NASA's Contributions to Aircraft Propulsion

Total Page:16

File Type:pdf, Size:1020Kb

NASA's Contributions to Aircraft Propulsion https://ntrs.nasa.gov/search.jsp?R=20180003207 2019-08-29T18:14:05+00:00Z The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ..................................... 167 Chapter 7: Toward the Future ........................................................................ 217 Abbreviations 233 Bibliography 239 About the Author 273 Index 275 iii Dedication To Cheryl and Piper v Acknowledgments Any author is in debt to many who help with the research and writing process. I wish to thank series editor Dr. Richard P. Hallion for asking me to participate in this project and for providing help and understanding at critical moments during my research and preparation of the final manuscript. Tony Springer of the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate offered stalwart help and thoughtful counsel as he oversaw this series and my participation in it. I received invaluable assistance from other NASA staff members. At Headquarters in Washington, DC, I would like to thank archivists Jane Odom, Colin Fries, and John Hargenrader of the History Program Office and Gwen Pitman of the Photo Library. At the Glenn Research Center, Robert Arrighi and Marvin Smith of the History Office and Chief Dhanireddy R. Reddy and Deputy Chief Dennis Huff of the Aeropropulsion Division were of extraordi- nary help. James Banke served as a thoughtful commentator on the manuscript. Bob van der Linden, Howard Wesoky, Melissa Keiser, and Allan Janus of the Smithsonian Institution’s National Air and Space Museum in Washington, DC, provided important support. For assistance with photographs held by industry, Matthew Benvie of General Electric, Marie Force of Delta Airlines, Mary E. Kane of Boeing, and Judy Quinlan of Northrop Grumman facilitated access. The research and writing of history is a communal effort, and historians necessarily stand on the shoulders and exploit the work of others who have gone on before. I have acknowledged in the text and the bibliography the authors of several critical previous works that have addressed the National Advisory Committee for Aeronautics (NACA)/NASA legacy in aircraft propulsion. This book would not have been possible without the foundation provided by these individuals. Nevertheless, readers should realize that all errors of fact, inter- pretation, or omission are solely my own. My wife, Cheryl, has been a devoted supporter and a beloved taskmaster as I worked to manage both personal and professional schedules. We welcomed our beautiful daughter, Piper, during the writing of this book, and I greatly love and appreciate them both for so unselfishly letting me dedicate myself to this project over many months, days, and evenings. vi Foreword TheNew York Times announced America’s entry into the “long awaited” Jet Age when a Pan American (Pan Am) World Airways Boeing 707 airliner left New York for Paris on October 26, 1958. Powered by four turbojet engines, the 707 offered speed, more nonstop flights, and a smoother and quieter travel experi- ence compared to newly antiquated propeller airliners. With the Champs- Élysées only 6 hours away, humankind had entered into a new and exciting age in which the shrinking of the world for good was no longer a daydream.1 Fifty years later, the New York Times declared the second coming of a “cleaner, leaner” Jet Age. Decades-old concerns over fuel efficiency, noise, and emissions shaped this new age as the aviation industry had the world poised for “a revolution in jet engines.”2 Refined turbofans incorporating the latest innovations would ensure that aviation would continue to enable a worldwide transportation network. At the root of many of the advances over the preceding 50 years was the National Aeronautics and Space Administration (NASA). On October 1, 1958, just a few weeks before the flight of that Pan Am 707, NASA came into existence. Tasked with establishing a national space program as part of a Cold War competition between the United States and the Soviet Union, NASA is often remembered in popular memory first for putting the first human beings on the Moon in July 1969, followed by running the suc- cessful 30-year Space Shuttle Program and by landing the Rover Curiosity on Mars in August 2012. What many people do not recognize is the crucial role the first “A” in NASA played in the development of aircraft since the Agency’s inception. Innovations shaping the aerodynamic design, efficient operation, and overall safety of aircraft made NASA a vital element of the American avia- tion industry even though they remained unknown to the public.3 This is the story of one facet of NASA’s many contributions to commercial, military, and general aviation: the development of aircraft propulsion technology, which provides the power for flight. NASA’s involvement in the development and refinement of aircraft pro- pulsion technologies from 1958 to 2008 is important for three reasons. First, at the most basic level, NASA’s propulsion specialists pushed the boundar- ies of the design of power plants for both subsonic and supersonic flight. Innovations that emerged from NASA programs included ultra-high-bypass vii The Power for Flight turbofans; advanced turboprops; and refined systems reflecting the desire for more efficient, quieter, cleaner, and safer engines. The second reason explains how NASA achieved that success. The Agency played a major role as an innova- tor, facilitator, collaborator, and leader as it interacted with industry and other Federal agencies, primarily the Federal Aviation Administration (FAA) and the Department of Defense (DOD). NASA’s involvement in aircraft propulsion as, in the words of longtime propulsion specialist Dennis Huff, a “technol- ogy broker” highlights the continual presence of the Federal Government in the creation of technology.4 The third reason is that, as a result of NASA’s efforts, the U.S. aircraft propulsion industry has led the world consistently in the development of new technology with improved performance, durability, environmental compatibility, and safety.5 Overall sales of military, commercial, and general aviation engines accounted for 25 percent of the entire aviation industry’s revenues for 2006.6 NASA has four major aeronautical centers that deal with aircraft propulsion issues based on their collective expertise: Langley Research Center in Virginia, Ames Research Center and Armstrong Flight Research Center in California, and Glenn Research Center at Lewis Field in Ohio. Glenn is NASA’s pri- mary propulsion facility.7 Glenn’s research facilities include five wind tun- nels, the Aero-Acoustic Propulsion Laboratory, the Engine Research Building, the Propulsion Systems Laboratory, and the Flight Research Building.8 More importantly, it is the specialists of Glenn and the other Centers who have served at the core of the Administration’s work in aircraft propulsion. The work of all propulsion researchers at NASA falls under the programs of the Aeronautics Research Mission Directorate, with an overall goal to advance breakthrough aerospace technologies. Airplanes incorporate synergistic technologies that embody four primary systems: aerodynamics, propulsion, structures, and control. The development of these internal systems into an overall practical and symbiotic system has been at the core of the airplane’s success over the course of the 20th century. Aircraft designers must maintain a balance among lift, drag, thrust, and weight. In other words, without an equal balance among the four forces of flight, where the wings and propulsion system must generate enough lift and thrust to overcome
Recommended publications
  • Easy Access Rules for Auxiliary Power Units (CS-APU)
    APU - CS Easy Access Rules for Auxiliary Power Units (CS-APU) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published February 20181 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 37| Feb 2018 Easy Access Rules for Auxiliary Power Units Disclaimer (CS-APU) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related acceptable means of compliance. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document.
    [Show full text]
  • 2.0 Axial-Flow Compressors 2.0-1 Introduction the Compressors in Most Gas Turbine Applications, Especially Units Over 5MW, Use Axial fl Ow Compressors
    2.0 Axial-Flow Compressors 2.0-1 Introduction The compressors in most gas turbine applications, especially units over 5MW, use axial fl ow compressors. An axial fl ow compressor is one in which the fl ow enters the compressor in an axial direction (parallel with the axis of rotation), and exits from the gas turbine, also in an axial direction. The axial-fl ow compressor compresses its working fl uid by fi rst accelerating the fl uid and then diffusing it to obtain a pressure increase. The fl uid is accelerated by a row of rotating airfoils (blades) called the rotor, and then diffused in a row of stationary blades (the stator). The diffusion in the stator converts the velocity increase gained in the rotor to a pressure increase. A compressor consists of several stages: 1) A combination of a rotor followed by a stator make-up a stage in a compressor; 2) An additional row of stationary blades are frequently used at the compressor inlet and are known as Inlet Guide Vanes (IGV) to ensue that air enters the fi rst-stage rotors at the desired fl ow angle, these vanes are also pitch variable thus can be adjusted to the varying fl ow requirements of the engine; and 3) In addition to the stators, another diffuser at the exit of the compressor consisting of another set of vanes further diffuses the fl uid and controls its velocity entering the combustors and is often known as the Exit Guide Vanes (EGV). In an axial fl ow compressor, air passes from one stage to the next, each stage raising the pressure slightly.
    [Show full text]
  • THE BIRTH of the ATLANTIC AIRLINER Part Iva The
    THE BIRTH OF THE ATLANTIC AIRLINER (1920-1940) by Rit Staalman Part IVa The Ultimate Propeller Airliner SUMMING UP: 1. Required for an Atlantic Airliner: Low Own Weight (airframe + engines), High Load Capacity, Low Drag. 2. Suitable building material: Dur-Aluminum (favourable weight/strength + durability); suitable construction method: Semi-monocoque, i.e. skin takes part of load. 3. Design:: make wings as small as possible = high wing loads (see earlier). 4. Small wings decrease weight, also lower drag. They require airplane to fly at high speed. (For the Atlantic this is good, because the plane often has to battle high head winds.) High air speed implies that good aerodynamic form is needed. It also implies that high power is needed, especially at take- off with full load. 5. Powerful,/light-weight engines become available in the 1930’s (see appendix). 6.The various flight regimes (take-off, climbing, cruising with different weights) require propellers with adjustable blade angles. These also appear on the market in the same period. So at the beginning of World War II all elements are available for the construction of practical Atlantic airliners. 1930: AMERICA GOES MONO AND METAL 1 1. Boeing Founded by millionaire William Edward Boeing (1881-1956) in 1916 in Seattle, the first aircraft produced by Boeing Aircraft Co.were two biplanes on floats. In 1929 Boeing became part of United Aircraft and Transport until 1934, when the U.S. government ruled that the combination of aircraft factories and airlines was against the anti-trust laws. Claire Egtvedt was chief engineer from the start.
    [Show full text]
  • Thirty Years of Lockheed Vegas
    1 THIRTY YEARS OF LOCKHEED VEGAS by Chalmers A. Johnson AAHS Journal, Vol. 2, No. 1 - Spring 1957 Thirty years ago this year the first of a long line of superb aircraft bearing the Lockheed name made its debut in Los Angeles. This was the high-wing, strutless, monocoque-fuselage Vega. Developed from this aircraft was the mail-carrying Air Express, the streamlined Sirius and Altair and the hard-working passenger carrier, the Orion, The Vega was, however, the most famous of the wooden Lockheeds, It spread the name of what is today one of the giants of the American aircraft industry throughout the world. Mated with the famous Pratt and Whitney Wasp engine, the Lockheed Vega probably made more pioneering and historically important flights than any other single model of aircraft. This was due to its clear superiority of design and the craftsmanship incorporated into its construction. Today, there are about a half-dozen Vegas still in existence. They bear testimony to the ruggedness of this aircraft. The following report is concerned with a detailed history of the Lockheed Vega, It tells better than any description the fantastic history of one of America's most famous types of aircraft. It will be found that a large number of these aircraft found their way into our neighboring country, Mexico. In 1929, the American owned and founded Corporacion Aeronautica de Transportes (CAT) had the world's fastest airline. It was equipped with some of the first Wasp-Vegas, That they performed so well during the years of hangar-less life in the sun and dust of Torreon is a remarkable fact.
    [Show full text]
  • A Study on the Stall Detection of an Axial Compressor Through Pressure Analysis
    applied sciences Article A Study on the Stall Detection of an Axial Compressor through Pressure Analysis Haoying Chen 1,† ID , Fengyong Sun 2,†, Haibo Zhang 2,* and Wei Luo 1,† 1 Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China; [email protected] (H.C.); [email protected] (W.L.) 2 AVIC Aero-engine Control System Institute, No. 792 Liangxi Road, Wuxi 214000, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 5 June 2017; Accepted: 22 July 2017; Published: 28 July 2017 Abstract: In order to research the inherent working laws of compressors nearing stall state, a series of compressor experiments are conducted. With the help of fast Fourier transform, the amplitude–frequency characteristics of pressures at the compressor inlet, outlet and blade tip region outlet are analyzed. Meanwhile, devices imitating inlet distortion were applied in the compressor inlet distortion disturbance. The experimental results indicated that compressor blade tip region pressure showed a better performance than the compressor’s inlet and outlet pressures in regards to describing compressor characteristics. What’s more, compressor inlet distortion always disturbed the compressor pressure characteristics. Whether with inlet distortion or not, the pressure characteristics of pressure periodicity and amplitude frequency could always be maintained in compressor blade tip pressure. For the sake of compressor real-time stall detection application, a compressor stall detection algorithm is proposed to calculate the compressor pressure correlation coefficient. The algorithm also showed a good monotonicity in describing the relationship between the compressor surge margin and the pressure correlation coefficient.
    [Show full text]
  • The Power for Flight: NASA's Contributions To
    The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ....................................
    [Show full text]
  • Rudy Arnold Photo Collection
    Rudy Arnold Photo Collection Kristine L. Kaske; revised 2008 by Melissa A. N. Keiser 2003 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 3 Biographical / Historical.................................................................................................... 2 Names and Subjects ...................................................................................................... 3 Container Listing ............................................................................................................. 4 Series 1: Black and White Negatives....................................................................... 4 Series 2: Color Transparencies.............................................................................. 62 Series 3: Glass Plate Negatives............................................................................ 84 Series : Medium-Format Black-and-White and Color Film, circa 1950-1965.......... 93
    [Show full text]
  • Modular Multi-Stage Axial Compressor Design
    Theses - Daytona Beach Dissertations and Theses 12-2008 Modular Multi-Stage Axial Compressor Design Christopher S. Hemerly Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/db-theses Part of the Aerospace Engineering Commons Scholarly Commons Citation Hemerly, Christopher S., "Modular Multi-Stage Axial Compressor Design" (2008). Theses - Daytona Beach. 78. https://commons.erau.edu/db-theses/78 This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an authorized administrator of ERAU Scholarly Commons. For more information, please contact [email protected]. MODULAR MULTI-STAGE AXIAL COMPRESSOR DESIGN by Christopher S. Hemerly, B.S. A Thesis Presented to the Faculty Embry-Riddle College of Engineering Department of Aerospace Engineering In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida December 2008 UMI Number: EP32017 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI" UMI Microform EP32017 Copyright 2011 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Aircraft Designations and Popular Names
    Chapter 1 Aircraft Designations and Popular Names Background on the Evolution of Aircraft Designations Aircraft model designation history is very complex. To fully understand the designations, it is important to know the factors that played a role in developing the different missions that aircraft have been called upon to perform. Technological changes affecting aircraft capabilities have resulted in corresponding changes in the operational capabilities and techniques employed by the aircraft. Prior to WWI, the Navy tried various schemes for designating aircraft. In the early period of naval aviation a system was developed to designate an aircraft’s mission. Different aircraft class designations evolved for the various types of missions performed by naval aircraft. This became known as the Aircraft Class Designation System. Numerous changes have been made to this system since the inception of naval aviation in 1911. While reading this section, various references will be made to the Aircraft Class Designation System, Designation of Aircraft, Model Designation of Naval Aircraft, Aircraft Designation System, and Model Designation of Military Aircraft. All of these references refer to the same system involved in designating aircraft classes. This system is then used to develop the specific designations assigned to each type of aircraft operated by the Navy. The F3F-4, TBF-1, AD-3, PBY-5A, A-4, A-6E, and F/A-18C are all examples of specific types of naval aircraft designations, which were developed from the Aircraft Class Designation System. Aircraft Class Designation System Early Period of Naval Aviation up to 1920 The uncertainties during the early period of naval aviation were reflected by the problems encountered in settling on a functional system for designating naval aircraft.
    [Show full text]
  • From Controversy to Cutting Edge
    From Controversy to Cutting Edge A History of the F-111 in Australian Service Mark Lax © Commonwealth of Australia 2010 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission. Inquiries should be made to the publisher. Disclaimer The Commonwealth of Australia will not be legally responsible in contract, tort or otherwise, for any statements made in this document. Release This document is approved for public release. Portions of this document may be quoted or reproduced without permission, provided a standard source credit is included. National Library of Australia Cataloguing-in-Publication entry Author: Lax, Mark, 1956- Title: From controversy to cutting edge : a history of the F-111 in Australian service / Mark Lax. ISBN: 9781920800543 (hbk.) Notes: Includes bibliographical references and index. Subjects: Australia. Royal Australian Air Force--History. F-111 (Jet fighter plane)--History. Air power--Australia--History. Dewey Number: 358.43830994 Illustrations: Juanita Franzi, Aero Illustrations Published by: Air Power Development Centre TCC-3, Department of Defence CANBERRA ACT 2600 AUSTRALIA Telephone: + 61 2 6266 1355 Facsimile: + 61 2 6266 1041 E-mail: [email protected] Website: www.airpower.gov.au/airpower This book is dedicated to the memory of Air Vice-Marshal Ernie Hey and Dr Alf Payne Without whom, there would have been no F-111C iii Foreword The F-111 has been gracing Australian skies since 1973. While its introduction into service was controversial, it quickly found its way into the hearts and minds of Australians, and none more so than the men and women of Boeing.
    [Show full text]
  • Aviation Pioneer, Fred E. Weick
    Virginia Aviation History Project By: Norm Crabill Published with permission of Mr. Donald V. Weick, March 14, 2019 Aviation Pioneer, Fred E. Weick This article is based on Norman Crabill’s notes from Fred Weick’s autobiography “From the Ground Up”, with contributions from Raymond Gill, Vice President, VAHS. Mr. Crabill’s notes were shared with Ray Gill and Hall of Fame member (1998) Ray Tyson at a recent meeting in the Robin’s Nest Café on Fredericksburg’s Shannon Airport campus. Norm Crabill is a Life Member of the Virginia Aeronautical Historical Society and a member of the VAHS Hall of Fame (2008). He generously agreed to allow us to share his notes with our membership. Fred Weick came to the National Advisory Committee for Aeronautics (NACA) in the 1920s and contributed to significant changes in aircraft design worldwide, including: 1. Improvement in propeller design. One report for the US Naval Bureau of Aeronautics (1925) and two reports for NACA, TN212 (January 1925) and TN225 (September 1925). 2. Development of a propeller testing facility at NACA Langley in 1923. 3. Development of the NACA cowling for engines. In 1929, the first Collier Trophy was awarded for development of the cowling in the Propeller Research Tunnel. The NACA cowling drastically reduced aircraft drag, improved cylinder cooling and is being used world-wide today. Responding to a growing interest for an easy-to-fly airplane, Fred put together a team of six NACA engineers to design and build a single engine, easy-to-fly, aircraft that would not stall nor spin; that would also be easy to land due to its steering wheel at the nose and remaining two wheels behind the center of gravity.
    [Show full text]
  • Industry Structure, Innovation, and Competition in the U.S
    The U.S. Combat Aircraft Industry 1909-2000 Structure Competition Innovation Mark Lorell Prepared for the Office of the Secretary of Defense R NATIONAL DEFENSE RESEARCH INSTITUTE Approved for public release; distribution unlimited The research described in this report was sponsored by the Office of the Secretary of Defense (OSD). The research was conducted in RAND’s National Defense Research Institute, a federally funded research and development center supported by the OSD, the Joint Staff, the unified commands, and the defense agencies under Contract DASW01-01-C-0004. Library of Congress Cataloging-in-Publication Data Lorell, Mark A., 1947- The U.S. combat aircraft industry, 1909–2000 : structure, competition, innovation / Mark A. Lorell. p. cm. “MR-1696.” ISBN 0-8330-3366-2 (pbk.) 1. Aircraft industry—United States—History. 2. Aircraft industry—United States—Military aspects—History. 3. Fighter planes—United States—History. I.Title. HD9711.U6L67 2003 338.4'7623746'09730904—dc21 2003008114 RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND® is a registered trademark. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. Cover design by Peter Soriano © Copyright 2003 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. Published 2003 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 1200 South Hayes Street, Arlington, VA 22202-5050 201 North Craig Street, Suite 202, Pittsburgh, PA 15213-1516 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Email: [email protected] PREFACE Congress has expressed concerns about three areas of the U.S.
    [Show full text]