Lecture Transcript Loops and Assignment Expressions

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Transcript Loops and Assignment Expressions Lecture Transcript Loops and Assignment Expressions Hello and welcome back in this lecture we're going to look at the use of assignment expressions. This is a new kind of expressions. We look at their use in loops and also at other places in C++ programs. Here's a quick recap of some of the relevant topics we already studied. We have looked at Iteration idioms and programming, we've looked at the fact that they are sometimes necessary and they certainly provide a convenient way of programming repetitive actions. We've looked at three different constructs in C++ for implementing iteration - these are the while construct, the do...while construct and the for construct. And we've also seen how break statements can be used in loops to jump out from the middle of a loop, when certain conditions are satisfied. In this lecture, we're going to take a closer look at for loops. In particular, we are going to see - how assignment expressions and its variance are usually used in for loops, and we are also going to look at comma separated expressions, and their use in for loops. Now recall from the earlier lecture that a for loop in C++ looks something like this. There is a part of the program before the iteration and then there's the part of the program after the for loop. And in between is your for loop, where you use the keyword for and then there is iteration initialization, loop condition, and instructions to execute at the end of every iteration. We use semicolons to separate these three parts, semicolons do not denote end of the executable statements. They are just separating the three parts in this for statement. Since they are just used for separating the three parts, we do not have a semicolon at the end of this last part, which are the instructions that had to be executed at the every iteration. And, of course this is the main body of the for loop, where we can have a block of statements. Now, if you look at the C++ standard it specifies that a for loop must look something like this - instead of the initialization code it says that you must have an initialization expression, and instead of instructions to execute. At the end of every iteration it says - that you must have an update expression. So this looks a bit strange, we wanted to do some initialization over here for that we needed some statements, but the standard says that - we must have an expression here. And here also we wanted to execute some instructions at the end of every iteration, but the standard says we must have an expression here. So does this is appear nonsensical? We needed assignment statements both for initialization and update but the standard says that - we must have expressions there. Is this meaningful ? What if I wrote a+b*c for an initialization expression or an update expression. What exactly would be initialized by the value of a+b*c? What exactly would be update by the value of a+b*c? So at first sight it looks like there is some difficulty in implementing initialization and updation with expressions. Because it's not clear what is to be initialized and what is to be updated when 1 I write an expression like this. However in C++ it turns out that we can use the assignment not only as in a statement to actually assign the value of an expression to a variable, but you can also use an assignment as an operator to build an expression. And when we write such expressions with assignment operator, these expressions have side effects, which are the actual assignment as it happens in an assignment statement. So let's look at an example, suppose I have this assignment x assigned y plus z, Now, if I put a semicolon after this this becomes an assignment statement and the value of the expression y+z is evaluated, and this value is assigned to the variable x. However, if I don't use the semicolon and I want to use this as an expression then this equals(=) symbol is used as an operator in this expression. So this becomes an assignment expression using the assignment operator and this expression like any other expression has a type and value, but this expression also has a side effect. The side effect of this expression or the side effect of evaluating this expression is exactly the same effect as you would get, if you executed this statement as assignment statement. So the side effect here is that - the value of the expression y+z will get stored in the variable x. And, what is the type and value of this entire assignment expression? It is the type and value of whatever appears on the right hand side of assignment operator. So in this case, it is the same as the type and value of y+z. So now, if you go back and look at our for statement, when we write programs like this with the for loop where I say count assigned 1.0 as part of the initialization code, and count assigned count plus 1 as part of the instructions that are to be executed at the end of every iteration. I could view this as a statement, which is initializing the value of count 1 and I could also view this is a statement, which is in incrementing the value of count, but remember this semicolons are not be used as the demarcators at the end of an executable statement. They are just separating the three parts of the for loop and these can now we viewed as expressions with the assignment operator, and which have side effects, and the side effects are precisely the initialization and the increment. But in accordance with what the c++ standard requires us to do. We now have an expression here in particular this is an assignment expression. We have an- other expression here that is also an assignment expression, but in the process of evaluating this expression we are going to have the side effect, where the variable count will be initialized to 1 here, and here the value of variable count will be incremented. So now you see that when we look at a for statement with count assigned 1.0 and count assigned count + 1 here. These are not really assignment statements they are assignment expressions with side effects, which actually update the values of variables. Now well, if you are going to look at assignment as an operator then you must talk about the precedence of the assignment operator. If I write an expression like this, which has both the plus operator and the assignment operator. How is this expression going to be evaluated? So it turns out that, the precedence of the assignment operator is lower than that of all the arithmetic and logical operators that we have studied so far. So in this case, if I write this expression plus(+) will have precedence than assign(=). So, b +c will be evaluated first and then the value of this expression will appear to the right hand side of this assignment operator, and then this operator the assignment operator will be evaluated. And when this assignment operator is evaluated, we have side effect which is a is assigned the value of the expression to right hand side of equal sign(=), which is b+c. And the type of this 2 entire assignment expression is the type of the expression that appears to the right hand side assignment operator. So therefore it is same as the type of b+c. And similarly, the value of this assignment expression is the same as the value of b+c. Now just like precedence, if you want to treat assignment as an operator, you also have to worry about its associativity. Now unlike any of the operator that we've seen so far, the assignment operator is right to left associative. Which means, if I write an expression like this first of all plus(+) has higher precedence than assignment. So a plus-one is going to be evaluated first. Now among the three assignment operators because it is right to left associative. The right most one will be evaluated. So this is the assignment expression c assigned a+1 that will be evaluated first, then b assigned this assignment expression c assigned a+1 that will be evaluated next, and finally a assigned this entire assignment expression which is b assigned, c assigned, a plus-one will be evaluated finally. And if you work through rules for the type and value of an assignment expression that we just discussed in the earlier slide, you will see that the type and value of this assignment expression is the same as that of a+1. Therefore, the type and value of this assignment expression is also the same as that of (a+1). And therefore, the type and value this assignment expression will also be the same as that of (a + 1). Now just like we have this simple assignment operator, there are some special assignment operators that are used in C++. So for example, we have special increment operators and in fact there are two flavors of it, post increment - which is used like this you take a variable x and then you put plus plus, so this plus plus denotes increment. And because, it appears after the variable x, we call it post increment.
Recommended publications
  • Assignment 4 Computer Science 235 Due Start of Class, October 4, 2005
    Assignment 4 Computer Science 235 Due Start of Class, October 4, 2005 This assignment is intended as an introduction to OCAML programming. As always start early and stop by if you have any questions. Exercise 4.1. Twenty higher-order OCaml functions are listed below. For each function, write down the type that would be automatically reconstructed for it. For example, consider the following OCaml length function: let length xs = match xs with [] -> 0 | (_::xs') = 1 + (length xs') The type of this OCaml function is: 'a list -> int Note: You can check your answers by typing them into the OCaml interpreter. But please write down the answers first before you check them --- otherwise you will not learn anything! let id x = x let compose f g x = (f (g x)) let rec repeated n f = if (n = 0) then id else compose f (repeated (n - 1) f) let uncurry f (a,b) = (f a b) let curry f a b = f(a,b) let churchPair x y f = f x y let rec generate seed next isDone = if (isDone seed) then [] else seed :: (generate (next seed) next isDone) let rec map f xs = match xs with [] -> [] Assignment 4 Page 2 Computer Science 235 | (x::xs') -> (f x) :: (map f xs') let rec filter pred xs = match xs with [] -> [] | (x::xs') -> if (pred x) then x::(filter pred xs') else filter pred xs' let product fs xs = map (fun f -> map (fun x -> (f x)) xs) fs let rec zip pair = match pair with ([], _) -> [] | (_, []) -> [] | (x::xs', y::ys') -> (x,y)::(zip(xs',ys')) let rec unzip xys = match xys with [] -> ([], []) | ((x,y)::xys') -> let (xs,ys) = unzip xys' in (x::xs, y::ys) let rec
    [Show full text]
  • Teach Yourself Perl 5 in 21 Days
    Teach Yourself Perl 5 in 21 days David Till Table of Contents: Introduction ● Who Should Read This Book? ● Special Features of This Book ● Programming Examples ● End-of-Day Q& A and Workshop ● Conventions Used in This Book ● What You'll Learn in 21 Days Week 1 Week at a Glance ● Where You're Going Day 1 Getting Started ● What Is Perl? ● How Do I Find Perl? ❍ Where Do I Get Perl? ❍ Other Places to Get Perl ● A Sample Perl Program ● Running a Perl Program ❍ If Something Goes Wrong ● The First Line of Your Perl Program: How Comments Work ❍ Comments ● Line 2: Statements, Tokens, and <STDIN> ❍ Statements and Tokens ❍ Tokens and White Space ❍ What the Tokens Do: Reading from Standard Input ● Line 3: Writing to Standard Output ❍ Function Invocations and Arguments ● Error Messages ● Interpretive Languages Versus Compiled Languages ● Summary ● Q&A ● Workshop ❍ Quiz ❍ Exercises Day 2 Basic Operators and Control Flow ● Storing in Scalar Variables Assignment ❍ The Definition of a Scalar Variable ❍ Scalar Variable Syntax ❍ Assigning a Value to a Scalar Variable ● Performing Arithmetic ❍ Example of Miles-to-Kilometers Conversion ❍ The chop Library Function ● Expressions ❍ Assignments and Expressions ● Other Perl Operators ● Introduction to Conditional Statements ● The if Statement ❍ The Conditional Expression ❍ The Statement Block ❍ Testing for Equality Using == ❍ Other Comparison Operators ● Two-Way Branching Using if and else ● Multi-Way Branching Using elsif ● Writing Loops Using the while Statement ● Nesting Conditional Statements ● Looping Using
    [Show full text]
  • Programming Inin C++C++ 11.11
    ProgrammingProgramming inin C++C++ 11.11. ControlControl structurestructure IIII ! Iteration statements - while statement - for statement - do statement ! break and continue statements ! goto statement ! Comma operator ! Null statement ! Conditional expression operator ! Summary 1 Introduction to programming in C++ for engineers: 11. Control structure II IterationIteration statements:statements: whilewhile statementstatement The while statement takes the general form: while (control) statement The control expression which is of arithmetic type is evaluated before each execution of what is in a statement. This statement is executed if the expression is not zero and then the test is repeated. There is no do associated with the while!!! int n =5; double gamma = 1.0; while (n > 0) { gamma *= n-- } If the test never fails then the iteration never terminates. 2 Introduction to programming in C++ for engineers: 11. Control structure II IterationIteration statements:statements: forfor statementstatement The for statement has the general form: for (initialize; control; change) statement The initialize expression is evaluated first. If control is non-zero statement is executed. The change expression is then evaluated and if control is still non-zero statement is executed again. Control continues to cycle between control, statement and change until the control expression is zero. long unsigned int factorial = 1; for(inti=1;i<=n; ++i) { factorial *= i; } Initialize is evaluated only once! 3 Introduction to programming in C++ for engineers: 11. Control structure II IterationIteration statements:statements: forfor statementstatement It is also possible for any (or even all) of the expressions (but not the semicolons) to be missing: int factorial = 1,i=1; for (; i<= n; ) { factorial *= i++; { If the loop variable is defined in the initialize expression the scope of it is the same as if the definition occurred before the for loop.
    [Show full text]
  • Component-Based Semantics in K
    FunKons: Component-Based Semantics in K Peter D. Mosses and Ferdinand Vesely Swansea University, Swansea, SA2 8PP, United Kingdom [email protected], [email protected] Abstract. Modularity has been recognised as a problematic issue of programming language semantics, and various semantic frameworks have been designed with it in mind. Reusability is another desirable feature which, although not the same as modularity, can be enabled by it. The K Framework, based on Rewriting Logic, has good modularity support, but reuse of specications is not as well developed. The PLanCompS project is developing a framework providing an open- ended collection of reusable components for semantic specication. Each component species a single fundamental programming construct, or `funcon'. The semantics of concrete programming language constructs is given by translating them to combinations of funcons. In this paper, we show how this component-based approach can be seamlessly integrated with the K Framework. We give a component-based denition of CinK (a small subset of C++), using K to dene its translation to funcons as well as the (dynamic) semantics of the funcons themselves. 1 Introduction Even very dierent programming languages often share similar constructs. Con- sider OCaml's conditional `if E1 then E2 else E3' and the conditional oper- ator `E1 ? E2 : E3' in C. These constructs have dierent concrete syntax but similar semantics, with some variation in details. We would like to exploit this similarity when dening formal semantics for both languages by reusing parts of the OCaml specication in the C specication. With traditional approaches to semantics, reuse through copy-paste-and-edit is usually the only option that is available to us.
    [Show full text]
  • Name Description
    Perl version 5.10.0 documentation - perltrap NAME perltrap - Perl traps for the unwary DESCRIPTION The biggest trap of all is forgetting to use warnings or use the -wswitch; see perllexwarn and perlrun. The second biggest trap is notmaking your entire program runnable under use strict. The third biggesttrap is not reading the list of changes in this version of Perl; see perldelta. Awk Traps Accustomed awk users should take special note of the following: A Perl program executes only once, not once for each input line. You cando an implicit loop with -n or -p. The English module, loaded via use English; allows you to refer to special variables (like $/) with names (like$RS), as though they were in awk; see perlvar for details. Semicolons are required after all simple statements in Perl (exceptat the end of a block). Newline is not a statement delimiter. Curly brackets are required on ifs and whiles. Variables begin with "$", "@" or "%" in Perl. Arrays index from 0. Likewise string positions in substr() andindex(). You have to decide whether your array has numeric or string indices. Hash values do not spring into existence upon mere reference. You have to decide whether you want to use string or numericcomparisons. Reading an input line does not split it for you. You get to split itto an array yourself. And the split() operator has differentarguments than awk's. The current input line is normally in $_, not $0. It generally doesnot have the newline stripped. ($0 is the name of the programexecuted.) See perlvar. $<digit> does not refer to fields--it refers to substrings matchedby the last match pattern.
    [Show full text]
  • Name Description
    Perl version 5.12.4 documentation - perlop NAME perlop - Perl operators and precedence DESCRIPTION Operator Precedence and Associativity Operator precedence and associativity work in Perl more or less likethey do in mathematics. Operator precedence means some operators are evaluated beforeothers. For example, in 2 + 4 * 5, the multiplication has higherprecedence so 4 * 5 is evaluated first yielding 2 + 20 ==22 and not 6 * 5 == 30. Operator associativity defines what happens if a sequence of thesame operators is used one after another: whether the evaluator willevaluate the left operations first or the right. For example, in 8- 4 - 2, subtraction is left associative so Perl evaluates theexpression left to right. 8 - 4 is evaluated first making theexpression 4 - 2 == 2 and not 8 - 2 == 6. Perl operators have the following associativity and precedence,listed from highest precedence to lowest. Operators borrowed fromC keep the same precedence relationship with each other, even whereC's precedence is slightly screwy. (This makes learning Perl easierfor C folks.) With very few exceptions, these all operate on scalarvalues only, not array values. leftterms and list operators (leftward) left-> nonassoc++ -- right** right! ~ \ and unary + and - left=~ !~ left* / % x left+ - . left<< >> nonassocnamed unary operators nonassoc< > <= >= lt gt le ge nonassoc== != <=> eq ne cmp ~~ left& left| ^ left&& left|| // nonassoc.. ... right?: right= += -= *= etc. left, => nonassoclist operators (rightward) rightnot leftand leftor xor In the following sections, these operators are covered in precedence order. Many operators can be overloaded for objects. See overload. Terms and List Operators (Leftward) A TERM has the highest precedence in Perl. They include variables,quote and quote-like operators, any expression in parentheses,and any function whose arguments are parenthesized.
    [Show full text]
  • YAGL: Yet Another Graphing Language Language Reference Manual
    YAGL: Yet Another Graphing Language Language Reference Manual Edgar Aroutiounian, Jeff Barg, Robert Cohen July 23, 2014 Abstract YAGL is a programming language for generating graphs in SVG format from JSON for- matted data. 1 Introduction This manual describes the YAGL programming language as specified by the YAGL team. 2 Lexical Conventions A YAGL program is written in the 7-bit ASCII character set and is divided into a number of logical lines. A logical line terminates by the token NEWLINE, where a logical line is constructed from one or more physical lines. A physical line is a sequence of ASCII characters that are terminated by an end-of-line character. All blank lines are ignored entirely. 2.1 Tokens Besides the NEWLINE token, the following tokens also exist: NAME, INTEGER, STRING, and OPERATOR, where a LITERAL is either a String literal or an Integer literal. 1 2.2 Comments Comments are introduced by the '#' character and last until they encounter a NEWLINE token, comments do not nest. 2.3 Identifiers An identifier is a sequence of ASCII letters including underscores where upper and lower case count as different letters; ASCII digits may not be included in an identifier. 2.4 Keywords The following is an enumeration of all the keywords required by a YAGL implementation: 'if', `elif', 'for', 'in', 'break', 'func', 'else', 'return', 'continue', 'print', 'while' 2.5 String Literals YAGL string literals begin with a double-quote (") followed by a finite sequence of ASCII characters and close with a double-quote ("). YAGL strings do not recognize escape sequences.
    [Show full text]
  • Case Sensitivity Dot Syntax Literals Semicolons Parentheses
    Case sensitivity ActionScript 3.0 is a case-sensitive language. Identifiers that differ only in case are considered different identifiers. For example, the following code creates two different variables: Dot syntax The dot operator ( . ) provides a way to access the properties and methods of an object. Using dot syntax, you can refer to a class property or method by using an instance name, followed by the dot operator and name of the property or method. For example, consider the following class definition: Literals A literal is a value that appears directly in your code. The following examples are all literals: 17 "hello" -3 9.4 null undefined true false Semicolons You can use the semicolon character ( ; ) to terminate a statement. Alternatively, if you omit the semicolon character, the compiler will assume that each line of code represents a single statement. Because many programmers are accustomed to using the semicolon to denote the end of a statement, your code may be easier to read if you consistently use semicolons to terminate your statements. Parentheses You can use parentheses ( () ) in three ways in ActionScript 3.0. First, you can use parentheses to change the order of operations in an expression. Operations that are grouped inside parentheses are always executed first. For example, parentheses are used to alter the order of operations in the following code: trace(2 + 3 * 4); // 14 trace((2 + 3) * 4); // 20 Second, you can use parentheses with the comma operator ( , ) to evaluate a series of expressions and return the result of the final expression, as shown in the following example: var a:int = 2; var b:int = 3; trace((a++, b++, a+b)); // 7 Third, you can use parentheses to pass one or more parameters to functions or methods, as shown in the following example, which passes a String value to the trace() function: trace("hello"); // hello Comments ActionScript 3.0 code supports two types of comments: single-line comments and multiline comments.
    [Show full text]
  • Ecmascript: a General Purpose, Cross-Platform Programming Language
    Standard ECMA-262 June 1997 Standardizing Information and Communication Systems ECMAScript: A general purpose, cross-platform programming language Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: [email protected] . Standard ECMA-262 June 1997 Standardizing Information and Communication Systems ECMAScript : A general purpose, cross-platform programming language Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: [email protected] IW Ecma-262.doc 16-09-97 12,08 . Brief History This ECMA Standard is based on several originating technologies, the most well known being JavaScript™ (Netscape Communications) and JScript™ (Microsoft Corporation). The development of this Standard has started in November 1996. The ECMA Standard is submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure. This ECMA Standard has been adopted by the ECMA General Assembly of June 1997. - i - Table of contents 1 Scope 1 2 Conformance 1 3 References 1 4 Overview 1 4.1 Web Scripting 2 4.2 Language Overview 2 4.2.1 Objects 2 4.3 Definitions 3 4.3.1 Type 3 4.3.2 Primitive value 3 4.3.3 Object 3 4.3.4 Constructor 4 4.3.5 Prototype 4 4.3.6 Native object 4 4.3.7 Built-in object 4 4.3.8 Host object 4 4.3.9 Undefined 4 4.3.10 Undefined type 4 4.3.11 Null 4 4.3.12 Null type 4 4.3.13 Boolean value 4 4.3.14 Boolean type 4 4.3.15 Boolean object 4 4.3.16 String value 4 4.3.17 String type 5 4.3.18 String object 5 4.3.19 Number value 5 4.3.20 Number type 5 4.3.21 Number object 5 4.3.22 Infinity 5 4.3.23
    [Show full text]
  • Javascript Technical Interview Questions Prepare Yourself for That Dream Job
    Javascript Technical Interview Questions Prepare Yourself For That Dream Job Xuanyi Chew This book is for sale at http://leanpub.com/jsinterviewquestions This version was published on 2014-03-19 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do. ©2014 Xuanyi Chew Contents Sample of Underhanded JavaScript ............................. 1 Introduction .......................................... 2 On IIFE Behaviour ...................................... 3 The Explanation ....................................... 4 Exceptions .......................................... 5 During The Interview .................................... 6 On The Comma Operator ................................... 7 The Explanation ....................................... 7 Miscelleny .......................................... 9 Practice Questions ...................................... 10 During The Interview .................................... 11 On Object Coercion ...................................... 12 The Explanation ....................................... 13 Practice Questions ...................................... 15 During The Interview .................................... 16 Sample of Underhanded JavaScript Hi there! This is the sample of Underhanded JavaScript: How to Be A Complete Arsehole With Bad JavaScript. Included
    [Show full text]
  • Minimalistic BASIC Compiler (MBC) Document Version 1.0 Language Reference Manual (LRM) Joel Christner (Jec2160) Via CVN
    COMS‐W4115 Spring 2009 Programming Languages and Translators Professor Stephen Edwards MinimalistiC BASIC Compiler (MBC) Document Version 1.0 Language ReferenCe Manual (LRM) Joel Christner (jec2160) via CVN March 10th, 2009 Table of Contents Table of Contents..................................................................................................................... 2 1. Introduction.......................................................................................................................... 3 1.1 IntroduCtion to MBC..........................................................................................................................................3 1.2 Styles Used in this DoCument........................................................................................................................3 1.3 No Humor Found Here.....................................................................................................................................3 2. Lexical Conventions and Program Structure............................................................. 3 2.1 General Program Requirements ..................................................................................................................3 2.1.1 Numerical Line Identifiers ..........................................................................................................................3 2.1.2 Program Termination...................................................................................................................................4
    [Show full text]
  • Concept and Implementation of C+++, an Extension of C++ to Support User-Defined Operator Symbols and Control Structures
    Concept and Implementation of C+++, an Extension of C++ to Support User-Defined Operator Symbols and Control Structures Christian Heinlein Dept. of Computer Structures, University of Ulm, Germany [email protected] Abstract. The first part of this report presents the concepts of C+++, an extension of C++ allowing the programmer to define newoperator symbols with user-defined priori- ties by specifying a partial precedence relationship. Furthermore, so-called fixary opera- tor combinations consisting of a sequence of associated operator symbols to connect a fixednumber of operands as well as flexary operators connecting anynumber of operands are supported. Finally,operators with lazily evaluated operands are supported which are particularly useful to implement newkinds of control structures,especially as theyaccept whole blocks of statements as operands, too. In the second part of the report, the implementation of C+++ by means of a “lazy” precompiler for C++ is described in detail. 1Introduction Programming languages such as Ada [12] and C++ [10, 4] support the concept of operator overload- ing,i.e., the possibility to redefine the meaning of built-in operators for user-defined types. Since the built-in operators of manylanguages are already overloaded to a certain degree in the language itself (e. g., arithmetic operators which can be applied to integer and floating point numbers, or the plus op- erator which is often used for string concatenation as well), it appears rather natural and straightfor- ward to extend this possibility to user-defined types (so that, e. g., plus can be defined to add complex numbers, vectors, matrices, etc., too).
    [Show full text]