Bioluminescência Fúngica: Papel Ecológico, Purificação E Clonagem De Enzimas
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUIMICA Programa de Pós-Graduação em Ciências Biológicas (Bioquímica) HANS EUGENE WALDENMAIER Bioluminescência fúngica: papel ecológico, purificação e clonagem de enzimas TESE DE DOUTORADO - PROGRAMA DE BIOQUĺMICA São Paulo Data do deposito na SPG: Versão corrigida 02/10/2017 HANS EUGENE WALDENMAIER Bioluminescência fúngica: papel ecológico, purificação e clonagem de enzimas Tese apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Doutor em Ciências (Bioquímica) Orientador: Prof. Dr. Cassius Vinicius Stevani Co-orientadora: Profa. Dra. Carla Columbano de Oliveira São Paulo 2016 Agradecimentos First I would like to thank my advisor Cassius V. Stevani for his generous support of my PhD research and related projects, for his guidance and encouragement to explore all aspects of fungal luminescence. I would also like to thank Prof. Anderson Oliveira for pioneering the recent enzymatic study of fungal bioluminescence and guiding me into this field. My thanks goes to Prof. Carlos Hotta, Dr. Armando Casas-Mollano and Eric Bastos for helping me keep my plant biology synapses firing. Additionally I would like to thank Prof. William Badder for helping me think through some of the more chemistry parts of this biochemical study. I would also like to thank Felipe Dorr for his help in characterizing equsistumpyrone and thinking though the hispidin biosynthesis. A thanks goes to Dr. Dennis Desjardin for help in characterizing newly found species, and to Dr. Ron Petersen for providing Panellus stipticus cultures.. My appreciation of the help from Clemson University Genomics Institute continues, their help in developing a DNA extraction method for our fungus was probably the most critical step of my thesis. I would also like to thank Sérgio Pompéia and the staff at IPBio for their collaboration and field help in the characterization of the ecology of fungal bioluminescence. I would also like to thank my “Brazilian grandfather” Dr. Ismael Dantas for allowing me to stomp around his property looking for bioluminescent mushrooms in Piaui and his kindness and hospitality when we are in Altos. My thanks also goes to Prof. Silvio Nihei for his assistance in identifying the captured arthropods in the ecology study. I would like to thank FAPESP for their generous funding support allowing for my dream PhD project. My sincere thanks goes to biochemistry department at IQ-USP for allowing this research and providing institutional structure. I would also like to thank my friends at IQ-USP for their help in acclimating to Sao Paulo and providing help with various aspects of this project. Finally I would like to thank my family and friends from back in the US for their support throughout this project and putting up with the long distances and missed events over the last five years. Resumo: Waldenmaier, HE. Bioluminescência fúngica: papel ecológico, purificação e clonagem de enzimas. Tese de Doutorado - Programa de Pós-Graduação em bioquímica. Instituto de Química, Universidade de São Paulo, São Paulo. Esta tese de doutorado descreve os estudos realizados para elucidar a biologia molecular da bioluminescência fúngica e sua relevância ecológica na natureza. A recente descoberta de que a luciferina fúngica é a 3-hidroxihispidina permitiu a caracterização do metabolismo secundário da fenilalanina nos genomas recém-sequenciados e transcriptomas de micélios das espécies luminescentes Panellus stipticus e Neonothopanus gardneri. Adicionalmente os genomas e transcriptomas de variedades não luminescente de P. stipticus e Lentinula edodes serviram como respectivos controles. Em geral, os genes envolvidos no metabolismo secundário da fenilalanina em amostras luminescentes tinham expressão igual ou superior àquela de espécies não luminescentes. Um agrupamento de genes relacionados com a biossíntese de fenilalanina foi encontrado em ambos os genomas luminescentes e não luminescentes de P. stipticus. A abundância de genes transcritos neste agrupamento foi semelhante para as espécies luminescentes e não luminescentes de P. stipticus, mas a policetídeo sintase tipo I em P. stipticus não luminescentes foi significativamente sub-regulada. Não foi encontrado agrupamento semelhante nos genomas de N. gardneri e L. edodes, sendo que os correspondentes homólogos estavam espalhados em diferentes loci. Extratos de fungos podem ser preparados in vitro, com a adição de 3-hidroxihispidina para produzir luz verde em abundância. A preparação de extratos proteicos de luciferase foi melhorada e a estrutura da luciferase, parcialmente purificada, foi investigada por espectrometria de massas. A presença de luciferase nos géis de purificação foi revelada usando-se luciferina e molécula similares à luciferina advindas de extratos de plantas. O nicho ecológico nas vizinhas de cogumelos bioluminescentes foi investigado de duas maneiras, armadilhas adesivas com cogumelos artificiais de acrílico, iluminados com luz LED verde e através da observação direta de cogumelos bioluminescentes com fotografia no infravermelho com lapso de tempo. Os estudos ecológicos foram conduzidos nos biomas da Mata Atlântica e da Mata dos Cocais, no Brasil. Baratas, aranhas, tesourinhas, grilo e vagalumes tec-tecs foram os animais mais comuns que interagiram com os cogumelos. Todos estes animais podem agir como dispersores de propágulos e, em alguns casos, como defensores dos cogumelos. Palavras-chave: bioluminescência fúngica, metabolismo secundário da fenilalanina, luciferase, ecologia ABSTRACT Waldenmaier, HE. Fungal bioluminescence: ecological role, purification and cloning of enzymes. Tese de Doutorado - Programa de Pós-Graduação em bioquímica. Instituto de Química, Universidade de São Paulo, São Paulo. This PhD thesis describes the studies performed to elucidate the molecular biology of fungal bioluminescence and the ecological significance of the trait in the wild. The recent discovery that the fungal luciferin is 3-hydroxyhispidin has allowed for the characterization of phenylalanine secondary metabolism in the newly sequenced genomes and mycelium transcriptomes of luminescent Panellus stipticus and Neonothopanus gardneri, additionally the genomes and transcriptomes of a non-luminescent variety of P. stipticus and Lentinula edodes served as respective controls. In general the genes involved in phenylalanine secondary metabolism had greater or equal expression in luminescent samples than non luminescent. A cluster of genes related to the secondary metabolism of phenylalanine was found in both luminescent and non luminescent P. stipticus genomes. Transcript abundance of genes in this cluster was similar in both luminescent and non-luminescent Panellus stipticus, but the type I polyketide synthase in non luminescent Panellus stipticus was significantly down regulated. A similar gene cluster in the N. gardneri and L. edodes genomes was absent with corresponding homologues scattered at different genomic loci. Cell free fungal extracts can be combined in vitro with the addition of 3-hydroxyhispidin to produce abundant green light. Preparation of proteinaceous luciferase extracts was improved and partially purified luciferase samples were investigated by mass spectrometry. The presence of luciferase in the separation gel was also evidenced by using luciferin and luciferin-like molecules from plant extracts. The ecological niche surrounding bioluminescent mushrooms was investigated through two main means, glue traps with acrylic mushroom facsimiles that were internally illuminated with green LED lights and direct observation of bioluminescent mushrooms with infrared time lapse photography. Ecological studies were performed in the Atlantic rainforest (Mata Atlântica) and transitional Coconut Palm forest (Mata dos Cocais) biomes of Brazil. Cockroaches, spiders, earwigs, crickets, and luminescent click beetles were the most common animal interacting with mushrooms. All of these animals may be acting as fungal propagule dispersers and in some cases defense of the mushroom. Keywords: fungal bioluminescence, phenylalanine secondary metabolism, luciferase, ecology Lista de Abreviaturas e Siglas Enzymes PAL phenylalanine ammonia lyase C4H trans-cinnamate 4-monooxygenase, cinnamate hydroxylase C3H 4-coumarate-3-Hydroxylase 4CL 4-coumaryl:CoA-ligase PKS Polyketide synthase (three types: I,II,III) CHS Chalcone synthase a type III PKS in plants with 3 malonyl-CoA additions SPS Styrylpyrone synthase a type III PKS in plants with 2 malonyl-CoA additions HMG Hydroxymethylglutaryl-CoA synthase Sequence Data Set Abbreviations BL Panellus stipticus, Blount Co. Tenn USA - Bioluminescent TU Panellus stipticus, Turkey NG Neonothopanus gardneri, Altos PI BR - Bioluminescent LE Lentinula edodes, Supermarket BTNL The collective abbreviation for all four (BL, TU, NG, LE) datasets. PI An additional transcriptome subset of NG from a preliminary sequencing effort. Each PI transcript has expression fold change ratio between luminescent and non-luminescent mycelium DNA: “_scaffold_” ex. BL_scaffold_4, BL_scaffold_23 Long sub-chromosome length of assembled DNA sequence. Genes: “_mg_” ex. BL_mg_002894, NG_mg_013453 MAKER predicted gene sequence with intron/exons, CDS, translation and scaffold location. Transcript: ex. LE012345, TU006589 Bowtie assembled transcript has associated replicate transcript abundance values. IPR - Interproscan annotation ex. IPR005922 - phenylalanine ammonia-lyase