarsal bones; the first one reached were attached to or mixed with the medial terminal the medial side of the second toe, the other three tendons of the extensor digitorum longus muscle, ones passing to the lateral sides of the second, third and inserted into the dorso-proximal parts of middle and fourth toes (Fig. 2). The plantar interosseous and distal phalanges (Fig. 4). In addition to these muscles arose from the bases and medial sides of the insertions, the lumbrical muscles occasionally issued, third, fourth and fifth metatarsal bones, and reached Lumbrical and Interosseous Muscles in the Human Foot 79 Fig. 3. Arrangements, origins and insertions of the plantar interosseous muscles in the human foot (right foot, plantar aspect). P1—P3 plantar interosseous muscles. MB Meta- tarsal bones, PP proximal phalanges. Fig. 4. Dorsal aponeurosis of the third toe (right foot, dorsal aspect). Note that the dorsal aponeurosis (DA) was formed by the tendons of the extensor digitorum longus (EL) and brevis (EB) muscles and the outer (OL) and inner (IL) membranous ligaments arising from the plantar aspect of the metatarsal bone (MB). The distal and bilateral segments of the inner ligment are referred to as the wing tendons (WT). Also note that the second lumbrical muscle (L2) ends in the tendon (thick arrowhead), which forms the distal ridge of the medial wing tendon and continues into the medial terminal tendon of the extensor digitorum longus muscle, and that this lumbrical muscle issues an accessory and slender tendon (thin arrowhead) which is inserted into the base of the proximal phalanx. Further- more, it should be noted that the third dorsal (D3) and first plantar (P1) interosseous muscles are attached to the bases of the proximal phalanx (thick arrow), and that the first plantar interosseous muscle issues a small slip (thin arrow) continuous with the wing tendon. DP distal phalanx, LT lateral terminal tendon of the flextor digitorum longus muscle, MT medial teminal tendon of the flexor digitorum longus muscle, MP middle phalanx, PP proximal phalanx, TL deep transverse metatarsal ligament. 80 H. Oukouchi et al. Table 1. Combinations and occurrence of main and accessory tendons of the first to forth lumbrical muscles (L1—L4) in 25 human feet. The main tendon (M) is inserted into the wing tendon of the dorsal aponeurosis or mixed into the medial terminal tendon of the extensor digitorum longus muscle, while the accessory one (A) is attached to the base of the proximal phalanx (see text). Aberrant cases are shown in Figure 7 (see text) Lumbrical Muscles the medial sides of the same toes (Fig. 3). The dorsal and plantar interosseous muscles ended, just proximal to the metatarsophalangeal Fig. 5. Dorsal aponeurosis (transeversely cut form, at a level of joints, in their terminal tendons which were attached the neck of the third metatarsal bone, right foot, proximal to the bases of the proximal phalanges (Figs. 2, 3, 4) aspect). Note that the dorsal aponeurosis (DA) is formed (Table 2). In addition to these main insertions, the by the outer (OL) and inner (IL) membranous ligaments dorsal and planter interosseous muscles frequently continuous with the deep plantar metatarsal ligament (TL). gave off, near the metatarsophalangeal joints, some EL and EB tendons of the extensor digitorum longus and accessory and small tendons or slips which were brevis muscles, D3 and P1 third dorsal and first plantar inserted into the wing tendons of the dorsal apo- interosseous muscles, L2 second lumbrical muscle, MB neuroses (Fig. 4) (Table 2). third metatarsal bone. sules of the metatarsophalangeal joints. These find- Discussion ings are consistent with the descriptions of the pre- vious authors, including Henle (1871). However, few The present study reveals that the lumbrical authors have described the additional insertions of muscles of the human foot have constant and thick the interosseous muscles into the dorsal aponeuroses insertions into the dorsal aponeuroses of the toes, of the toes or into the capsules of the metatarso- though they occasionally have some accessory and phalangeal joints.
Recommended publications
  • Über Dendrolagus Dorianus. Albertina Carlsson
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Tiere Jahr/Year: 1914 Band/Volume: 36 Autor(en)/Author(s): Carlsson Albertina Artikel/Article: Über Dendrolagus dorianus. 547-617 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Nachdruck verboten. Übersetzungsrecht vorbehalten. Über Dendrolagus dorianus. Von Albertina Carlsson. (Aus dem Zootomischen Institut der Universität zu Stockholm.) Mit Tafel 20-22. Nach HuxLEY (29), Dollo (18) und Bensley (6) waren die Beuteltiere ursprünglich Baumtiere ; verschiedene aber haben sich später einem Leben auf dem Boden angepaßt, einige vor dem Auftreten des Syndactylismus, womit eine Reduktion des opponierbaren Hallux zusammenhängt, andere nach dem Auftreten desselben ; letztere Fuß- form repräsentiert eine vollständigere Adaption an die arboricole Lebens- weise (19, p. 168). Neuerdings iiat Matthew darzulegen versucht (37), daß alle bekannten Mammalia, von den Prototheria abgesehen, von Tieren abstammen, welche auf Bäumen gelebt haben; also kann die von Dollo und Bensley ausgesprochene Behauptung auch auf die Monodelphia ausgedehnt w^erden. Unter den dem terrestrischen Leben besonders angepaßten Macro- podidae gibt es eine Gattung, Dendrolagus, die im Äußeren deutlich mit den Känguruhs übereinstimmt, die aber durch geringere Ver- schiedenheit in der Länge der vorderen und der hinteren Extremität von denselben abweicht. Teils hüpft das Tier auf dem Boden, wobei es denselben mit den Vorderbeinen berührt oder bei langsamem Hüpfen nur die eine Hand auf den Boden setzt und die andere erhoben hält (1, p. 409), teils klettert es auf den Bäumen, wobei der Stamm mit den Vorderfüßen umfaßt wird (8, p.
    [Show full text]
  • Functional Analysis of the Foot and Ankle Myology of Gibbons and Bonobos
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias J. Anat. (2005) 206, pp453–476 FunctionalBlackwell Publishing, Ltd. analysis of the foot and ankle myology of gibbons and bonobos Evie E. Vereecke,1 Kristiaan D’Août,1 Rachel Payne2 and Peter Aerts1 1Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Belgium 2Royal Veterinary College, University of London, UK Abstract This study investigates the foot and ankle myology of gibbons and bonobos, and compares it with the human foot. Gibbons and bonobos are both highly arboreal species, yet they have a different locomotor behaviour. Gibbon locomotion is almost exclusively arboreal and is characterized by speed and mobility, whereas bonobo locomotion entails some terrestrial knuckle-walking and both mobility and stability are important. We examine if these differ- ences in locomotion are reflected in their foot myology. Therefore, we have executed detailed dissections of the lower hind limb of two bonobo and three gibbon cadavers. We took several measurements on the isolated muscles (mass, length, physiological cross sectional area, etc.) and calculated the relative muscle masses and belly lengths of the major muscle groups to make interspecific comparisons. An extensive description of all foot and ankle muscles is given and differences between gibbons, bonobos and humans are discussed. No major differences were found between the foot and ankle musculature of both apes; however, marked differences were found between the ape and human foot. The human foot is specialized for solely one type of locomotion, whereas ape feet are extremely adaptable to a wide variety of locomotor modes.
    [Show full text]
  • Comparative Morphology of Skeletal Muscles in Man and Macaque Abstract
    Showa Univ. 1. Med. Sci. 5(2), 137146, December 1993 Review Comparative Morphology of Skeletal Muscles in Man and Macaque Seuchiro INOKUCHI, Tadanao KIMURA, Masataka Suzuiu, Junji ITO and Hiroo KUMAKURA Abstract: Anatomical features (shape, weight and myofibrous composition) of skeletal muscles reflect the muscular functions. In this study, we histologically analyzed the myofibrous composition of corresponding muscles and compared their functions in man and the macaque. Among the intrinsic hand and foot muscles, the hand muscles for gripping and pinching movements were well developed in humans and those for hanging were well developed in the hands and feet of the macaque. Of the spinohumeral muscles, morphological differ- ences (thickness of muscle layer and muscle fiber size) were observed in different regions. In the muscles in the upper and lower extremities, the relative weight and myofibrous composition were correlated with the characteristics of their respective motions. There were differences in myofibrous composition among those muscle groups due to bipedal or quadrupedal walking by man and the macaque. The differences in the myofibrous composition of the muscles for vocalization (laryngeal muscles), and the innervation ratios of the muscle fibers reflected vocal ability. Key words: comparative anatomy, muscle composition, skeletal muscle, macaque Introduction In general, the number and the thickness of skeletal muscle fibers vary within each muscle, due to differences in functions. Muscle fibers are known to be thicker in muscles engaged in powerful movements and thinner in muscles engaged in fine movements1. On the other hand, muscle fibers are divided histochemically into 3 types, type I, type II and intermediate type2).
    [Show full text]
  • Journal of Anatomy and Physiology
    (Tos) INDEX TO THE JOURNAL OF ANATOMY AND PHYSIOLOGY NORMAL AND PATHOLOGICAL, HUMAI^ AISTD OOMPAEATIYE. VOLS. XXL—XXX. 1887-1896. 7 .. <( INDEX TO THE JOURNAL OF ANATOMY AND PHYSIOLOGY NORMAL AND PATHOLOGICAL, HUMAN AND COMPAKATIVE. VOLS. XXL-XXX.-1887-1896. NEW SERIES, VOLS. I.-X. LONDON: CHARLES GRIFFIN AND COMPANY, Ld. EXETER STREET, STRAND. 1897. ft'^Y 5 2 1966 ) Qn '"; 10?8S^ ' T6 PREFATORY NOTE. This Index to Vols. XXT.-XXX. of the Journal of Anatomy and Physiology has been compiled, under the direction of the Anatomical Society of Great Britain and Ireland, by Mr A. W. Kappel, by whom the Index to Vols. I. to XX., issued with Vol. XXVIII., had also been prepared. The Index appears in Vol. XXXI. of the Journal. The Editors desire to acknow- ledge their indebtedness to the Society, and to express their thanks for the handsome contribution from its funds towards this object. It should be explained that the Roman numerals mark the Volume and the Arabic numerals the page ; but when the Eomau numeral is preceded by the letter p., the page of the Proceedings of the Anatomical Society in the volume is referred to. ; ; INDEX. Abbe's Apochromatic Micro-objectives xxv. 154 ; Blood Supply of Displaced and Compensating Eye-pieces Kidney, xxviii. 304 ; Branches of (Sclmlze), xxi. 515-524. Abdominal Aorta, xxvii. p. iv ; Car- Abbott, F. C, Specimen of Right diac Valves (Lawrence), xxv. pp. xv- Aortic Arch, xxvi. p. xiii ; Specimen xvii ; Course of Left Phrenic Nerve of Left Aortic Arch with Abnormal relative to Sub-clavian Vein, xxviii.
    [Show full text]
  • United States National Museum Bulletin 273
    SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY UNITED STATES NATIONAL MUSEUM BULLETIN 273 The Muscular System of the Red Howling Monkey MIGUEL A. SCHON The Johns Hopkins University School of Medicine SMITHSONIAN INSTITUTION PRESS WASHINGTON, D.C. 1968 Publications of the United States National Museum The scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the fields of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. This work forms number 273 of the Bulletin series. Frank A. Taylor Director, United States National Museum U.S.
    [Show full text]
  • Natural History
    L I B R A F^ Y AUG - G 1969 THE ONTARiO INSTITUTE FOR STUDiES IN EDUCATION THE LOEB CLASSICAL LIBRARY FOtTNDED BY JAME3 LOEB, LL.D. EDITED BY fT. E. PAGE, C.H., LITT.D. lE. CAPPS, PH.D., LL.D. tW. H. D. ROUSE, litt.d. L. A. POST, L.H.D, E. H. WARMINGTON, m.a., f.r.hist.soc. PLINY NATURAL HISTORY III LIBRl VIII-XI 353 PLINY NATURAL HISTORY WITH AN ENGLISH TRANSLATION IN TEN VOLUMES VOLUME III LIBRI VIII-XI BY H. IIACKHAM, M.A. FELLOW OF CHRIST'a OOLLEdE, CAMBUIDQE CAMBRIDGE, MASSACHUSETTS HARVARD UNIVERSITY PRESS LONDON WILLIAM HEINEMANN LTD MOMLXVII First Printed 1940 Reprinted 1947, 1955, 1967 Printed inGreatBrUain CONTENTS PAGE PREFACE vi INTRODUCTION ix BOOK VIII 1 BOOK IX 163 BOOK X 291 BOOK XI 431 INDEX 613 PREFACE Translations are usually designed either to present the thought of a foreign writer in the EngHsh most appropriate to it, without regard to the pecuHarities of his style (so far as style and thought can be dis- tinguished), or, on the contrar}', to convey to the Enghsh reader, as far as is possible, the style as well as the thought of the foreign original. It would seem, however, that neither of these objects should be the primary aim of a translator constructing a version that is to be printed facing the original text. In these circumstances the purpose of the version is to assist the reader of the original to understand its meaning. This modest intention must guide the choice of a rendering for each phrase or sentence, and considerations of EngHsh style are of necessity secondarj^ A few biographical notes on persons mentioned by the author will be found in the index.
    [Show full text]
  • Comparative Musculoskeletal Anatomy of Chameleon Limbs, with Implications for the Evolution of Arboreal Locomotion in Lizards and for Teratology
    Received: 2 January 2017 | Revised: 10 April 2017 | Accepted: 1 May 2017 DOI: 10.1002/jmor.20708 RESEARCH ARTICLE Comparative musculoskeletal anatomy of chameleon limbs, with implications for the evolution of arboreal locomotion in lizards and for teratology Julia L. Molnar1 | Raul E. Diaz Jr.,2 | Tautis Skorka3 | Grant Dagliyan3 | Rui Diogo1 1Department of Anatomy, Howard University College of Medicine, 520 W Abstract Street NW, Washington, DC, 20059 Chameleon species have recently been adopted as models for evo-devo and macroevolutionary 2Department of Biology, La Sierra processes. However, most anatomical and developmental studies of chameleons focus on the skel- University, 4500 Riverwalk Parkway, eton, and information about their soft tissues is scarce. Here, we provide a detailed morphological Riverside, California 92505 description based on contrast enhanced micro-CT scans and dissections of the adult phenotype of 3Keck School of Medicine, Molecular all the forelimb and hindlimb muscles of the Veiled Chameleon (Chamaeleo calyptratus) and compare Imaging Center, University of Southern California, 2250 Alcazar Street, Los Angeles, these muscles with those of other chameleons and lizards. We found the appendicular muscle anat- California 90033 omy of chameleons to be surprisingly conservative considering the remarkable structural and Correspondence functional modifications of the limb skeleton, particularly the distal limb regions. For instance, the Julia Molnar, Department of Anatomy, zygodactyl autopodia of chameleons are unique among tetrapods, and the carpals and tarsals are Howard University College of Medicine, highly modified in shape and number. However, most of the muscles usually present in the manus 520 W Street NW, Washington, DC, 20059. and pes of other lizards are present in the same configuration in chameleons.
    [Show full text]
  • A Foot Bearing Load of Multiple Variations
    eISSN 1308-4038 International Journal of Anatomical Variations (2013) 6: 41–44 Case Report A foot bearing load of multiple variations Published online February 14th, 2013 © http://www.ijav.org Dharwal KUMUD Abstract Mahajan ANUPAMA During routine cadaveric dissection of a sole of foot, multiple variations were encountered. The flexor hallucis brevis muscle had a third head, arising from the medial tubercle of the calcaneal tuberosity. The flexor hallucis longus and the flexor digitorum longus tendons had multiple communications between them. The adductor hallucis muscle had a large oblique head and Department of Anatomy, Shri Guru Ram Das Institute of missing transverse head. The abductor of fifth metatarsal was present. The opponens digiti Medical Sciences and Research, Amritsar (PB), INDIA. minimi muscle was present. These additional muscle slips may pose some problems to an individual, but can be godsend awards to be used as reconstruction flaps, in flexor injuries thereby sparing the use of other important long flexors. Dr. Dharwal Kumud Dharwal Clinic The knowledge of these variations in foot muscle architecture is of utmost importance in analysis of foot function, biomechanical modeling of the foot and prosthesis designing and to the Cheel Mandi Near Ramgarhia orthopedist, radiologists and podiatrists. These additional slips also have an anthropological School importance. Amritsar (PB) 143001, INDIA. +91 9872737679 © Int J Anat Var (IJAV). 2013; 6: 41–44. [email protected] Received February 21st, 2012; accepted June 10th, 2012 Key words [sole] [muscle] [multiple] [variations] Introduction Case Report Muscle variations are commonly encountered. Basically During routine cadaveric dissection of the sole of the foot as data regarding accessory musculature has been based a part of the undergraduate teaching, five variations were on serendipitous findings at surgery or during cadaveric encountered in this particular left foot of a 59-year-old dissections.
    [Show full text]
  • Anatomical Variations of the Deep Head of Cruveilhier of the Flexor Pollicis Brevis and Its Significance for the Evolution of the Precision Grip
    RESEARCH ARTICLE Anatomical variations of the deep head of Cruveilhier of the flexor pollicis brevis and its significance for the evolution of the precision grip Samuel S. Dunlap1☯*, M. Ashraf Aziz2, Janine M. Ziermann2☯* 1 Independent Researcher, Reston, VA, United States of America, 2 Howard University College of Medicine, Dept. Anatomy, Washington, DC, United States of America ☯ These authors contributed equally to this work. * [email protected] (SSD); [email protected] (JMZ) a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Cruveilhier described in 1834 the human flexor pollicis brevis (FPB), a muscle of the thenar compartment, as having a superficial and a deep head, respectively, inserted onto the radial and ulnar sesamoids of the thumb. Since then, Cruveilhier's deep head has been controver- sially discussed. Often this deep head is confused with Henle's ªinterosseous palmaris OPEN ACCESS volarisº or said to be a slip of the oblique adductor pollicis. In the 1960s, Day and Napier Citation: Dunlap SS, Aziz MA, Ziermann JM (2017) described anatomical variations of the insertions of Cruveilhier's deep head, including its Anatomical variations of the deep head of absence, and hypothesized, that the shift of the deep head's insertion from ulnar to radial Cruveilhier of the flexor pollicis brevis and its facilitated ªtrue opposabilityº in anthropoids. Their general thesis for muscular arrangements significance for the evolution of the precision grip. PLoS ONE 12(11): e0187402. https://doi.org/ underlying the power and precision grip is sound, but they did not delineate their deep head 10.1371/journal.pone.0187402 from Henle's muscle or the adductor pollicis, and their description of the attachments of Cru- Editor: David Carrier, University of Utah, UNITED veilhier's deep head were too vague and not supported by a significant portion of the anatom- STATES ical literature.
    [Show full text]
  • Muscles Lost in Our Adult Primate Ancestors Still Imprint in Us: on Muscle Evolution, Development, Variations, and Pathologies
    Current Molecular Biology Reports https://doi.org/10.1007/s40610-020-00128-x EVOLUTIONARY DEVELOPMENTAL BIOLOGY (R DIOGO AND E BOYLE, SECTION EDITORS) Muscles Lost in Our Adult Primate Ancestors Still Imprint in Us: on Muscle Evolution, Development, Variations, and Pathologies Eve K. Boyle1 & Vondel Mahon2 & Rui Diogo1 # Springer Nature Switzerland AG 2020 Abstract The study of evolutionary developmental pathologies (Evo-Devo-Path) is an emergent field that relies on comparative anatomy to inform our understanding of the development and evolution of normal and abnormal structures in different groups of organisms, with a special focus on humans. Previous research has demonstrated that some muscles that have been lost in our ancestors well before the evolution of anatomically modern humans occasionally appear as variations in adults within the normal human population or as anomalies in individuals with congenital malformations. Here, we provide the first review of fourteen atavistic muscles/groups of muscles that are only present as variations or anomalies in modern humans but are commonly present in other primate species. Muscles within the head and neck and pectoral girdle and upper limb region include platysma cervicale, mandibulo-auricularis, rhomboideus occipitalis, levator claviculae, dorsoepitrochlearis, panniculus carnosus, epitrochleoanconeus, and contrahentes digitorum manus. Within the lower limb, they include scansorius, ischiofemoralis, contrahentes digitorum pedis, opponens hallucis, abductor metatarsi quinti, and opponens digiti minimi. For each muscle, we describe their synonyms, comparative anatomy among primates, embryonic development, presentation and prevalence as a variation, and presentation and prevalence as an anomaly. Research on the embryonic origins of six of these muscles has demonstrated that they appear early on in normal human development but usually disappear before birth.
    [Show full text]
  • Baby Gorilla: Photographic and Descriptive Atlas of Skeleton
    OOK B RS astor • Adam Hartstone-Rose astor • Adam HE S I . P UBL astor • Adam Hartstone-Rose astor • Adam CE P CE N astor • Adam Hartstone-Rose astor • Adam astor • Adam Hartstone-Rose astor • Adam . P Magdalena N. Muchlinski Magdalena N. P . P A SCIE A Magdalena N. Muchlinski Magdalena N. BABY GORILLA Magdalena N. Muchlinski Magdalena N. Magdalena N. Muchlinski Magdalena N. Internal Organs astor • Adam Hartstone-Rose astor • Adam . P Photographic and BABY GORILLA Internal Organs BABY GORILLA BABY GORILLA Descriptive Atlas of Descriptive Atlas Rui Diogo • Juan F Magdalena N. Muchlinski Magdalena N. Internal Organs Internal Organs Photographic and Photographic and Photographic and Including CT scans and comparison with Descriptive Atlas of Descriptive Atlas Skeleton, Muscles and Skeleton, Rui Diogo • Juan F adult gorillas, humans and other primates BABY GORILLA Descriptive Atlas of Descriptive Atlas Descriptive Atlas of Descriptive Atlas Rui Diogo • Juan F Rui Diogo • Juan F Internal Organs Including CT scans and comparison with Skeleton, Muscles and Skeleton, Photographic and adult gorillas, humans and other primates Including CT scans and comparison with Including CT scans and comparison with Skeleton, Muscles and Skeleton, Skeleton, Muscles and Skeleton, Descriptive Atlas of Descriptive Atlas Rui Diogo • Juan F adult gorillas, humans and other primates adult gorillas, humans and other primates Including CT scans and comparison with Skeleton, Muscles and Skeleton, adult gorillas, humans and other primates Rui Diogo • Juan F. Pastor BABY GORILLA: Photographic and Descriptive RuiAd amDiogo Hartst • Juanone F. -RoPastseor BABY GORILLA: Photographic and Descriptive Rui Diogo • Juan F. Pastor BABY GORILLA: Photographic and DescriptiveBABY GOAtlasR ILLAof Skeleton,: Phot Musclesographic and an Internald DesRui OMcrgansra AiRuiDiogogdptdami alenaDiogove Hartst • Ju NA•and .amJ o MuchuFne.
    [Show full text]
  • Medical Research Archives. Volume 5, Issue 3. March 2017. History of the Muscle of Cruveilhier Copyright 2017 KEI Journals
    Medical Research Archives. Volume 5, Issue 3. March 2017. History of the muscle of Cruveilhier A Historical Review on the Muscle of Cruveilhier Authors Abstract M. Ashraf Aziza Despite the fact that the human thumb has been investigated intensely with reference to its functional morphology, Samuel S. Dunlapb controversies remain; for example, regarding the muscle of Janine M. Ziermanna* Cruveilhier (deep head of the flexor pollicis brevis). Originally described in 1749, the human flexor pollicis brevis (FPB) only Affiliations received special attention since Cruveilhier described it in 1834 a Howard University as having a superficial and a deep head. Since then the existence College of Medicine, Dept. of Cruveilhier’s deep head has been debated. By 1920 five views Anatomy, 520 W St NW, existed: 1. The deep head is not part of FPB because of its nerve Washington, DC, 20059, supply; 2. It became extinct and was replaced by a slip from the USA; oblique adductor pollicis; 3. It is a part of the “composite” FPB b and is synonymous with Henle’s "interosseous volaris primus”; 2062 Cobblestone Lane, 4. The deep head received ontogenetically myofibrils from the Reston, VA, 20191, USA; primordial flexores breves medius and from the adductor Corresponding author: (contrahentes) muscle plates; and 5. The deep head, “Henle’s muscle”, and oblique adductor pollicis are distinct muscles. In the 1960s Day and Napier revealed variations of the insertion Janine M. Ziermann and innervation of the deep head, but did not delineate their deep Department of Anatomy, head from the "Henle’s muscle" or the adductor pollicis.
    [Show full text]