Symmetries and Exotic Smooth Structures on a K3 Surface WM Chen University of Massachusetts - Amherst, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generating the Mathieu Groups and Associated Steiner Systems
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 112 (1993) 41-47 41 North-Holland Generating the Mathieu groups and associated Steiner systems Marston Conder Department of Mathematics and Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand Received 13 July 1989 Revised 3 May 1991 Abstract Conder, M., Generating the Mathieu groups and associated Steiner systems, Discrete Mathematics 112 (1993) 41-47. With the aid of two coset diagrams which are easy to remember, it is shown how pairs of generators may be obtained for each of the Mathieu groups M,,, MIz, Mz2, M,, and Mz4, and also how it is then possible to use these generators to construct blocks of the associated Steiner systems S(4,5,1 l), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. 1. Introduction Suppose you land yourself in 24-dimensional space, and are faced with the problem of finding the best way to pack spheres in a box. As is well known, what you really need for this is the Leech Lattice, but alas: you forgot to bring along your Miracle Octad Generator. You need to construct the Leech Lattice from scratch. This may not be so easy! But all is not lost: if you can somehow remember how to define the Mathieu group Mz4, you might be able to produce the blocks of a Steiner system S(5,8,24), and the rest can follow. In this paper it is shown how two coset diagrams (which are easy to remember) can be used to obtain pairs of generators for all five of the Mathieu groups M,,, M12, M22> Mz3 and Mz4, and also how blocks may be constructed from these for each of the Steiner systems S(4,5,1 I), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. -
The Sphere Packing Problem in Dimension 8 Arxiv:1603.04246V2
The sphere packing problem in dimension 8 Maryna S. Viazovska April 5, 2017 8 In this paper we prove that no packing of unit balls in Euclidean space R has density greater than that of the E8-lattice packing. Keywords: Sphere packing, Modular forms, Fourier analysis AMS subject classification: 52C17, 11F03, 11F30 1 Introduction The sphere packing constant measures which portion of d-dimensional Euclidean space d can be covered by non-overlapping unit balls. More precisely, let R be the Euclidean d vector space equipped with distance k · k and Lebesgue measure Vol(·). For x 2 R and d r 2 R>0 we denote by Bd(x; r) the open ball in R with center x and radius r. Let d X ⊂ R be a discrete set of points such that kx − yk ≥ 2 for any distinct x; y 2 X. Then the union [ P = Bd(x; 1) x2X d is a sphere packing. If X is a lattice in R then we say that P is a lattice sphere packing. The finite density of a packing P is defined as Vol(P\ Bd(0; r)) ∆P (r) := ; r > 0: Vol(Bd(0; r)) We define the density of a packing P as the limit superior ∆P := lim sup ∆P (r): r!1 arXiv:1603.04246v2 [math.NT] 4 Apr 2017 The number be want to know is the supremum over all possible packing densities ∆d := sup ∆P ; d P⊂R sphere packing 1 called the sphere packing constant. For which dimensions do we know the exact value of ∆d? Trivially, in dimension 1 we have ∆1 = 1. -
Sphere Packing, Lattice Packing, and Related Problems
Sphere packing, lattice packing, and related problems Abhinav Kumar Stony Brook April 25, 2018 Sphere packings Definition n A sphere packing in R is a collection of spheres/balls of equal size which do not overlap (except for touching). The density of a sphere packing is the volume fraction of space occupied by the balls. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem II In dimension 3, the best possible way is to stack layers of the solution in 2 dimensions. This is Kepler's conjecture, now a theorem of Hales and collaborators. mmm m mmm m There are infinitely (in fact, uncountably) many ways of doing this! These are the Barlow packings. Face centered cubic packing Image: Greg A L (Wikipedia), CC BY-SA 3.0 license But (until very recently!) no proofs. In very high dimensions (say ≥ 1000) densest packings are likely to be close to disordered. -
Physical Interpretation of the 30 8-Simplexes in the E8 240-Polytope
Physical Interpretation of the 30 8-simplexes in the E8 240-Polytope: Frank Dodd (Tony) Smith, Jr. 2017 - viXra 1702.0058 248-dim Lie Group E8 has 240 Root Vectors arranged on a 7-sphere S7 in 8-dim space. The 12 vertices of a cuboctahedron live on a 2-sphere S2 in 3-dim space. They are also the 4x3 = 12 outer vertices of 4 tetrahedra (3-simplexes) that share one inner vertex at the center of the cuboctahedron. This paper explores how the 240 vertices of the E8 Polytope in 8-dim space are related to the 30x8 = 240 outer vertices (red in figure below) of 30 8-simplexes whose 9th vertex is a shared inner vertex (yellow in figure below) at the center of the E8 Polytope. The 8-simplex has 9 vertices, 36 edges, 84 triangles, 126 tetrahedron cells, 126 4-simplex faces, 84 5-simplex faces, 36 6-simplex faces, 9 7-simplex faces, and 1 8-dim volume The real 4_21 Witting polytope of the E8 lattice in R8 has 240 vertices; 6,720 edges; 60,480 triangular faces; 241,920 tetrahedra; 483,840 4-simplexes; 483,840 5-simplexes 4_00; 138,240 + 69,120 6-simplexes 4_10 and 4_01; and 17,280 = 2,160x8 7-simplexes 4_20 and 2,160 7-cross-polytopes 4_11. The cuboctahedron corresponds by Jitterbug Transformation to the icosahedron. The 20 2-dim faces of an icosahedon in 3-dim space (image from spacesymmetrystructure.wordpress.com) are also the 20 outer faces of 20 not-exactly-regular-in-3-dim tetrahedra (3-simplexes) that share one inner vertex at the center of the icosahedron, but that correspondence does not extend to the case of 8-simplexes in an E8 polytope, whose faces are both 7-simplexes and 7-cross-polytopes, similar to the cubocahedron, but not its Jitterbug-transform icosahedron with only triangle = 2-simplex faces. -
On Quadruply Transitive Groups Dissertation
ON QUADRUPLY TRANSITIVE GROUPS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By ERNEST TILDEN PARKER, B. A. The Ohio State University 1957 Approved by: 'n^CLh^LaJUl 4) < Adviser Department of Mathematics Acknowledgment The author wishes to express his sincere gratitude to Professor Marshall Hall, Jr., for assistance and encouragement in the preparation of this dissertation. ii Table of Contents Page 1. Introduction ------------------------------ 1 2. Preliminary Theorems -------------------- 3 3. The Main Theorem-------------------------- 12 h. Special Cases -------------------------- 17 5. References ------------------------------ kZ iii Introduction In Section 3 the following theorem is proved: If G is a quadruplv transitive finite permutation group, H is the largest subgroup of G fixing four letters, P is a Sylow p-subgroup of H, P fixes r & 1 2 letters and the normalizer in G of P has its transitive constituent Aj. or Sr on the letters fixed by P, and P has no transitive constituent of degree ^ p3 and no set of r(r-l)/2 similar transitive constituents, then G is. alternating or symmetric. The corollary following the theorem is the main result of this dissertation. 'While less general than the theorem, it provides arithmetic restrictions on primes dividing the order of the sub group fixing four letters of a quadruply transitive group, and on the degrees of Sylow subgroups. The corollary is: ■ SL G is. a quadruplv transitive permutation group of degree n - kp+r, with p prime, k<p^, k<r(r-l)/2, rfc!2, and the subgroup of G fixing four letters has a Sylow p-subgroup P of degree kp, and the normalizer in G of P has its transitive constituent A,, or Sr on the letters fixed by P, then G is. -
Arxiv:2010.10200V3 [Math.GT] 1 Mar 2021 We Deduce in Particular the Following
HYPERBOLIC MANIFOLDS THAT FIBER ALGEBRAICALLY UP TO DIMENSION 8 GIOVANNI ITALIANO, BRUNO MARTELLI, AND MATTEO MIGLIORINI Abstract. We construct some cusped finite-volume hyperbolic n-manifolds Mn that fiber algebraically in all the dimensions 5 ≤ n ≤ 8. That is, there is a surjective homomorphism π1(Mn) ! Z with finitely generated kernel. The kernel is also finitely presented in the dimensions n = 7; 8, and this leads to the first examples of hyperbolic n-manifolds Mfn whose fundamental group is finitely presented but not of finite type. These n-manifolds Mfn have infinitely many cusps of maximal rank and hence infinite Betti number bn−1. They cover the finite-volume manifold Mn. We obtain these examples by assigning some appropriate colours and states to a family of right-angled hyperbolic polytopes P5;:::;P8, and then applying some arguments of Jankiewicz { Norin { Wise [15] and Bestvina { Brady [6]. We exploit in an essential way the remarkable properties of the Gosset polytopes dual to Pn, and the algebra of integral octonions for the crucial dimensions n = 7; 8. Introduction We prove here the following theorem. Every hyperbolic manifold in this paper is tacitly assumed to be connected, complete, and orientable. Theorem 1. In every dimension 5 ≤ n ≤ 8 there are a finite volume hyperbolic 1 n-manifold Mn and a map f : Mn ! S such that f∗ : π1(Mn) ! Z is surjective n with finitely generated kernel. The cover Mfn = H =ker f∗ has infinitely many cusps of maximal rank. When n = 7; 8 the kernel is also finitely presented. arXiv:2010.10200v3 [math.GT] 1 Mar 2021 We deduce in particular the following. -
Optimality and Uniqueness of the Leech Lattice Among Lattices
ANNALS OF MATHEMATICS Optimality and uniqueness of the Leech lattice among lattices By Henry Cohn and Abhinav Kumar SECOND SERIES, VOL. 170, NO. 3 November, 2009 anmaah Annals of Mathematics, 170 (2009), 1003–1050 Optimality and uniqueness of the Leech lattice among lattices By HENRY COHN and ABHINAV KUMAR Dedicated to Oded Schramm (10 December 1961 – 1 September 2008) Abstract We prove that the Leech lattice is the unique densest lattice in R24. The proof combines human reasoning with computer verification of the properties of certain explicit polynomials. We furthermore prove that no sphere packing in R24 can 30 exceed the Leech lattice’s density by a factor of more than 1 1:65 10 , and we 8 C give a new proof that E8 is the unique densest lattice in R . 1. Introduction It is a long-standing open problem in geometry and number theory to find the densest lattice in Rn. Recall that a lattice ƒ Rn is a discrete subgroup of rank n; a minimal vector in ƒ is a nonzero vector of minimal length. Let ƒ vol.Rn=ƒ/ j j D denote the covolume of ƒ, i.e., the volume of a fundamental parallelotope or the absolute value of the determinant of a basis of ƒ. If r is the minimal vector length of ƒ, then spheres of radius r=2 centered at the points of ƒ do not overlap except tangentially. This construction yields a sphere packing of density n=2 r Án 1 ; .n=2/Š 2 ƒ j j since the volume of a unit ball in Rn is n=2=.n=2/Š, where for odd n we define .n=2/Š .n=2 1/. -
Octonions and the Leech Lattice
Octonions and the Leech lattice Robert A. Wilson School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS 18th December 2008 Abstract We give a new, elementary, description of the Leech lattice in terms of octonions, thereby providing the first real explanation of the fact that the number of minimal vectors, 196560, can be expressed in the form 3 × 240 × (1 + 16 + 16 × 16). We also give an easy proof that it is an even self-dual lattice. 1 Introduction The Leech lattice occupies a special place in mathematics. It is the unique 24- dimensional even self-dual lattice with no vectors of norm 2, and defines the unique densest lattice packing of spheres in 24 dimensions. Its automorphism group is very large, and is the double cover of Conway’s group Co1 [2], one of the most important of the 26 sporadic simple groups. This group plays a crucial role in the construction of the Monster [13, 4], which is the largest of the sporadic simple groups, and has connections with modular forms (so- called ‘Monstrous Moonshine’) and many other areas, including theoretical physics. The book by Conway and Sloane [5] is a good introduction to this lattice and its many applications. It is not surprising therefore that there is a huge literature on the Leech lattice, not just within mathematics but in the physics literature too. Many attempts have been made in particular to find simplified constructions (see for example the 23 constructions described in [3] and the four constructions 1 described in [15]). -
Hyperdiamond Feynman Checkerboard in 4-Dimensional Spacetime
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server quant-ph/950301 5 THEP-95-3 March 1995 Hyp erDiamond Feynman Checkerb oard in 4-dimensional Spacetime Frank D. (Tony) Smith, Jr. e-mail: [email protected] and [email protected] P.O.Box for snail-mail: P.O.Box 430, Cartersville, Georgia 30120 USA WWW URL http://www.gatech.edu/tsmith/home.html Scho ol of Physics Georgia Institute of Technology Atlanta, Georgia 30332 Abstract A generalized Feynman Checkerb oard mo del is constructed using a processed by the SLAC/DESY Libraries on 22 Mar 1995. 〉 4-dimensional Hyp erDiamond lattice. The resulting phenomenological mo del is the D D E mo del describ ed in hep-ph/9501252 and 4 5 6 quant-ph/9503009. PostScript c 1995 Frank D. (Tony) Smith, Jr., Atlanta, Georgia USA QUANT-PH-9503015 Contents 1 Intro duction. 2 2 Feynman Checkerb oards. 3 3 Hyp erDiamond Lattices. 10 3.1 8-dimensional Hyp erDiamond Lattice. :: :: ::: :: :: :: 12 3.2 4-dimensional Hyp erDiamond Lattice. :: :: ::: :: :: :: 14 3.3 From 8 to 4 Dimensions. : ::: :: :: :: :: ::: :: :: :: 19 4 Internal Symmetry Space. 21 5 Protons, Pions, and Physical Gravitons. 25 5.1 3-Quark Protons. : :: :: ::: :: :: :: :: ::: :: :: :: 29 5.2 Quark-AntiQuark Pions. : ::: :: :: :: :: ::: :: :: :: 32 5.3 Spin-2 Physical Gravitons. ::: :: :: :: :: ::: :: :: :: 35 1 1 Intro duction. The 1994 Georgia Tech Ph. D. thesis of Michael Gibbs under David Finkel- stein [11] constructed a discrete 4-dimensional spacetime Hyp erDiamond lat- tice, here denoted a 4HD lattice, in the course of building a physics mo del. -
Lifting a 5-Dimensional Representation of $ M {11} $ to a Complex Unitary Representation of a Certain Amalgam
Lifting a 5-dimensional representation of M11 to a complex unitary representation of a certain amalgam Geoffrey R. Robinson July 16, 2018 Abstract We lift the 5-dimensional representation of M11 in characteristic 3 to a unitary complex representation of the amalgam GL(2, 3) ∗D8 S4. 1 The representation It is well known that the Mathieu group M11, the smallest sporadic simple group, has a 5-dimensional (absolutely) irreducible representation over GF(3) (in fact, there are two mutually dual such representations). It is clear that this does not lift to a complex representation, as M11 has no faithful complex character of degree less than 10. However, M11 is a homomorphic image of the amalgam G = GL(2, 3) D8 S4, ∗ and it turns out that if we consider the 5-dimension representation of M11 as a representation of G, then we may lift that representation of G to a complex representation. We aim to do that in such a way that the lifted representation Z 1 is unitary, and we realise it over [ √ 2 ], so that the complex representation admits reduction (mod p) for each odd− prime. These requirements are stringent enough to allow us explicitly exhibit representing matrices. It turns out that reduction (mod p) for any odd prime p other than 3 yields either a 5-dimensional arXiv:1502.00520v3 [math.RT] 8 Feb 2015 special linear group or a 5-dimensional special unitary group, so it is only the behaviour at the prime 3 which is exceptional. We are unsure at present whether the 5-dimensional complex representation of G is faithful (though it does have free kernel), so we will denote the image of Z 1 G in SU(5, [ √ 2 ]) by L, and denote the image of L under reduction (mod p) − by Lp. -
Root System - Wikipedia
Root system - Wikipedia https://en.wikipedia.org/wiki/Root_system Root system In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representations theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory.[1] Contents Definitions and examples Definition Weyl group Rank two examples Root systems arising from semisimple Lie algebras History Elementary consequences of the root system axioms Positive roots and simple roots Dual root system and coroots Classification of root systems by Dynkin diagrams Constructing the Dynkin diagram Classifying root systems Weyl chambers and the Weyl group Root systems and Lie theory Properties of the irreducible root systems Explicit construction of the irreducible root systems An Bn Cn Dn E6, E 7, E 8 F4 G2 The root poset See also Notes References 1 of 14 2/22/2018, 8:26 PM Root system - Wikipedia https://en.wikipedia.org/wiki/Root_system Further reading External links Definitions and examples As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots . -
K3 Surfaces, N= 4 Dyons, and the Mathieu Group
K3 Surfaces, =4 Dyons, N and the Mathieu Group M24 Miranda C. N. Cheng Department of Physics, Harvard University, Cambridge, MA 02138, USA Abstract A close relationship between K3 surfaces and the Mathieu groups has been established in the last century. Furthermore, it has been observed recently that the elliptic genus of K3 has a natural inter- pretation in terms of the dimensions of representations of the largest Mathieu group M24. In this paper we first give further evidence for this possibility by studying the elliptic genus of K3 surfaces twisted by some simple symplectic automorphisms. These partition functions with insertions of elements of M24 (the McKay-Thompson series) give further information about the relevant representation. We then point out that this new “moonshine” for the largest Mathieu group is con- nected to an earlier observation on a moonshine of M24 through the 1/4-BPS spectrum of K3 T 2-compactified type II string theory. This insight on the symmetry× of the theory sheds new light on the gener- alised Kac-Moody algebra structure appearing in the spectrum, and leads to predictions for new elliptic genera of K3, perturbative spec- arXiv:1005.5415v2 [hep-th] 3 Jun 2010 trum of the toroidally compactified heterotic string, and the index for the 1/4-BPS dyons in the d = 4, = 4 string theory, twisted by elements of the group of stringy K3N isometries. 1 1 Introduction and Summary Recently there have been two new observations relating K3 surfaces and the largest Mathieu group M24. They seem to suggest that the sporadic group M24 naturally acts on the spectrum of K3-compactified string theory.