The Structure of Gauge Theories in Almost Commutative Geometries © January 2011

Total Page:16

File Type:pdf, Size:1020Kb

The Structure of Gauge Theories in Almost Commutative Geometries © January 2011 THESTRUCTUREOFGAUGETHEORIESIN ALMOSTCOMMUTATIVEGEOMETRIES koen van den dungen January 2011 Supervisors: Dr. W.D. van Suijlekom Prof. dr. R.H.P. Kleiss IMAPP Koen van den Dungen: The Structure of Gauge Theories in Almost Commutative Geometries © January 2011. A Master’s Thesis in Physics & Astronomy. Radboud University Nijmegen, Faculty of Science, Institute of Mathematics, Astrophysics and Particle Physics, Department of Theoretical High Energy Physics. On the cover: an impression of electrodynamics on the two-point space. This thesis was typeset with LATEX 2#. The design of the typographic style is avail- able via CTAN as “classicthesis”. Revised Version as of January 14, 2011. ABSTRACT Within the framework of noncommutative geometry, the concept of almost commu- tative geometries can be used to describe models in physics. We shall study the properties of real even almost commutative geometries in their most general form. In particular, we show that any such almost commutative geometry describes a gauge theory, minimally coupled to a Higgs field, and we show how to recover the gauge group from the spectral triple. In the 4-dimensional case, we derive the general form of the bosonic Lagrangian, and show that it is conformally invariant up to the appearance of a dilaton field. We then apply the general framework to three examples, which step by step take us towards the description of the Standard Model of high energy physics. The first example of electrodynamics shows that it is also possible to describe abelian gauge theories in noncommutative geometry. In the second example of the Glashow-Weinberg-Salam model, we in particular show that the Higgs mechanism provides a spontaneous breaking of both the gauge sym- metry and the conformal symmetry. In the third example, we can then easily extend the results to describe the full Standard Model. iii PREFACE Seven years and four months, that is how much time has passed between follow- ing my first lecture at the university and finalizing my thesis. Though a study in physics should nominally take only five years, I have tried my best to extend this period, and with success. I am glad that I am able to say that the entire delay was time well-spent. I have spent many hours of my time in useful work for several students’ organizations. Although this led to a delay of my graduation, I consider it to be a valuable contribution to my personal academic development. However, there comes a point when it is time to finish and move on, and the time arrived to finish my Master. About one year ago, I needed to choose a research area for my Master’s thesis. Although I am a student in physics, I have always had an interest in mathematics. I am very grateful for the opportunity to do my Master’s research right on the borders between physics and mathematics. I chose to do my Master’s research in the field of noncommutative geometry, an area of mathematics that at the time was completely unknown to me. Therefore, a large portion of my time was spent on reading books and papers and reproduc- ing known results. The original plan was to produce a cosmological model from noncommutative geometry. However, as time went by, other interesting topics in noncommutative geometry revealed themselves to me, and I frequently changed directions. Essentially, I had to finish my thesis before I could say what it would be about. Now my thesis is finished. During the past year I have not only familiarized myself with (a part of) noncommutative geometry, but I have also had the chance to start developing my own ideas on some topics. Perhaps, the latter can be considered the most important result of my thesis. acknowledgment Of course, writing this thesis is not something I could have done all by myself. I would like to thank my supervisor, Walter van Suijlekom, for all his help and advice, for allowing me the flexibility to move freely from one topic to the other, and for pointing me in the right direction when needed. I thank my parents for their ongoing encouragement. I also thank everyone in our office and the rest of the department of high energy physics for providing a pleasant working environment, where hard work and fun really seem to go hand in hand. v SAMENVATTING VOOR LEKEN summary for laymen (in dutch) Gedurende het afgelopen jaar werd mij regelmatig door bekenden de vraag gesteld: “Waar gaat je scriptie eigenlijk over?” In veel gevallen werd deze vraag vrij snel gevolgd door: “Of begrijp ik daar toch niks van?” Het eenvoudigste antwoord dat ik op deze vragen kan geven is: “Nee, dat begrijp je inderdaad niet. ” Vaak waagde ik vervolgens toch een halfslachtige poging om uit te leggen waar ik mee bezig was, en ik vertelde dan zoiets als: “Ik bestudeer een deelgebied van de wiskunde dat niet-commutatieve meetkunde heet. Ik ben natuurkundestudent, en zit hiermee op het grens- vlak van de wiskunde en de natuurkunde. Een belangrijke toepassing van de niet-commutatieve meetkunde is dat je het Standaard Model van de natuurkunde hieruit kunt afleiden. Dit Standaard Model beschrijft alle elementaire deeltjes en hun onderlinge interacties, behalve de zwaar- tekracht. Bijkomend voordeel van de niet-commutatieve meetkunde is dat je, naast het Standaard Model, ook de zwaartekracht erbij cadeau krijgt. Zelf bestudeer ik wat voor andere modellen men zou kunnen af- leiden uit de niet-commutatieve meetkunde, en wat voor eigenschappen deze modellen in het algemeen hebben.” Ik heb echter zelden het idee gehad dat mensen ook daadwerkelijk veel wijzer zijn geworden van deze korte uitleg. Bij deze wil ik daarom de uitdaging aangaan om te proberen in lekentaal samen te vatten waar mijn scriptie ongeveer over gaat. Voor ik echt begin, wil ik je complimenteren met het feit dat je het hebt aangedurfd om deze scriptie open te slaan, en dat je samen met mij de uitdaging wilt aangaan om er iets van te begrijpen. Ik kan je niet beloven dat je na het lezen van deze samenvatting alles perfect begrijpt, maar ik zal mijn best doen om ervoor te zorgen dat je er in ieder geval iets van zult opsteken. meetkunde en zwaartekracht Laten we ons eerst een idee vormen van wat meetkunde is. De meetkunde geeft een beschijving van de ruimte. Hiermee beschrijft men bijvoorbeeld wat de afstand tussen twee punten is, of wat het verschil tussen recht en krom is. Ruimte en tijd zijn nauw met elkaar verbonden, en het samengevoegde concept ruimte-tijd kunnen we geheel meetkundig beschrijven. De notie van ruimtelijke kromming verstoort ons intuïtieve idee van wat recht en krom is. Een steen die we in de lucht werpen zal een boogvormige baan volgen en verderop weer op de grond terecht komen. Deze boogvormige baan is in onze ogen duidelijk krom, maar kan niettemin ook beschreven worden als een ‘rechtlijnige’ beweging op een gekromde ruimte. Op deze wijze kan de zwaartekracht worden beschreven als meetkundige theorie. De aantrekkingskracht van de aarde kromt de ruimte, en zorgt er zo voor dat de omhoog geworpen steen vanzelf weer naar beneden komt. vii het standaard model en niet-commutatieve meetkunde De zwaartekracht is echter niet de enige kracht in de natuur die we kennen. Bekend uit het dagelijkse leven zijn elektriciteit en magnetisme. Daarnaast bestaan boven- dien de sterke en zwakke kernkrachten, die zorgen voor stabiele atoomkernen of voor radioactief verval. Een omschrijving van alle elementaire deeltjes (de funda- mentele bouwstenen van alle materie), inclusief het effect van de drie genoemde interacties op deze deeltjes, wordt gegeven door het Standaard Model van de na- tuurkunde. Dit Standaard Model bezit een bepaalde symmetrie, genaamd ijksymmetrie. Deze ijksymmetrie levert een wiskundig elegante omschrijving van de interacties tussen elementaire deeltjes. Het feit dat materie massa heeft, verstoort echter de symme- trie. Een theoretische oplossing die de symmetrie herstelt, is de introductie van een nieuw deeltje, het Higgs-deeltje, in het Standaard Model. Dit theoretisch voor- spelde deeltje is echter het enige onderdeel van het Standaard Model dat nog niet is waargenomen. Op dit moment wedijveren de deeltjesversnellers van Fermilab (Chicago) en CERN (Genève) om de ontdekking hiervan. De eenvoudige meetkunde is niet in staat om, naast de zwaartekracht, ook de in- teracties van het Standaard Model te beschrijven. Voor deze overige interacties is het nodig om, aan ieder punt in de ruimte-tijd, extra interne vrijheidsgraden toe te voegen. Deze interne vrijheidsgraden beschrijven welke deeltjes er bestaan, en welke interacties ze met elkaar kunnen hebben. Hier komt de niet-commutatieve meetkunde om de hoek kijken. Zij maakt de meetkunde algemener, door naast de ruimte-tijd ook deze interne vrijheidsgraden te beschrijven. Via deze combi- natie van ruimte-tijd met interne vrijheidsgraden, beschrijft de niet-commutatieve meetkunde een natuurkundig model. De precieze vorm van dit natuurkundige mo- del hangt af van de vorm van de interne vrijheidsgraden. Bij een geschikte keuze van deze interne vrijheidsgraden blijkt dat het bijbehorende natuurkundige model precies het Standaard Model oplevert (inclusief het Higgs-deeltje), ditmaal echter gekoppeld aan de meetkundige beschrijving van de zwaartekracht. mijn scriptie In mijn scriptie beschrijf ik eveneens natuurkundige modellen, die door de combina- tie van ruimte-tijd met bepaalde interne vrijheidsgraden uit de niet-commutatieve meetkunde verkregen worden. Ik doe dit echter zonder te kiezen welke interne vrijheidsgraden er zijn. Dit levert een algemene beschrijving op van natuurkundige modellen in niet-commutatieve meetkunde. Ook zonder te weten welke interne vrij- heidsgraden er zijn, is het nog steeds mogelijk om de algemene eigenschappen van zulke natuurkundige modellen goed te beschrijven. In het bijzonder toon ik aan dat deze modellen altijd een ijksymmetrie bezitten. Ook het Higgs-deeltje komt in alle gevallen vanzelf tevoorschijn.
Recommended publications
  • Modified Theories of Relativistic Gravity
    Modified Theories of Relativistic Gravity: Theoretical Foundations, Phenomenology, and Applications in Physical Cosmology by c David Wenjie Tian A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Theoretical Physics (Interdisciplinary Program) Faculty of Science Date of graduation: October 2016 Memorial University of Newfoundland March 2016 St. John’s Newfoundland and Labrador Abstract This thesis studies the theories and phenomenology of modified gravity, along with their applications in cosmology, astrophysics, and effective dark energy. This thesis is organized as follows. Chapter 1 reviews the fundamentals of relativistic gravity and cosmology, and Chapter 2 provides the required Co-authorship 2 2 Statement for Chapters 3 ∼ 6. Chapter 3 develops the L = f (R; Rc; Rm; Lm) class of modified gravity 2 µν 2 µανβ that allows for nonminimal matter-curvature couplings (Rc B RµνR , Rm B RµανβR ), derives the “co- herence condition” f 2 = f 2 = − f 2 =4 for the smooth limit to f (R; G; ) generalized Gauss-Bonnet R Rm Rc Lm gravity, and examines stress-energy-momentum conservation in more generic f (R; R1;:::; Rn; Lm) grav- ity. Chapter 4 proposes a unified formulation to derive the Friedmann equations from (non)equilibrium (eff) thermodynamics for modified gravities Rµν − Rgµν=2 = 8πGeffTµν , and applies this formulation to the Friedman-Robertson-Walker Universe governed by f (R), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R; G) generalized Gauss-Bonnet and dynamical Chern-Simons gravities. Chapter 5 systemati- cally restudies the thermodynamics of the Universe in ΛCDM and modified gravities by requiring its com- patibility with the holographic-style gravitational equations, where possible solutions to the long-standing confusions regarding the temperature of the cosmological apparent horizon and the failure of the second law of thermodynamics are proposed.
    [Show full text]
  • M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds
    Commun. Math. Res. Vol. 36, No. 3, pp. 336-353 doi: 10.4208/cmr.2020-0052 August 2020 M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds Yun Miao1, Liqun Qi2 and Yimin Wei3,∗ 1 School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. of China. 2 Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong. 3 School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, P. R. of China. Received 6 May 2020; Accepted 28 May 2020 Abstract. We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold. The expressions of M- eigenvalues and M-eigenvectors are presented in this paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M-eigentriple has been found. We also reveal the relationship between M-eigenvalue and sectional curvature of a Rie- mannian manifold. We prove that the M-eigenvalue can determine the Rie- mann curvature tensor uniquely. We also give an example to compute the M- eigentriple of de Sitter spacetime which is well-known in general relativity. AMS subject classifications: 15A48, 15A69, 65F10, 65H10, 65N22 Key words: M-eigenvalue, Riemann curvature tensor, Ricci tensor, conformal invariant, canonical form. ∗Corresponding author. Email addresses: [email protected], [email protected] (Y. Wei), [email protected] (Y. Miao), [email protected] (L. Qi) Y. Miao, L. Qi and Y. Wei / Commun. Math. Res., 36 (2020),pp.336-353 337 1 Introduction The eigenvalue problem is a very important topic in tensor computation [4].
    [Show full text]
  • M-Eigenvalues of Riemann Curvature Tensor of Conformally Flat Manifolds
    M-eigenvalues of Riemann Curvature Tensor of Conformally Flat Manifolds Yun Miao∗ Liqun Qi† Yimin Wei‡ August 7, 2018 Abstract We generalized Xiang, Qi and Wei’s results on the M-eigenvalues of Riemann curvature tensor to higher dimensional conformal flat manifolds. The expression of M-eigenvalues and M-eigenvectors are found in our paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M- eigentriple has been found. We also discussed the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold. We proved that the M-eigenvalue can determine the Riemann curvature tensor uniquely and generalize the real M-eigenvalue to complex cases. In the last part of our paper, we give an example to compute the M-eigentriple of de Sitter spacetime which is well-known in general relativity. Keywords. M-eigenvalue, Riemann Curvature tensor, Ricci tensor, Conformal invariant, Canonical form. AMS subject classifications. 15A48, 15A69, 65F10, 65H10, 65N22. 1 Introduction The eigenvalue problem is a very important topic in tensor computation theories. Xiang, Qi and Wei [1, 2] considered the M-eigenvalue problem of elasticity tensor and discussed the relation between strong ellipticity condition of a tensor and it’s M-eigenvalues, and then extended the M-eigenvalue problem to Riemann curvature tensor. Qi, Dai and Han [12] introduced the M-eigenvalues for the elasticity tensor. The M-eigenvalues θ of the fourth-order tensor Eijkl are defined as follows. arXiv:1808.01882v1 [math.DG] 28 Jul 2018 j k l Eijkly x y = θxi, ∗E-mail: [email protected].
    [Show full text]
  • Invariant Construction of Cosmological Models Erik Jörgenfelt
    Invariant Construction of Cosmological Models Erik Jörgenfelt Spring 2016 Thesis, 15hp Bachelor of physics, 180hp Department of physics Abstract Solutions to the Einstein field equations can be constructed from invariant objects. If a solution is found it is locally equivalent to all solutions constructed from the same set. Here the method is applied to spatially-homogeneous solutions with pre-determined algebras, under the assumption that the invariant frame field of standard vectors is orthogonal on the orbits. Solutions with orthogonal fluid flow of Bianchi type III are investigated and two classes of orthogonal dust (zero pressure) solutions are found, as well as one vacuum energy solution. Tilted dust solutions with non-vanishing vorticity of Bianchi types I–III are also investigated, and it is shown that no such solution exist given the assumptions. Sammanfattning Lösningar till Einsteins fältekvationer kan konstrueras från invarianta objekt. Om en lösning hittas är den lokalt ekvivalent till alla andra lösningar konstruerade från samma mängd. Här appliceras metoden på spatialt homogena lösningar med förbestämda algebror, under anta- gandet att den invarianta ramen med standard-vektorer är ortogonal på banorna. Lösningar med ortogonalt fluidflöde av Bianchi typ III undersöks och två klasser av dammlösningar (noll tryck) hittas, liksom en vakum-energilösning. Dammlösningar med lut och noll-skild vorticitet av Bianchi typ I–III undersöks också, och det visas att inga sådana lösningar existerar givet antagandena. Contents 1 Introduction 1 2 Preliminaries 3 2.1 Smooth Manifolds...................................3 2.2 The Tangent and Co-tangent Bundles........................4 2.3 Tensor Fields and Differential Forms.........................6 2.4 Lie Groups......................................
    [Show full text]
  • University of Amsterdam
    University of Amsterdam MSc Physics Theoretical Physics Master Thesis The BTZ Black Hole In Metric and Chern-Simons Formulation by Eline van der Mast 0588105 July 2014 54 ECTS 02/2013 - 07/2014 Supervisor: Examiner: A. Castro, Dr. J. de Boer, Prof. Institute for Theoretical Physics Amsterdam ABSTRACT In this thesis, we review the BTZ black hole within the metric formulation of gen- eral relativity and Chern-Simons theory. We introduce the necessary concepts of general relativity and discuss three-dimensional gravity, specifically Anti-de Sitter vacuum space. Then, we review the identification process to get to the BTZ black hole solution, as well as an explicit quotienting formulation. The thermodynamic and geometric properties of the black hole are then discussed. The Brown-York stress tensor procedure is explained to give these properties physical meaning, with a correction by Balasubramanian and Kraus. In the second part of this thesis we introduce Chern-Simons theory and show its equivalence to three-dimensional gravity. The BTZ black hole is then shown to be defined through holonomies and thermodynamics. We find that the identifications in the metric formulation are equivalent to the holonomies in the Chern-Simons formulation; and the thermo- dynamics are the same. CONTENTS 1. Introduction :::::::::::::::::::::::::::::::::: 6 2. Introduction to Gravity ::::::::::::::::::::::::::: 8 2.1 General Relativity . .8 2.1.1 Differential Geometry . .9 2.1.2 The Riemann Tensor . .9 2.2 Gravity in Three Dimensions . 11 2.2.1 Degrees of Freedom . 11 3. Local and Global Aspects of Anti-de Sitter Space ::::::::::::: 13 3.1 Global Anti-de Sitter Space .
    [Show full text]
  • Open Craig Price-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science COVARIANT FORMULATIONS OF THE LIGHT-ATOM PROBLEM A Dissertation in Physics by Craig Chandler Price © 2018 Craig Chandler Price Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 The dissertation of Craig Chandler Price was reviewed and approved∗ by the following: Nathan D. Gemelke Assistant Professor of Physics Dissertation Advisor, Chair of Committee David S. Weiss Professor of Physics Associate Head for Research Marcos Rigol Professor of Physics Zhiwen Liu Professor of Electrical Engineering Nitin Samarth Professor of Physics Department Head ∗Signatures are on file in the Graduate School. ii Abstract We explore the ramifications of the light-matter interaction of ultracold neutral atoms in a covariant, or coordinate free, approach in the quantum limit. To do so we describe the construction and initial characterization of a novel atom-optical system in which there is no obvious preferred coordinate system but is fed back upon itself to amplify coherent quantum excitations of any emergent spontaneous order of the system. We use weakly dissipative, spatially incoherent light that is modulated by amplified fluctuations of the phase profile of a Sagnac interferometer whose symmetry is broken by the action of a generalized Raman sideband cooling process. The cooling process is done in a limit of low probe intensity which effectively produces slow light and forms a platform to explore general relativistic analogues. The disordered potential landscape is populated with k-vector defects where the atomic density contracts with an inward velocity potentially faster than the speed of the slow light at that region.
    [Show full text]
  • How to Derive the Kerr Metric by Cheating Quite a Bit; a Lecture Given to Mat 451 on April 23, 2009
    HOW TO DERIVE THE KERR METRIC BY CHEATING QUITE A BIT; A LECTURE GIVEN TO MAT 451 ON APRIL 23, 2009 WILLIE W. WONG Abstract. In this set of notes, an unconventional method of deriving the Kerr metric is presented. 1. Introduction and the first ansatz In this note we give a heuristic derivation of the Kerr metric, in a way quite significantly different from the classical methods. This is in no way a formal write- up, so for a more rigorous derivation, and for references, please see the wonderful article by Roberto Bergamini and Stefano Viaggiu, “A novel derivation for Kerr metric in Papapetrou gauge.”1 The method described herein is inspired by Marc Mars’ paper “A spacetime characterization of the Kerr metric”2, and also by the author’s 2009 PhD dissertation. The question we seek to answer is: find a solution of the Einstein vacuum equa- tions that is stationary and axially symmetric. However, to actually answer the question, we will need to impose very significant, and not ab initio justifiable, con- straints. It is only with great hindsight (that we know the solution we seek already) that the constraints seem natural. On the other hand, we will try to argue that these constraints are not completely wild guesses: by following a particular coher- ent chain of thought, it may have been possible to have obtained the Kerr metric through this method with no prior knowledge of the metric. The principal argument here is thus: we first consider the Ernst potential on a stationary solution to the Einstein equations.
    [Show full text]
  • Review of Smooth Manifolds
    Appendix A Review of Smooth Manifolds This book is designed for readers who already have a solid understanding of basic topology and smooth manifold theory, at roughly the level of [LeeTM] and [LeeSM]. In this appendix, we summarize the main ideas of these subjects that are used throughout the book. It is included here as a review, and to establish our notation and conventions. Topological Preliminaries An n-dimensional topological manifold (or simply an n-manifold) is a second- countable Hausdorff topological space that is locally Euclidean of dimension n, meaning that every point has a neighborhood homeomorphic to an open subset of Rn. Given an n-manifold M ,acoordinate chart for M is a pair .U;'/, where U  M is an open set and ' W U ! Uy is a homeomorphism from U to an open subset Uy  Rn.Ifp 2 M and .U;'/ is a chart such that p 2 U , we say that .U;'/ is a chart containing p. We also occasionally need to consider manifolds with boundary. An n-dimen- sional topological manifold with boundary is a second-countable Hausdorff space in which every point has a neighborhood homeomorphic either to an open subset Rn Rn 1 n Rn of or to a (relatively) open subset of the half-space C Df.x ;:::;x / 2 W xn 0g. A pair .U;'/, where U is an open subset of M and ' is a homeomorphism Rn Rn from U to an open subset of or C, is called an interior chart if '.U/ is an Rn Rn Rn Rn open subset of or an open subset of C that does not meet @ C Dfx 2 C W n Rn x D 0g; and it is called a boundary chart if '.U/ is an open subset of C with Rn ¿ M '.U/\ @ C ¤ .
    [Show full text]
  • Arxiv:2107.12285V1 [Math.DG] 26 Jul 2021 1 Introduction
    About left-invariant geometry and homogeneous pseudo-Riemannian Einstein structures on the Lie group SU(3) Robert Coquereaux Aix Marseille Univ, Universit´ede Toulon, CNRS, CPT, Marseille, France Centre de Physique Th´eorique July 27, 2021 Abstract This is a collection of notes on the properties of left-invariant metrics on the eight-dimensional compact Lie group SU(3). Among other topics we investigate the existence of invariant pseudo-Riemannian Einstein metrics on this manifold. We recover the known examples (Killing metric and Jensen metric) in the Riemannian case (signature (8; 0)), as well as a Gibbons et al example of signature (6; 2), and we describe a new example, which is Lorentzian (i.e., of signature (7; 1). In the latter case the associated metric is left-invariant, with isometry group SU(3) × U(1), and has positive Einstein constant. It seems to be the first example of a Lorentzian homogeneous Einstein metric on this compact manifold. These notes are arranged into a paper that deals with various other subjects unrelated with the quest for Einstein metrics but that may be of independent interest: among other topics we describe the various groups that may arise as isometry groups of left-invariant metrics on SU(3), provide parametrizations for these metrics, give several explicit results about the curvatures of the corresponding Levi-Civita connec- tions, discuss modified Casimir operators (quadratic, but also cubic) and Laplace-Beltrami operators. In particular we discuss the spectrum of the Laplacian for metrics that are invariant under SU(3) × U(2), a subject that may be of interest in particle physics.
    [Show full text]
  • Singular General Relativity Ph.D
    University Politehnica of Bucharest Faculty of Applied Sciences Singular General Relativity Ph.D. Thesis Ovidiu Cristinel Stoica Supervisor arXiv:1301.2231v4 [gr-qc] 24 Jan 2014 Prof. dr. CONSTANTIN UDRIS¸TE Corresponding Member of the Accademia Peloritana dei Pericolanti, Messina Full Member of the Academy of Romanian Scientists Bucharest 2013 Declaration of Authorship I, Ovidiu Cristinel Stoica, declare that this Thesis titled, `Singular General Relativity' and the work presented in it are my own. I confirm that: Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this Thesis is entirely my own work. I have acknowledged all main sources of help. Signed: Date: i Abstract This work presents the foundations of Singular Semi-Riemannian Geometry and Singular General Relativity, based on the author's research. An extension of differential geometry and of Einstein's equation to singularities is reported. Singularities of the form studied here allow a smooth extension of the Einstein field equations, including matter. This applies to the Big-Bang singularity of the FLRW solution. It applies to stationary black holes, in appropriate coordinates (since the standard coordinates are singular at singu- larity, hiding the smoothness of the metric). In these coordinates, charged black holes have the electromagnetic potential regular everywhere. Implications on Penrose's Weyl curvature hypothesis are presented. In addition, these singularities exhibit a (geo)metric dimensional reduction, which might act as a regulator for the quantum fields, includ- ing for quantum gravity, in the UV regime.
    [Show full text]
  • Dark Matter Gravity Generated by the S(4,0)
    Dark Matter Gravity Generated by the S(4,0) Tensor [?] Dark matter gravity generated by the S(4,0) tensor, the part of the Riemann curvature tensor R(4,0) defined as g(il)g(jk) - g(ik)g(jl), new dark matter energy tensor D(4,0) defined Jes´us Delso Lapuerta Bachelor’s Degree in Physics, Zaragoza University, Spain. [email protected] January 6, 2021 Abstract Dark matter gravity generated by the S(4,0) tensor, the part of the Riemann curvature tensor R(4,0) defined as g(il)g(jk) - g(ik)g(jl), new Total Energy T(4,0) and energy tensors are defined to complete the General Relativity field equa- tions. The Ricci decomposition is a way of breaking up the Riemann curvature tensor into three orthogonal tensors, Z(4,0), Weyl tensor C(4,0) and S(4,0), S tensor generates the dark matter gravity observed, galaxies in our universe are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together 1 Conformal energy U defined as a combination of C and the Hodge dual of C, dark matter energy D defined as a combination of S and the Hodge dual of S, similar definitions for V/Z and T/R The Ricci decomposition is a way of breaking up the Riemann curvature tensor into three orthogonal tensors, Z , Weyl tensor C and S, S tensor generates the dark matter gravity Rijkl = Zijkl + Cijkl + Sijkl 1 S = R (g g − g g ) ijkl 12 il jk ik jl 1 1 Yjk = Rjk − Rg jk , Z ijkl = 2 !Yil gjk − Yjl gik − Yik gjl + Yjk gil 4 where Rabcd is the Riemann tensor, Rab is the Ricci tensor, R is the Ricci scalar (the scalar curvature)
    [Show full text]
  • Singular General Relativity Q Singular General Relativity Is the Application of the a = − Dt Methods of Singular Semi-Riemannian Geometry to R General Relativity
    Singular General 3 Results: Smoothening black hole Relativity singularities How I learned to stop worrying and love Apparently, the black hole singularities are malign, the singularities because some of the components of the metric are divergent (gab ! 1). For the standard stationary Cristi Stoica ([email protected]) black holes, we can find transformations of coordi- nates which make them smooth. This also makes, for Relativity and Gravitation charged black holes, the electromagnetic potential and 100 Years after Einstein in Prague field smooth. The metric is put in a form which allows June 25 { 29, 2012, Prague, Czech Republic the evolution equations to go beyond the singularities. 1 Introduction: Do the singular- ities predict the breakdown of General Relativity? It is often said that General Rela- Malign singularities Benign singularities tivity predicts its own breakdown, gab ! 1 gab smooth, det g ! 0 by predicting the occurrence of sin- gularities. In addition, when trying 3.1 Schwarzschild black hole to quantize gravity, it appears to be perturbatively nonrenormalizable. In Schwarzschild coordinates • Are these problems signs that we should give up General Relativity in exchange for more radical ap- r − 2m r ds2 = − dt2 + dr2 + r2dσ2; proaches (superstrings, loop quantum gravity etc.)? r r − 2m • Are these limits of GR, or of our tools? • What if understanding the singularities also helps where dσ2 = dθ2 + sin2 θdφ2. with the problem of quantization?1 In non-singular coordinates [5] 4τ 4 ds2 = − dτ 2 2m − τ 2 2 The cure for singularities +(2m − τ 2)τ 2T −4 (T ξdτ + τdξ)2 + τ 4dσ2; where (r; t) 7! (τ 2; ξτ T ), T ≥ 2.
    [Show full text]