An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rational Lattices by Robert L
Total Page:16
File Type:pdf, Size:1020Kb
Advanced Lectures in Mathematics Volume XV An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rational Lattices by Robert L. Griess, Jr. International Press 浧䷘㟨十⒉䓗䯍 www.intlpress.com HIGHER EDUCATION PRESS Advanced Lectures in Mathematics, Volume XV An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rational Lattices by Robert L. Griess, Jr. 2010 Mathematics Subject Classification. 11H56, 20C10, 20C34, 20D08. Copyright © 2011 by International Press, Somerville, Massachusetts, U.S.A., and by Higher Education Press, Beijing, China. This work is published and sold in China exclusively by Higher Education Press of China. All rights reserved. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given. Republication, systematic copying, or mass reproduction of any material in this publication is permitted only under license from International Press. Excluded from these provisions is material in articles to which the author holds the copyright. (If the author holds copyright, notice of this will be given with article.) In such cases, requests for permission to use or reprint should be addressed directly to the author. ISBN: 978-1-57146-206-0 Printed in the United States of America. 15 14 13 12 2 3 4 5 6 7 8 9 ADVANCED LECTURES IN MATHEMATICS Executive Editors Shing-Tung Yau Kefeng Liu Harvard University University of California at Los Angeles Zhejiang University Lizhen Ji Hangzhou, China University of Michigan, Ann Arbor Editorial Board Chongqing Cheng Tatsien Li Nanjing University Fudan University Nanjing, China Shanghai, China Zhong-Ci Shi Zhiying Wen Institute of Computational Mathematics Tsinghua University Chinese Academy of Sciences (CAS) Beijing, China Beijing, China Lo Yang Zhouping Xin Institute of Mathematics The Chinese University of Hong Kong Chinese Academy of Sciences (CAS) Hong Kong, China Beijing, China Weiping Zhang Xiangyu Zhou Nankai University Institute of Mathematics Tianjin, China Chinese Academy of Sciences (CAS) Beijing, China Xiping Zhu Zhongshan University Guangzhou, China Contents 1 Introduction ................................................... 1 1.1 Outlineofthebook.......................................... 2 1.2 Suggestionsforfurtherreading................................ 3 1.3 Notations, background, conventions . 5 2 Bilinear Forms, Quadratic Forms and Their Isometry Groups .. 7 2.1 Standard results on quadratic forms and reflections, I . 9 2.1.1 Principalidealdomains(PIDs).......................... 10 2.2 Linearalgebra .............................................. 11 2.2.1 Interpretationofnonsingularity......................... 11 2.2.2 Extensionofscalars ................................... 13 2.2.3 Cyclicity of the values of a rational bilinear form . 13 2.2.4 Grammatrix ......................................... 14 2.3 Discriminantgroup.......................................... 16 2.4 Relationsbetweenalatticeandsublattices...................... 18 2.5 Involutionsonquadraticspaces ............................... 19 2.6 Standard results on quadratic forms and reflections, II . 20 2.6.1 Involutionsonlattices.................................. 20 2.7 Scaledisometries:normdoublersandtriplers ................... 23 3 General Results on Finite Groups and Invariant Lattices ...... 25 3.1 Discretenessofrationallattices................................ 25 3.2 Finitenessoftheisometrygroup............................... 25 3.3 Construction of a G-invariant bilinear form . 26 3.4 Semidirectproductsandwreathproducts....................... 27 3.5 Orthogonal decomposition of lattices . 28 4 Root Lattices of Types A, D, E ................................ 31 4.1 BackgroundfromLietheory.................................. 31 4.2 Rootlattices,theirdualsandtheirisometrygroups.............. 32 4.2.1 Definition of the An lattices ............................ 33 ii Contents 4.2.2 Definition of the Dn lattices............................ 34 4.2.3 Definition of the En lattices ............................ 34 4.2.4 Analysis of the An rootlattices ......................... 34 4.2.5 Analysis of the Dn rootlattices......................... 37 4.2.6 More on the isometry groups of type Dn ................. 39 4.2.7 Analysis of the En rootlattices ......................... 41 5 Hermite and Minkowski Functions ............................. 49 5.1 Smallranksandsmalldeterminants............................ 51 5.1.1 TablefortheMinkowskiandHermitefunctions ........... 52 5.1.2 Classifications of small rank, small determinant lattices . 53 5.2 Uniqueness of the lattices E6,E7 and E8 ....................... 54 5.3 Moresmallranksandsmalldeterminants....................... 57 6 Constructions of Lattices by Use of Codes ..................... 61 6.1 Definitionsandbasicresults.................................. 61 6.1.1 A construction of the E8-lattice with the binary [8, 4, 4] code 62 6.1.2 A construction of the E8-lattice with the ternary [4, 2, 3] code 64 6.2 Theproofs.................................................. 64 6.2.1 About power sets, boolean sums and quadratic forms . 64 6.2.2 Uniqueness of the binary [8, 4, 4]code.................... 65 6.2.3 Reed-Mullercodes..................................... 66 6.2.4 Uniquenessofthetetracode............................. 67 6.2.5 Theautomorphismgroupofthetetracode................ 67 6.2.6 Another characterization of [8, 4, 4]2 ..................... 69 6.2.7 Uniqueness of the E8-lattice implies uniqueness of the binary [8, 4, 4]code.................................... 69 6.3 Codes over F7 and a (mod 7)-construction of E8 ................. 70 6.3.1 The A6-lattice........................................ 71 7 Group Theory and Representations ............................ 73 7.1 Finitegroups ............................................... 73 7.2 Extraspecial p-groups........................................ 75 7.2.1 Extraspecialgroupsandcentralproducts................. 75 7.2.2 A normal form in an extraspecial group . 77 7.2.3 Aclassificationofextraspecialgroups.................... 77 7.2.4 An application to automorphism groups of extraspecial groups............................................... 79 7.3 Grouprepresentations........................................ 79 7.3.1 Representations of extraspecial p-groups.................. 80 7.3.2 ConstructionoftheBRWgroups........................ 82 7.3.3 Tensorproducts....................................... 85 7.4 Representation of the BRW group G ........................... 86 7.4.1 BRWgroupsasgroupextensions........................ 88 Contents iii 8 Overview of the Barnes-Wall Lattices .......................... 91 8.1 Somepropertiesoftheseries.................................. 91 8.2 Commutatordensity......................................... 93 8.2.1 Equivalence of 2/4-, 3/4-generation and commutator density for Dih8 ...................................... 93 8.2.2 Extraspecial groups and commutator density . 96 9 Construction and Properties of the Barnes-Wall Lattices ...... 99 9.1 TheBarnes-Wallseriesandtheirminimalvectors................ 99 9.2 UniquenessfortheBWlattices................................101 9.3 PropertiesoftheBRWgroups ................................102 9.4 Applicationstocodingtheory.................................103 9.5 Moreaboutminimumvectors.................................104 10 Even unimodular lattices in small dimensions ..................107 10.1Classificationsofevenunimodularlattices......................107 10.2ConstructionsofsomeNiemeierlattices........................108 10.2.1ConstructionofaLeechlattice..........................109 10.3BasictheoryoftheGolaycode................................111 10.3.1CharacterizationofcertainReed-Mullercodes.............111 10.3.2AbouttheGolaycode .................................112 10.3.3TheoctadTriangleanddodecads........................113 10.3.4AuniquenesstheoremfortheGolaycode.................116 10.4MinimalvectorsintheLeechlattice ...........................116 10.5FirstproofofuniquenessoftheLeechlattice....................117 10.6InitialresultsabouttheLeechlattice ..........................118 10.6.1 An automorphism which moves the standard frame . 118 10.7Turyn-styleconstructionofaLeechlattice......................119 10.8Equivariantunimodularizationsofevenlattices..................121 11 Pieces of Eight ................................................125 11.1Leechtriosandoverlattices...................................125 11.2 The order of the group O(Λ)..................................128 11.3 The simplicity of M24 ........................................130 11.4 Sublattices of Leech and subgroups of the isometry group . 132 11.5InvolutionsontheLeechlattice ...............................134 References .........................................................137 Index ..............................................................143 Appendix A The Finite Simple Groups...........................149 iv Contents Appendix B Reprints of Selected Articles ........................153 B.1 Pieces of Eight: Semiselfdual Lattices and a New Foundation for theTheoryofConwayandMathieuGroups.....................155 B.2 Pieces of 2d: Existence and Uniqueness for Barnes-Wall and YpsilantiLattices............................................181 B.3 Involutions on the Barnes-Wall Lattices