Anatomy of the Heart and Blood Vessels Is Pre- Seven Distinct Septa

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy of the Heart and Blood Vessels Is Pre- Seven Distinct Septa ANATOMY OF THE HEART 1 AND BLOOD VESSELS A fundamental knowledge of cardiac anat- cushion tissue, or primitive connective tissue, omy provides a concrete foundation for diag- begins to invade the cardiac jelly lying between nostic cardiovascular pathology and is requisite the endodermal and mesothelial layers (2). for understanding the clinical manifestations of Over the ensuing weeks, this heart tube will cardiac disease. In this introductory chapter, the form, through active and passive mechanisms, anatomy of the heart and blood vessels is pre- seven distinct septa. These divide it into a four- sented, with special emphasis on development, chamber structure with two pairs of valves, two gross structure, and histology to allow for a com- large arteries, and typically six distinct venous plete understanding of the tumors and tumor- connections. like conditions described in this Fascicle. It follows from this brief overview that the heart and pericardium are derived entirely from CARDIAC EMBRYOLOGY mesodermal structures. All primary tumors of the heart and pericardium are also of mesodermal Formation of the Heart Tube origin. Cardiac tumors can also primarily consist Approximately 2 weeks after fertilization, a of mesodermal elements, such as fat, that become crescentic zone of thickened mesoderm, the entrapped during the process of septation. precursor of the heart and pericardium, appears The exceptions consist of tumors of mis- adjacent to the margin of the embryonic disc placed endodermal rests, and neural tumors, (). A day or two later, this thickened zone of which are of ectodermal origin. Cardiac tumors mesoderm splits into somatic and splanchnic with endodermal elements, such as glandular layers, which surround the pericardial portion structures present in bronchogenic cysts, tumors of the coelomic cavity, or pericardial coelom. of the atrioventricular (AV) node, are presumed Endothelial tubes (cardiac primordial) form as to arise from embryologically misplaced tissues paired, lateral structures from the splanchnic (3). Theoretically, endodermal structures could mesodermal layer of the primitive pericardial be incorporated into cardiac tissue early in em- cavity where it lies close against the develop- bryogenesis when the foregut is adjacent to the ing foregut. By the third week, the endocardial laterally placed cardiogenic plates (4). Neural tubes have fused in the midline, forming the tumors of the heart are rare and are virtually primitive heart tube, consisting of three basic limited to paragangliomas and granular cell layers: the endocardial layer, intervening cardiac tumors of the epicardial surfaces and atria. “jelly,” and a mesothelial layer lining the peri- The histogenesis of some cardiac tumors, cardial coelom. The heart tube has arterial and such as cardiac myxoma, remains somewhat venous poles at the cranial and caudal aspects, controversial. The cardiac jelly, which supports respectively, and begins to beat. the epimyocardial layer and endothelial layer, is present from before 2 weeks of gestation (four- Looping of the Heart Tube and Septation somite embryo), and becomes infiltrated from Rapid bulboventricular growth of the tube, the endothelial surface by endocardial cushion which is tethered to the dorsal aspect of the cells (2). These cells are the putative cells of embryo and contained within the pericardial origin of cardiac myxoma, and are believed cavity, causes an anterior and rightward displace- to persist in some adults near the fossa ovalis ment of the primitive ventricular portion and a (5). The rare occurrence of glandular structures posterior displacement of its primitive atrial and within cardiac myxoma is an incidental curios- venous portions. During this time, endocardial ity for the surgical pathologist, who should not Tumors of the Heart and Great Vessels Figure 1-1 CARDIAC SILHOUETTE The size of the heart, in relation to the thorax, is demonstrated here on chest radiograph. The heart occupies less than 60 percent of the thorax in this view. Figure 1-2 PARIETAL PERICARDIUM mistake them for adenocarcinoma. It is difficult, With the anterior aspect of the parietal pericardium however, to satisfactorily explain their presence removed, the intrapericardial portions of the superior vena cava, aorta, and pulmonary artery are apparent. from an embryologic view. In some cases, glan- dular cells appear to evolve from myxoma cells, casting doubt on the theory that they arise from the atria forming the base and the ventricles entrapped endodermal rests (6). It is also possible forming the apex, which is typically directed that cardiac myxoma is a true neoplasm of plu- leftward, anterior, and inferior. ripotent mesodermal cells (endocardial cushion External Cardiac Anatomy cells) and that the neoplastic alteration is capable of inciting these cells, which are of mesodermal The heart is covered and surrounded by origin, to form mucin-producing glands. the fluid-containing pericardial sac, which consists of both visceral and parietal portions. ANATOMY OF THE HEART The visceral pericardium, or epicardium, covers AND GREAT VESSELS the heart and intrapericardial portions of the great vessels, while the parietal pericardium Cardiac Position surrounds the heart, attaching along the great Consistent with their embryonic origins as vessels at the reflection of the visceral layer midline structures, the heart and great vessels (fig.-2). The space between these two layers are situated in the mid-thorax, within the me- contains serous pericardial fluid (25 mL or less diastinum. The heart, aortic arch, and descend- in adults) providing for friction-free movement ing thoracic aorta are located in the middle, within the chest. superior, and posterior regions, respectively. The AV groove is found at the plane of the Radiologically, the heart occupies less than 60 base of the heart and contains the circumflex percent of the thorax when viewed on a postero- and right coronary arteries, which travel in the anterior chest radiograph (fig. -). The heart is a left and right AV grooves, respectively. The an- four-chambered, roughly conical structure, with terior and inferior interventricular grooves are 2 Anatomy of the Heart and Blood Vessels found at the plane of the ventricular septum and have an endocrine role by releasing natriuretic contain the anterior and posterior descending hormones in response to atrial stretch, helping coronary arteries, respectively. to maintain fluid homeostasis (7). The anterior and inferior free walls of the The atria consist of both septal and free wall right ventricle intersect to form the acute mar- portions. The free wall of the right atrium is gin. The rounded lateral wall of the left ventricle smooth posteriorly and trabeculated anteriorly. forms a more ill-defined obtuse margin. Vessels The smooth portion, derived from the embry- supplying these regions are named accordingly; onic sinus venosus, receives the vena cavae and obtuse marginal branches have the circumflex is bordered anteriorly by the crista terminalis. coronary artery and acute marginal branches The trabeculated portion contains prominent of the right coronary artery. The intersection muscular bands, the pectinate muscles, that of the major lines of division (atrioventricular, arise perpendicular to the crista terminalis and interventricular, and interatrial) is along the dia- extend anteriorly to involve the pyramidal right phragmatic surface of the heart and is referred atrial appendage (fig. -4, left). The free wall of to as the crux of the heart. the left atrium includes a dome-shaped body, Tumor location within the heart is relevant which receives the pulmonary veins, and a to not only its potential hemodynamic conse- worm-like atrial appendage (fig. -4, right). Like quences, but also often provides insights into the right atrium, the left atrial appendage con- the type of tumor (since certain cardiac tumors tains pectinate muscles, although they are not tend to have predilections for various locations prominent and are isolated to the periphery of within the heart). Thus, an understanding of not the appendage where they are radially arranged. only the normal size and shape of the cardiac The left atrium contains no crista terminalis. chambers and great vessels, but also their relative The atrial septum, when viewed from the positions three dimensionally, is required (fig. - right aspect, contains both an interatrial com- 3). The right atrium forms the right lateral border ponent (between the right and left atria) and an of the heart while the right ventricle is situated atrioventricular component (between the right so that it forms the anterior surface of the heart. atrium and the left ventricle). This is because the The left ventricle is a largely posterior structure, tricuspid valve annulus is situated more apically also forming the left lateral heart border. The left than the mitral valve annulus at the septum atrium lies in a midline-posterior position and (fig. -5). The interatrial portion contains the is really not a left-sided structure at all. fossa ovalis, with its two major components: The pulmonary artery arises anterior, supe- a central sheet-like region (the valve of the rior, and to the left of the aorta. The superior fossa ovalis) surrounded by a horseshoe-shaped and inferior vena cavae are continuous with the muscular ridge referred to as the limbus of the right lateral heart border formed by the right fossa ovalis (fig. -6) (8). In some individuals, atrium. The coronary sinus is the major
Recommended publications
  • CT Cardiac Anatomy
    CT cardiac anatomy M.Todorova Tokuda Hospital Sofia 1 MDCT vs US 2 Position of the heart • Position in the thoracic cavity • Cardiac apex • Cardiac base 3 Systematic approach Cardiac CT • Right atrium • Aorta • Right ventricle • Coronaries • PA • Cardiac Veins • PV • Valves • Left atrium • Pericardium • Left ventricle 4 Right atrium 5 Right atrium • RA appendage – Pectinate muscles >2mm – 20 sc.cm normal size on 4 ch.view • Crista terminalis • Sulcus terminalis • Coronary sinus • Thebesian valve • Eustachian valve • Internal septum • Fossa ovalis 6 Tricuspid valve • Tricuspid valve- separates RA from RV • Trileflet valve- anterior,posterior, septal • Structure- leflet,annulus,commi ssures 7 Right ventricle 8 RV-anatomy inflow tract 4 chamber view outflow tract 9 Volumetric parameters of RV • Normal quantitative RV Values • EF = 61+/-6 • End diastolic volume = 173+/-39 • End systolic volume = 69+/-22 • Strike volume = 104+/=21 • Mass = 35-45 10 RV-anatomic structure • Tricuspid valve • RV wall • Pulmonary valve • Intrventricular septum • Anterior longitudinal sulcus • Posterior longitudinal sulcus • Moderator band 11 • Interventricular septum – Separates ventricles – Thin wall – Convexity toward the right ventricle – Muscular ventricular septum – Membrannous ventricular septum • Anterior and posterior longitudinal sulcus – Ventricles separeted externally by grooves – Anterior longitudinal sulcus – Posterior longitudinal sulcus – Moderator band 12 Pulmonary valve • Three leaflet • Semilunar morphology 13 PA anatomy 14 Left atrium and pulmonary veins 15 • Pulmonry veins – Two inferior and two superior into either side of LA 16 LA - anatomy • LA • LA appendage – Arises from the superiorlateral aspect of the LA – Projects anteriorly over the proximal LCX artery – Pectinate muscles >1mm 17 Mitral valve • represent inflow tract of LV • bicuspid • fibrous ring mitral valve-annulus • triangular leaflets 18 Left ventricle 19 LV - anatomy • Inflow tract • Outflow tract • Chordae tendinae • Papillary muscles 20 LV wall Normal Anterior MI LV papillary muscles Ferencik et al.
    [Show full text]
  • Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School
    Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School This guide is for middle and high school students participating in AIMS Anatomy of the Human Heart and Pig Heart Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human heart by observing, studying, and examining human specimens. The primary focus is on the anatomy and flow of blood through the heart. Those students participating in Pig Heart Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. National Science Education (NSES) Content Standards for grades 9-12 • Content Standard:K-12 Unifying Concepts and Processes :Systems order and organization; Evidence, models and explanation; Form and function • Content Standard F, Science in Personal and Social Perspectives: Personal and community health • Content Standard C, Life Science: Matter, energy and organization of living systems • Content Standard A Science as Inquiry National Science Education (NSES) Content Standards for grades 5-8 • Content Standard A Science as Inquiry • Content Standard C, Life Science: Structure and function in living systems; Diversity and adaptations of organisms • Content Standard F, Science in Personal and Social Perspectives: Personal Health Show Me Standards (Science and Health/Physical Education) • Science 3. Characteristics and interactions of living organisms • Health/Physical Education 1. Structures of, functions of and relationships among human body systems Objectives: The student will be able to: 1.
    [Show full text]
  • Readingsample
    Integrating Cardiology for Nuclear Medicine Physicians A Guide to Nuclear Medicine Physicians Bearbeitet von Assad Movahed, Gopinath Gnanasegaran, John Buscombe, Margaret Hall 1. Auflage 2008. Buch. xiv, 544 S. Hardcover ISBN 978 3 540 78673 3 Format (B x L): 21 x 27,9 cm Weitere Fachgebiete > Medizin > Sonstige Medizinische Fachgebiete > Nuklearmedizin, Radiotherapie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter The Heart: Anatomy, Physiology and 1 Exercise Physiology Syed Shah, Gopinath Gnanasegaran, Jeanette Sundberg-Cohon, and John R Buscombe Contents 1.1 Introduction 1.1 Introduction . 3 1.2 Anatomy of the Heart . 3 The impact of anatomy on medicine was first recognised 1.2.1 Chamber and Valves . 4 by Andreas Vesalius during the 16th century [1] and 1.2.2 Cardiac Cell and Cardiac Muscle ......... 4 from birth to death, the heart is the most talked about 1.2.3 Coronary Arteries and Cardiac Veins . 6 organ of the human body. It is the centre of attraction 1.2.4 Venous Circulation ..................... 6 for people from many lifestyles, such as philosophers, 1.2.5 Nerve Supply of the Heart ............... 9 artists, poets and physicians/surgeons. The heart is one 1.2.6 Conduction System of the Heart . 10 of the most efficient organs in the human body and 1.3 Physiology of the Heart .
    [Show full text]
  • Blood Vessels
    BLOOD VESSELS Blood vessels are how blood travels through the body. Whole blood is a fluid made up of red blood cells (erythrocytes), white blood cells (leukocytes), platelets (thrombocytes), and plasma. It supplies the body with oxygen. SUPERIOR AORTA (AORTIC ARCH) VEINS & VENA CAVA ARTERIES There are two basic types of blood vessels: veins and arteries. Veins carry blood back to the heart and arteries carry blood from the heart out to the rest of the body. Factoid! The smallest blood vessel is five micrometers wide. To put into perspective how small that is, a strand of hair is 17 micrometers wide! 2 BASIC (ARTERY) BLOOD VESSEL TUNICA EXTERNA TUNICA MEDIA (ELASTIC MEMBRANE) STRUCTURE TUNICA MEDIA (SMOOTH MUSCLE) Blood vessels have walls composed of TUNICA INTIMA three layers. (SUBENDOTHELIAL LAYER) The tunica externa is the outermost layer, primarily composed of stretchy collagen fibers. It also contains nerves. The tunica media is the middle layer. It contains smooth muscle and elastic fiber. TUNICA INTIMA (ELASTIC The tunica intima is the innermost layer. MEMBRANE) It contains endothelial cells, which TUNICA INTIMA manage substances passing in and out (ENDOTHELIUM) of the bloodstream. 3 VEINS Blood carries CO2 and waste into venules (super tiny veins). The venules empty into larger veins and these eventually empty into the heart. The walls of veins are not as thick as those of arteries. Some veins have flaps of tissue called valves in order to prevent backflow. Factoid! Valves are found mainly in veins of the limbs where gravity and blood pressure VALVE combine to make venous return more 4 difficult.
    [Show full text]
  • Cardiology Self Learning Package
    Cardiology Self Learning Package Module 1: Anatomy and Physiology of the Module 1: Anatomy and Physiology of the Heart Heart. Page 1 Developed by Tony Curran (Clinical Nurse Educator) and Gill Sheppard (Clinical Nurse Specialist) Cardiology (October 2011) CONTENT Introduction…………………………………………………………………………………Page 3 How to use the ECG Self Learning package………………………………………….Page 4 Overview of the Heart…………………………………………………...…………..…….Page 5 Location, Size and Shape of the Heart…………………………………………………Page 5 The Chambers of the Heart…………….………………………………………..……….Page 7 The Circulation System……………………………………….………………..…………Page 8 The Heart Valve Anatomy………………………….…………………………..…………Page 9 Coronary Arteries…………………………………………….……………………..……Page 10 Coronary Veins…………………………………………………………………..……….Page 11 Cardiac Muscle Tissue……………………………………………………………..……Page 12 The Conduction System………………………………………………………………...Page 13 Cardiac Cycle……………………………………………………………………………..Page 15 References…………………………………………………………………………………Page 18 Module Questions………………………………………………………………………..Page 19 Module Evaluation Form………………………………………………………………..Page 22 [Module 1: Anatomy and Physiology of the Heart Page 2 Developed by Tony Curran (Clinical Nurse Educator) and Gill Sheppard (Clinical Nurse Specialist) Cardiology (October 2011) INTRODUCTION Welcome to Module 1: Anatomy and Physiology of the Heart. This self leaning package is designed to as tool to assist nurse in understanding the hearts structure and how the heart works. The goal of this module is to review: Location , size and shape of the heart The chambers of the heart The circulation system of the heart The heart’s valve anatomy Coronary arteries and veins Cardiac muscle tissue The conduction system The cardiac cycle This module will form the foundation of your cardiac knowledge and enable you to understand workings of the heart that will assist you in completing other modules. Learning outcomes form this module are: To state the position of the heart, the size and shape.
    [Show full text]
  • THE HEART Study Objectives
    THE HEART Study Objectives: You are responsible to understand the basic structure of the four chambered heart, the position and structure of the valves, and the path of blood flow through the heart. Structure--The Outer Layer pericardium: a specialized name for the celomic sac that surrounds the heart. fibrous pericardium: the most outer, fibrous layer of the pericardium. serous pericardium: there are two surfaces (layers) to this tissue a) parietal layer: the outer layer of the serosa surrounding the heart. Lines the fibrous pericardium, and the combination of the two layers is also called the parietal pericardium. b) visceral layer: the inner layer of the serosa surrounding and adhering to the heart. Also called the visceral pericardium or epicardium. pericardial cavity: the potential space between the parietal and visceral layers of the serous pericardium. The cavity is filled with serous fluid Structure--The Heart: Blood is delivered to the right atrium from the coronary sinus, inferior vena cava and superior vena cava Blood travels to the right ventricle from the right atrium via the right atrioventricular valve Blood travels from the left atrium to the left ventricle via the left atrioventricular valve Blood leaves the heart via the pulmonary valve to the pulmonary trunk, is delivered to the lungs for oxygenation and returns via the pulmonary veins to the left atrium a) crista terminalis: separates the anterior rough-walled and posterior smooth-walled portions of the right atrium. b) right auricle: small, conical, muscular, pouch-like appendage. c) musculi pectinate (pectinate muscles): internal muscular ridges that fan out anteriorly from the crista terminalis.
    [Show full text]
  • Coronary Artery Disease
    Coronary Artery Disease Your heart is a muscle — a very important muscle that your entire body depends on. As with all muscles, the heart is dependent on blood supply to provide necessary nutrients, fuel and oxygen. The heart gets its blood supply from the coronary arteries. The coronary arteries surround the heart. When the coronary arteries become blocked, narrowed or completely obstructed, the heart cannot get the nutrients, fuel and oxygen it needs. This can cause the heart to become weak or stop altogether or cause a heart attack. This blockage, narrowing or obstruction is known as coronary artery disease (CAD). Who Gets Coronary Artery Disease? Worldwide, coronary artery disease is responsible for over one-third of deaths in adults over age 35! Coronary artery disease is also the number one killer in the United States. For persons aged 40 years, the lifetime risk of developing coronary artery disease is 49 percent in men and 32 percent in women. For those reaching age 70 years, the lifetime risk is 35 percent in men and 24 percent in women. For total coronary events, the incidence rises steeply with age, with women lagging behind men by 10 years. A variety of other factors can increase risk of developing coronary aretery disease including: • Excess fats and cholesterol in the blood • High blood pressure • Excess sugar in the blood (high blood glucose, often due to diabetes) • Early onset of coronary disease in the family history • Sedentary lifestyle (sitting a lot) • Poor diet (higher in processed foods, animal-based proteins and fats) What are the Symptoms? Coronary artery disease (CAD) makes it more difficult for oxygen-rich blood to move through arteries supplying the heart.
    [Show full text]
  • Chapter 20: Cardiovascular System: the Heart
    Activity Chapter 19 1) Which of the following terms identifies the anatomical region found between the lungs that extends from the sternum to the vertebral column and from the first rib to the diaphragm? a) Epicardium d) Mediastinum b) Abdominal cavity e) Thoracic cavity c) Pericardium 2) The membrane that surrounds and protects the heart is called the a) pericardium. d) mediastinum. b) pleura. e) endocardium. c) myocardium. 3) The apex of the heart is normally pointed a) at the midline. d) is different for males and females b) to the left of the midline. e) posteriorly. c) to the right of the midline. 4) Which of the following is used to reduce friction between the layers of membranes surrounding the heart? a) Synovial fluid d) Pericardial fluid b) Endocardium e) Capillary endothelium c) Pleural fluid 5) Identify the pouch-like structure that increases the total filling capacity of the atrium. a) Ventricle d) Interatrial septum b) Coronary sulcus e) Auricle. c) Fossa ovalis 6) Identify the groove found on the surface of the heart and marks the boundary between the right and left ventricles. a) Coronary sulcus d) Coronary sinus b) Anterior interventricular sulcus e) Anterior intraventricular sulcus c) Posterior interventricular sulcus 7) Identify the muscular ridges that are found on the anterior wall of the right atrium and extend into the auricles. a) Pectinate muscles d) Papillary muscles b) Trabeculae carneae e) Chordae tendinae c) Coronary sulci 8) Through which structure does blood pass from the right atrium to the right ventricle? a) Bicuspid valve d) Mitral valve b) Interventricular septum e) Ascending aorta c) Tricuspid valve 9) Contraction of the ventricles of the heart leads to blood moving directly a) into arteries.
    [Show full text]
  • 13-Coronary Anatomy
    Atualização Anatomia coronária com angiografia por tomografia computadorizada multicorte ANATOMIA CORONÁRIA COM ANGIOGRAFIA POR TOMOGRAFIA COMPUTADORIZADA MULTICORTE* Joalbo Matos Andrade1 Resumo Com o rápido crescimento do uso da tomografia computadorizada multicorte no estudo das doenças coro- nárias, é de fundamental importância o conhecimento da anatomia arterial e venosa coronária. Unitermos: Artéria coronária; Anatomia; Angiografia; Tomografia computadorizada multidetectores. Abstract Coronary anatomy with multidetector computed tomography angiography. Multidetector computed tomography has been progressively used for evaluation of coronary artery disease, so the knowledge about the anatomy of coronary arteries and veins is of fundamental importance. Keywords: Coronary artery; Anatomy; Angiography; Multidetector computed tomography. INTRODUÇÃO da anatomia coronária arterial e venosa relho de 16 fileiras de detectores Mx 8000 (Figuras 1 e 2). IDT (Philips; Holanda). As imagens angio- As técnicas de detecção e quantificação gráficas foram adquiridas em apnéia e sin- de cálcio coronário e a angiografia coroná- MATERIAIS E MÉTODOS cronizadas ao eletrocardiograma, com re- ria por tomografia computadorizada vêm construção retrospectiva a cada 10% den- sendo utilizadas de modo crescente(1–4). A Tomografia computadorizada multicorte tro do intervalo R-R. Os parâmetros técni- avaliação adequada requer conhecimento (TCMC) coronariana foi obtida com apa- cos são mostrados na Tabela 1. Figura 1. Artérias e veias coronárias. Sistema ar- AB terial.
    [Show full text]
  • Ruptured Valsalva Sinus Aneurysm to Pericardium Simulated Aortic Root Dissection
    Int Cardiovasc Res J.2014;8(2):74-77.icrj Ruptured Valsalva Sinus Aneurysm to Pericardium Simulated Aortic Root Dissection Tahereh Davarpasand 1, Ali Hosseinsabet 1, *, Kumars Abassi 1, Sorya Arzhan 1 1 Tehran Heart Center, Tehran University of Medical Sciences, Tehran, IR Iran ARTICLE INFO ABSTRACT Article Type: Ruptured valsalva sinus aneurysm to pericardium is a rare condition. Here, we described Case Report a case presented with tamponade. Initially, hemopericardium was partially drained and then, imaging evaluations were done. Transesophageal echocardiography showed Article History: limited dissection of aortic sinus and CT angiography of the ascending aorta showed Received: 27 Dec 2013 deformed dilated right coronary sinus. Besides, surgery showed that windsock tract of Accepted: 28 Jan 2014 the right coronary sinus had ruptured into the pericardium with avulsed right coronary aortic cusp. This case indicated a rare cause of cardiac tamponade and insufficiency of Keywords: imaging modalities for making an accurate diagnosis. Sinus of Valsalva Dissection Cardiac Tamponade Echocardiography ►Implication for health policy/ practice/ research/ medical education: Hemopericardium can be one of the rare presentations of ruptured sinus valsalva. Thus, it should be considered in the case of pericardial effusion or cardiac tamponade. Multimodality imaging can also help the correct diagnosis, but not in all cases. High clinical suspicion can direct clinicians to correct diagnosis and the best management. 1. Introduction treatment of choice. Sinus of Valsalva Aneurysm (SVA) is defined as a Here, we report a rare type of right SVA ruptured to significant dilatation of the aortic wall located between the pericardium, resembling to aortic sinus dissection, which aortic valve and the sinotubular junction.
    [Show full text]
  • Evaluation of Anatomy, Variation and Anomalies of the Coronary Arteries with Coronary Computed Tomography Angiography
    154 Review Derleme Evaluation of anatomy, variation and anomalies of the coronary arteries with coronary computed tomography angiography Koroner arterlerin anatomi, varyasyon ve anomalilerinin koroner bilgisayarlı tomografi anjiyografi ile değerlendirilmesi Cengiz Erol, Mustafa Koplay, Yahya Paksoy Department of Radiology, Selçuklu Faculty of Medicine, Selçuk University, Konya-Turkey ABSTRACT Recent technical advances in computed tomography (CT) have improved image quality, diagnostic performance and accuracy of coronary CT angiography (CCTA). Latest dose-reduction strategies reduce radiation dose to an acceptable level even lower than that from conventional coronary angiography. CCTA is a noninvasive imaging modality which can effectively show complex coronary artery anatomy, variations and congenital anomalies of the coronary arteries. Congenital coronary artery anomalies are rare entities, but sometimes have a potential of producing fatal consequences. CCTA is now the primary imaging modality for the evaluation and diagnosis of coronary artery anomalies. Reporters should, there- fore, have knowledge of the normal coronary artery anatomy and variations, and understand the different types of coronary artery anomalies and their respective prognostic implications in order to provide correct diagnosis and to prevent undesirable mistakes during interventional and surgi- cal procedures. (Anadolu Kardiyol Derg 2013; 13: 154-64) Key words: Coronary artery anatomy, variation, anomalies, coronary computed tomography angiography ÖZET Bilgisayarlı
    [Show full text]
  • 1. Right Coronary 2. Left Anterior Descending 3. Left
    1. RIGHT CORONARY 2. LEFT ANTERIOR DESCENDING 3. LEFT CIRCUMFLEX 4. SUPERIOR VENA CAVA 5. INFERIOR VENA CAVA 6. AORTA 7. PULMONARY ARTERY 8. PULMONARY VEIN 9. RIGHT ATRIUM 10. RIGHT VENTRICLE 11. LEFT ATRIUM 12. LEFT VENTRICLE 13. PAPILLARY MUSCLES 14. CHORDAE TENDINEAE 15. TRICUSPID VALVE 16. MITRAL VALVE 17. PULMONARY VALVE Coronary Arteries Because the heart is composed primarily of cardiac muscle tissue that continuously contracts and relaxes, it must have a constant supply of oxygen and nutrients. The coronary arteries are the network of blood vessels that carry oxygen- and nutrient-rich blood to the cardiac muscle tissue. The blood leaving the left ventricle exits through the aorta, the body’s main artery. Two coronary arteries, referred to as the "left" and "right" coronary arteries, emerge from the beginning of the aorta, near the top of the heart. The initial segment of the left coronary artery is called the left main coronary. This blood vessel is approximately the width of a soda straw and is less than an inch long. It branches into two slightly smaller arteries: the left anterior descending coronary artery and the left circumflex coronary artery. The left anterior descending coronary artery is embedded in the surface of the front side of the heart. The left circumflex coronary artery circles around the left side of the heart and is embedded in the surface of the back of the heart. Just like branches on a tree, the coronary arteries branch into progressively smaller vessels. The larger vessels travel along the surface of the heart; however, the smaller branches penetrate the heart muscle.
    [Show full text]