Sequencing, Pipeline Development, and Select Comparative Analysis of 64

Total Page:16

File Type:pdf, Size:1020Kb

Sequencing, Pipeline Development, and Select Comparative Analysis of 64 SEQUENCING, PIPELINE DEVELOPMENT, AND SELECT COMPARATIVE ANALYSIS OF 64 HIGH-QUALITY DRAFT GENOMES OF EXTREMOPHILIC BACTERIA ISOLATED FROM COMMUNITIES IN CARBOXYLATE PLATFORM FERMENTATIONS A Thesis by EMMA BRITAIN CARAWAY Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Heather H. Wilkinson Committee Members, Joshua Yuan Joseph Sorg Head of Department, Leland Pierson III August 2016 Major Subject: Plant Pathology Copyright 2016 Emma Britain Caraway ABSTRACT Microbial extremophiles have the potential for a wide variety of biotechnological and industrial applications and yet extremophiles are underrepresented in whole genome sequencing efforts to date. The generation of whole genome sequences allows for gene calling, function prediction, and creation of evolutionary models and adds to the richness of extant knowledge of the bacterial world. The sequencing of extremophiles is thus of high value. Previous efforts collected 501 soil samples from 77 thermal and saline sites across the United States and Puerto Rico and used these in an effort to optimize the microbial communities in a carboxylate biofuel platform. The 34 best performing inocula were used to isolate 1866 strains using a variety of media in a low-oxygen and high-temperature environment. A diverse subset of this isolate library was screened for traits of industrial relevance. In this project I created a model to choose a characteristic subset of these isolates while maintaining the phylogenetic, phenotypic, and geographic diversity of the isolate library. Using this subset I created a pipeline to sequence, assemble, annotate, and disseminate high quality draft-genomes of these microbes. In this work I created high-quality draft genome sequences of 64 isolates from 22 sites across the United States and Puerto Rico. I inferred phylogeny of a subset (N=48) of these isolates using multilocus sequence analysis of four housekeeping genes and discovered three potentially novel genera. Using the Joint Genome Institutes Integrated Microbial Genomes system I was able to annotate and make functional assertions about these isolates. These isolates display a diverse range of carbohydrate ii utilization that is directly related to their phylogeny, and many isolates show industrially relevant carbohydrate utilization pathways such as cellulose, arabinose, and xylose. Many of the isolates sequenced also show a pathway for degredation of furfural, an inhibitory compound that causes issues in second-generation biofuel platforms. The furfural degradation pathway is shown to be rare among extant sequenced prokaryotes. The Opu operon was found in many of these isolates, which when complete transports the compatible solute glycine betaine into the cell. This pathway has been implicated in osmoregulation, thermotolerance, and cold-show protection. Finally, four isolates were found to have a group II intron interrupting the housekeeping gene recA, which codes for a protein related to DNA repair. The insertion of a group II intron into a housekeeping gene is extremely rare and has potential implications for our existing knowledge about the role of group II introns. This work creates 64 high-quality draft genome sequences and annotations as well as select analyses, clearly demonstrating the potential of these resources for future applications. iii DEDICATION This work is dedicated to my family, who continue to be relentlessly optimistic about my future. It is also dedicated to two professors, Marilyn Turnbull of Wellesley College and Charles Kennerley of Texas A&M, who believed in me and showed me that science could be not just fascinating, but empowering. Most importantly, this is dedicated to my husband, Davis Caraway, who makes every day better than the last. iv ACKNOWLEDGEMENTS I would like to thank my committee chair, Dr. Heather Wilkinson, and my committee members Dr. Joseph Sorg and Dr Joshua Yuan as well as former committee member Dr. Daniel Ebbole for their support and guidance throughout this process. I would like to thank Elena Kolomiets for always being available to help and Cruz Torres for always knowing how to fix things. Thanks go to my colleagues, faculty, and staff in the Department of Plant Pathology and Microbiology for their support and camaraderie. Both the Texas AgriLife Research Bioenergy Program and the Texas A&M University Office of the Vice President for Research Energy Resources Program provided financial support for this project. Finally, I would like to specially thank Dr. Charles Kennerley. Without his guidance, long talks about science, and eternal patience I wouldn’t be where I am today. v TABLE OF CONTENTS Page ABSTRACT…………………………………………………………………………………………………...……………ii DEDICATION……………………………………………………………………………………….……………………iv ACKNOWLEDGEMENTS………………………………………………………………………………………..……v TABLE OF CONTENTS……………………………………………………………………………………….………vi LIST OF FIGURES……………………………………………………………………………………………………viii LIST OF TABLES…………………………………………………………………………………………….…………ix CHAPTER I INTRODUCTION……………………………………………………………………………...……1 CHAPTER II PIPELINE TO ANALYZE DRAFT GENOME SEQUENCES FOR EXTREMOPHILES FROM SUCCESSFUL CARBOXYLATE PLATFORM FERMENTATIONS. ………………………………………………………………………………9 II.1 Introduction………………………………………………………………………………..……………9 II.2 Methods…………………………………………………………………………………………….……13 II.3 Results……………………………………………………………………………………………………20 II.4 Discussion………………………………………………………………………………………………26 CHAPTER III MULTILOCUS SEQUENCE ANALYSIS OF A SUBGROUP OF HIGH- QUALITY DRAFT GENOMES FOR ISOLATES IN THE GENERA GEOBACILLUS, ANOXYBACILLUS, AND AERIBACILLUS………………………………………………………………………………..…30 III.1 Introduction…………………………………………………………………………………..………30 III.2 Methods……………………………………………………………………………………………...…36 III.3 Results………………………………………………………………………………………………..…40 III.4 Discussion…………………………………………………………………………………..…………53 CHAPTER IV SELECT COMPARATIVE ANALYSIS OF THE 64 HIGH-QUALITY DRAFT GENOME SEQUENCES OF EXTREMOPHILES………………………….…58 IV.1 Introduction……………………………………………………………………………………..……58 IV.2 Methods ………………………………………………………………………………………….……62 IV.3 Results……………………………………………………………………………………………..……67 IV.4 Discussion……………………………………………………………………………………..………76 CHAPTER V THESIS CONCLUSIONS…………………………………………………………….…………80 vi Page REFERENCES…………………………………………………………………………………………………..………83 APPENDIX A…………………………………………………………………………………………………….……103 APPENDIX B…………………………………………………………………………………………………….……105 APPENDIX C…………………………………………………………………………………………………….……107 vii LIST OF FIGURES Page Figure 1 Phylogenetic tree for the isolate library at start of this project, reproduced from[12]…………………………………………………..…………….…………6 Figure 2 Sites of origin for isolates in this study…………………….……………….…………21 Figure 3 Heat map showing A5-MiSeq vs SOAPdenovo2……………………………....……25 Figure 4 Maximum-likelihood estimated phylogenetic tree obtained from 55 partial sequences of the 16S rDNA gene…..……………………………...…………..43 Figure 5 Maximum-likelihood phylogenetic tree estimated for 55 isolates based on partial gyrB sequences………………………………………….…………...…44 Figure 6 Maximum-likelihood phylogenetic tree estimated for 55 isolates based on partial grolEL sequences………………………………………………………45 Figure 7 Maximum-likelihood phylogenetic tree estimated for 55 isolates based on partial rpoD sequences………………………………………………...…..…..46 Figure 8 Maximum-likelihood phylogenetic tree estimated for 55 isolates based on partial trmE sequences……………………………………………..…...……..47 Figure 9 Maximum-likelihood phylogenetic tree estimated by multilocus sequence analysis with concatenated gyrB, groEL, rpoD, and trmE partial sequences……………………………………………………………………………….50 Figure 10 Schematic of Group II intron interrupting recA and table showing actual sizes of recA fragments and group II intron………..………………………73 Figure 11 Alignment of the open reading frame for II introns in the RecA protein....................................................................................................................................74 Figure 12 Maximum parsimony tree of amino acid sequence ORF of group II intron..………..…………………………..…………………………..………………......…………75 viii LIST OF TABLES Page Table 1 Isolates and select metadata used in this study……………...………………….…15 Table 2 Phenotypic data available for a subset of the isolates in this study…...…..17 Table 3 Comparison of select QUAST outputs of SOAPdenovo2 and A5- MiSeq.......................................................................................................................................23 Table 4 Isolates used in multilocus sequence analysis (MLSA), adapted from Cope, 2013[9]………………………………………………………………………………….....38 Table 5 Reference strains used in multilocus sequence analysis……………………….42 Table 6 Properties of genetic loci used in multilocus sequence analysis….………...42 Table 7 P values from pairwise ILD test between 5 genetic loci…………….…….....…42 Table 8 Identifiers associated with the IMG carbohydrate utilization network for pathways expressed in the draft genomes……………..………….63 Table 9 Gene counts of IMG Pathways for carbohydrate utilization…………...……...64 Table 10 Draft genomes that contain enzymes associated with a furfural degradation pathway………………………...………………………………………........….69 Table 11 Draft genomes with osmoprotectant genes in Opu family………….………....72 Table 12 Reference sequences with group II introns……………………..………..……........73 ix CHAPTER I INTRODUCTION Depletion of non-renewable petroleum resources, variable costs associated with oil, and
Recommended publications
  • Archaea, Bacteria and Termite, Nitrogen Fixation and Sustainable Plants Production
    Sun W et al . (2021) Notulae Botanicae Horti Agrobotanici Cluj-Napoca Volume 49, Issue 2, Article number 12172 Notulae Botanicae Horti AcademicPres DOI:10.15835/nbha49212172 Agrobotanici Cluj-Napoca Re view Article Archaea, bacteria and termite, nitrogen fixation and sustainable plants production Wenli SUN 1a , Mohamad H. SHAHRAJABIAN 1a , Qi CHENG 1,2 * 1Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China; [email protected] ; [email protected] 2Hebei Agricultural University, College of Life Sciences, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000, China; [email protected] (*corresponding author) a,b These authors contributed equally to the work Abstract Certain bacteria and archaea are responsible for biological nitrogen fixation. Metabolic pathways usually are common between archaea and bacteria. Diazotrophs are categorized into two main groups namely: root- nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as Azospirillum , Cupriavidus , and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia . Three types of nitrogenase are iron and molybdenum (Fe/Mo), iron and vanadium (Fe/V) or iron only (Fe). The Mo-nitrogenase have a higher specific activity which is expressed better when Molybdenum is available. The best hosts for Rhizobium legumiosarum are Pisum , Vicia , Lathyrus and Lens ; Trifolium for Rhizobium trifolii ; Phaseolus vulgaris , Prunus angustifolia for Rhizobium phaseoli ; Medicago, Melilotus and Trigonella for Rhizobium meliloti ; Lupinus and Ornithopus for Lupini, and Glycine max for Rhizobium japonicum . Termites have significant key role in soil ecology, transporting and mixing soil. Termite gut microbes supply the enzymes required to degrade plant polymers, synthesize amino acids, recycle nitrogenous waste and fix atmospheric nitrogen.
    [Show full text]
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • Antonie Van Leeuwenhoek Journal of Microbiology
    Antonie van Leeuwenhoek Journal of Microbiology Kroppenstedtia pulmonis sp. nov. and Kroppenstedtia sanguinis sp. nov., isolated from human patients --Manuscript Draft-- Manuscript Number: ANTO-D-15-00548R1 Full Title: Kroppenstedtia pulmonis sp. nov. and Kroppenstedtia sanguinis sp. nov., isolated from human patients Article Type: Original Article Keywords: Kroppenstedtia species, Kroppenstedtia pulmonis, Kroppenstedtia sanguinis, polyphasic taxonomy, 16S rRNA gene, thermoactinomycetes Corresponding Author: Melissa E Bell, MS Centers for Disease Control and Prevention Atlanta, Georgia UNITED STATES Corresponding Author Secondary Information: Corresponding Author's Institution: Centers for Disease Control and Prevention Corresponding Author's Secondary Institution: First Author: Melissa E Bell, MS First Author Secondary Information: Order of Authors: Melissa E Bell, MS Brent A. Lasker, PhD Hans-Peter Klenk, PhD Lesley Hoyles, PhD Catherine Spröer Peter Schumann June Brown Order of Authors Secondary Information: Funding Information: Abstract: Three human clinical strains (W9323T, X0209T and X0394) isolated from lung biopsy, blood and cerebral spinal fluid, respectively, were characterized using a polyphasic taxonomic approach. Comparative analysis of the 16S rRNA gene sequences showed the three strains belonged to two novel branches within the genus Kroppenstedtia: 16S rRNA gene sequence analysis of W9323T showed closest sequence similarity to Kroppenstedtia eburnea JFMB-ATE T (95.3 %), Kroppenstedtia guangzhouensis GD02T (94.7 %) and strain X0209T (94.6 %); sequence analysis of strain X0209T showed closest sequence similarity to K. eburnea JFMB-ATE T (96.4 %) and K. guangzhouensis GD02T (96.0 %). Strains X0209T and X0394 were 99.9 % similar to each other by 16S rRNA gene sequence analysis. The DNA-DNA relatedness was 94.6 %, confirming that X0209T and X0394 belong to the same species.
    [Show full text]
  • Next Generation Microbiology for the Future
    Next Generation Microbiology for the Future www.msk.or.kr | 1 2014 INTERNATIONAL MEETING of the MICROBIOLOGICAL SOCIETY of KOREA 2 | 2014 International Meeting of the Microbiological Society of Korea 2014 INTERNATIONAL MEETING of Next Generationthe MICROBIOLOGICAL Microbiology for the Future SOCIETY of KOREA Contents • Timetable ············································································································································ 4 • Floor Plan ··········································································································································· 5 • Scientific Programs ···························································································································· 6 • Plenary Lectures······························································································································· 23 PL1 ······································································································································· 24 PL2 ······································································································································· 25 PL3 ······································································································································· 26 PL4 ······································································································································· 27 • Symposia ··········································································································································
    [Show full text]
  • Genomic Analysis of Caldalkalibacillus Thermarum TA2
    Delft University of Technology Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life de Jong, Samuel I.; van den Broek, Marcel A.; Merkel, Alexander Y.; de la Torre Cortes, Pilar; Kalamorz, Falk; Cook, Gregory M.; van Loosdrecht, Mark C.M.; McMillan, Duncan G.G. DOI 10.1007/s00792-020-01205-w Publication date 2020 Document Version Final published version Published in Extremophiles Citation (APA) de Jong, S. I., van den Broek, M. A., Merkel, A. Y., de la Torre Cortes, P., Kalamorz, F., Cook, G. M., van Loosdrecht, M. C. M., & McMillan, D. G. G. (2020). Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles, 24(6), 923-935. https://doi.org/10.1007/s00792-020-01205-w Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.
    [Show full text]
  • An Astrobiological Study of an Alkaline-Saline Hydrothermal Environment, Relevant to Understanding the Habitability of Mars
    An astrobiological study of an alkaline-saline hydrothermal environment, relevant to understanding the habitability of Mars A thesis submitted for the Degree of Doctor of Philosophy By Lottie Elizabeth Davis Department of Earth Sciences University College London March 2012 1 I, Lottie Elizabeth Davis confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Declaration Abstract The on going exploration of planets such as Mars is producing a wealth of data which is being used to shape a better understanding of potentially habitable environments beyond the Earth. On Mars, the relatively recent identification of minerals which indicate the presence of neutral/alkaline aqueous activity has increased the number of potentially habitable environments which require characterisation and exploration. The study of terrestrial analogue environments enables us to develop a better understanding of where life can exist, what types of organisms can exist and what evidence of that life may be preserved. The study of analogue environments is necessary not only in relation to the possibility of identifying extinct/extant indigenous life on Mars, but also for understanding the potential for contamination. As well as gaining an insight into the habitability of an environment, it is also essential to understand how to identify such environments using the instruments available to missions to Mars. It is important to be aware of instrument limitations to ensure that evidence of a particular environment is not overlooked. This work focuses upon studying the bacterial and archaeal diversity of Lake Magadi, a hypersaline and alkaline soda lake, and its associated hydrothermal springs.
    [Show full text]
  • Melghirimyces Thermohalophilus Sp. Nov., a Thermoactinomycete Isolated from an Algerian Salt Lake
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 1717–1722 DOI 10.1099/ijs.0.043760-0 Melghirimyces thermohalophilus sp. nov., a thermoactinomycete isolated from an Algerian salt lake Ammara Nariman Addou,1,2 Peter Schumann,3 Cathrin Spro¨er,3 Amel Bouanane-Darenfed,2 Samia Amarouche-Yala,4 Hocine Hacene,2 Jean-Luc Cayol1 and Marie-Laure Fardeau1 Correspondence 1Aix-Marseille Universite´, Universite´ du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marie-Laure Fardeau Marseille Cedex 09, France [email protected] 2Laboratoire de Biologie Cellulaire et Mole´culaire (e´quipe de Microbiologie), Universite´ des sciences et de la technologie, Houari Boume´die`nne, Bab Ezzouar, Algiers, Algeria 3Leibniz Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany 4Centre de Recherche Nucle´aire d’Alger (CRNA), Algeria A novel filamentous bacterium, designated Nari11AT, was isolated from soil collected from a salt lake named Chott Melghir, located in north-eastern Algeria. The strain is an aerobic, halophilic, thermotolerant, Gram-stain-positive bacterium, growing at NaCl concentrations between 5 and 20 % (w/v) and at 43–60 6C and pH 5.0–10.0. The major fatty acids were iso-C15 : 0, anteiso- C15 : 0 and iso-C17 : 0. The DNA G+C content was 53.4 mol%. LL-Diaminopimelic acid was the diamino acid of the peptidoglycan. The major menaquinone was MK-7, but MK-6 and MK-8 were also present in trace amounts. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and three unidentified phospholipids.
    [Show full text]
  • Distribution of Long Linear and Branched Polyamines in the Thermophiles Belonging to the Domain Bacteria
    Journal of Japanese Society for Extremophiles (2008) Vol.7 (1) Journal of Japanese Society for Extremophiles (2008), Vol. 7, 10-20 ORIGINAL PAPER Hamana Ka,b,e, Hosoya Ra, Yokota Ac, Niitsu Md, Hayashi He and Itoh Tb Distribution of long linear and branched polyamines in the thermophiles belonging to the domain Bacteria a Gunma University School of Health Sciences, Maebashi, Gunma 371-8514, Japan. bJapan Collection of Microorganisms, RIKEN, BioResource Center, Wako, Saitama 351-0198, Japan. c Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan. d Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0290, Japan. e Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan. Corresponding author : Koei Hamana, [email protected] Phone : +81-27-220-8916, FAX : +81-27-220-8999 Received: April 3, 2008/ Reviced:May 26, 2008/ Acepted:June 3, 2008 Abstract Cellular polyamines of 44 newly validated have been published in eubacteria 15, 16). However, the eubacterial thermophiles growing at 45-80℃, belonging degree of thermophily is roughly estimated and not to eight orders (six phyla) of the domain Bacteria, were defined exactly. The cellular occurrence of long linear analyzed by HPLC and GC. A quaternary branched and/or branched polyamines in extremely thermophilic penta-amine, N4-bis(aminopropyl)norspermidine, was (or hyperthermophilic) eubacteria suggested that the found in Hydrogenivirga and Sulfurihydrogenibium extreme thermophiles (or hyperthermophiles) may have belonging to the order of Aquificales. Another some novel polyamine synthetic abilities possibly quaternary branched penta-amine, N4-bis(aminopropyl) associated with their thermophily 8-11, 13-15, 18, 23, 24).
    [Show full text]
  • Thermolongibacillus Cihan Et Al
    Genus Firmicutes/Bacilli/Bacillales/Bacillaceae/ Thermolongibacillus Cihan et al. (2014)VP .......................................................................................................................................................................................... Arzu Coleri Cihan, Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey Kivanc Bilecen and Cumhur Cokmus, Department of Molecular Biology & Genetics, Faculty of Agriculture & Natural Sciences, Konya Food & Agriculture University, Konya, Turkey Ther.mo.lon.gi.ba.cil’lus. Gr. adj. thermos hot; L. adj. Type species: Thermolongibacillus altinsuensis E265T, longus long; L. dim. n. bacillus small rod; N.L. masc. n. DSM 24979T, NCIMB 14850T Cihan et al. (2014)VP. .................................................................................. Thermolongibacillus long thermophilic rod. Thermolongibacillus is a genus in the phylum Fir- Gram-positive, motile rods, occurring singly, in pairs, or micutes,classBacilli, order Bacillales, and the family in long straight or slightly curved chains. Moderate alka- Bacillaceae. There are two species in the genus Thermo- lophile, growing in a pH range of 5.0–11.0; thermophile, longibacillus, T. altinsuensis and T. kozakliensis, isolated growing in a temperature range of 40–70∘C; halophile, from sediment and soil samples in different ther- tolerating up to 5.0% (w/v) NaCl. Catalase-weakly positive, mal hot springs, respectively. Members of this genus chemoorganotroph, grow aerobically, but not under anaer- are thermophilic (40–70∘C), halophilic (0–5.0% obic conditions. Young cells are 0.6–1.1 μm in width and NaCl), alkalophilic (pH 5.0–11.0), endospore form- 3.0–8.0 μm in length; cells in stationary and death phases ing, Gram-positive, aerobic, motile, straight rods. are 0.6–1.2 μm in width and 9.0–35.0 μm in length.
    [Show full text]
  • Mechanisms of Action of the Duodenal-Jejunal Bypass Sleeve
    Mechanisms of action of the duodenal-jejunal bypass sleeve Jessica Jade McMaster BSc, MDietSt A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 Faculty of Medicine ABSTRACT The prevalence of obesity and related comorbidities, such as type 2 diabetes mellitus (T2DM) have reached epidemic proportions globally. Weight loss improves morbidity and mortality in people with obesity and T2DM. However, effective long-term obesity treatments are limited. Lifestyle modification is the first line treatment, but long-term data suggest a return to baseline weight after successful weight loss. In contrast, bariatric surgery causes permanent anatomical changes in the gastrointestinal tract (GIT) to facilitate weight loss. This is the most effective long-term treatment for obesity and T2DM. However, compared to the large number of eligible individuals, very few patients undergo bariatric surgery. Minimally invasive treatment options have been developed to fill the treatment gap between conservative and surgical measures. One treatment option is the duodenal-jejunal bypass sleeve (DJBS; EndoBarrier®; GI Dynamics, Lexington, MA, USA). This is a 60 cm impermeable sleeve device, which is placed endoscopically into the duodenal bulb, extending to the jejunum and left in place for up to 48 weeks. The device separates bile and pancreatic secretions from chyme, reducing the contact of ingested food with the small intestinal mucosa. Significant weight loss and improvements in glycaemic control have been reported after DJBS treatment, but little is known about the mechanisms of action of the device. The device dwells in the GIT, but the impact of implantation on gastrointestinal function has undergone limited investigation.
    [Show full text]
  • Plastid-Localized Amino Acid Biosynthetic Pathways of Plantae Are Predominantly Composed of Non-Cyanobacterial Enzymes
    Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly SUBJECT AREAS: MOLECULAR EVOLUTION composed of non-cyanobacterial PHYLOGENETICS PLANT EVOLUTION enzymes PHYLOGENY Adrian Reyes-Prieto1* & Ahmed Moustafa2* Received 1 26 September 2012 Canadian Institute for Advanced Research and Department of Biology, University of New Brunswick, Fredericton, Canada, 2Department of Biology and Biotechnology Graduate Program, American University in Cairo, Egypt. Accepted 27 November 2012 Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria Published involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of .100 Arabidopsis 11 December 2012 nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a shared phylogenetic origin in the three Plantae lineages. We hypothesize that during the evolution of plastids some enzymes encoded in the host nuclear genome were mistargeted into the plastid. Then, the activity of those Correspondence and foreign enzymes was sustained by both the plastid metabolites and interactions with the native requests for materials cyanobacterial enzymes. Some of the novel enzymatic activities were favored by selective compartmentation should be addressed to of additional complementary enzymes. The mosaic phylogenetic composition of the plastid amino acid A.R.-P. ([email protected]) biosynthetic pathways and the reduced number of plastid-encoded proteins of non-cyanobacterial origin suggest that enzyme recruitment underlies the recompartmentation of metabolic routes during the evolution of plastids. * Equal contribution made by these authors. rimary plastids of plants and algae are the evolutionary outcome of an endosymbiotic association between eukaryotes and cyanobacteria1.
    [Show full text]
  • Chapter 1 Reviews Studies in Geochemistry and Microbiology of Studied Area
    DIVERSITY AND POTENTIAL GEOCHEMICAL FUNCTIONS OF PROKARYOTES IN HOT SPRINGS OF THE UZON CALDERA, KAMCHATKA by WEIDONG ZHAO (Under the Direction of Chuanlun L Zhang and Christopher S Romanek) ABSTRACT Hot springs are modern analogs of ancient hydrothermal systems where life may have emerged and evolved. Autotrophic microorganisms play a key role in regulating the structure of microbial assemblage and associated biochemical processes in hot springs. This dissertation aims to elucidate the diversity, abundance and ecological functions of multiple groups of chemoautotrophs that use diverse energy sources including CO, NH3, and H2 in terrestrial hot springs of the Uzon Caldera, Kamchatka (Far East Russia). This dissertation consists of seven chapters. Chapter 1 reviews studies in geochemistry and microbiology of studied area. 13 Chapter 2 reports H2, CO2, CH4 and CO contents and the δ C values in vent gas samples. The gases were determined to be thermogenic with small temporal but large spatial variations among the springs investigated. Chemical and partial isotope equilibria between CO2 and CH4 may be attained in the subsurface at elevated temperature. Chapter 3 shows the distribution of bacteria was spatially heterogeneous whereas that of archaea was related to geographic features. Cluster analyses group bacterial and archaeal communities according to their similarities of lipid compositions. Hydrogen-utilizing Aquificales appeared to be dominant in two of the four bacterial groups, but was outnumbered by presumably Cyanobacteria-Thermotogae or Proteobacteria-Desulfurobacterium types in the other two groups. The lipid data also suggest the existence of possibly three types of archaea with each type producing one of GDGT-0, GDGT-1, and GDGT-4 as the main membrane lipids, respectively.
    [Show full text]