Wood Anatomy of Goodeniaceae and the Problem of Insular Woodiness

Total Page:16

File Type:pdf, Size:1020Kb

Wood Anatomy of Goodeniaceae and the Problem of Insular Woodiness WOOD ANATOMY OF GOODENIACEAE AND THE PROBLEM OF INSULAR WOODINESS SHERWIN CARLQuIsT ANN. MISSOURI B0T. GARD. 6: 358—390. 1969. WOOD ANATOMY OF GOODENIACEAE AND THE PROBLEM OF INSULAR WOODINESS’ SHERWIN CARLQuIsT’ ABSTRACT Goodeniaceae, a basically herbaceous family with a clear center of origin and diversffica tion in Australia, has become woody to a limited extent in several genera and genuinely arborescent in some species of Scaevola. The most woody of these are montane species of Pacific islands. The probable evolutionary patterns of these and correlations between wood anatomy and ecological conditions are reviewed. Quantitative and qualitative data are pre sented in tabular form for 78 collections of 43 taxa of the family. Xermorphic Goodeniaceae tend to have short, narrow vessel elements with helical sculpturing, whereas the reverse is true in mesic species. Absence of axial parenchyma and abundance of crystals also charac terizes xeric species. The predominance of erect ray cells or raylessness, as well as occurrence in a few species of scalariform or elliptical pits on lateral walls of vessels are probably in dicators of juvenilism (paedomorphosis). Goodeniaceae do not have libriform fibers, but rather tracheids or fiber-tracheids, with a tendency toward the latter in arborescent species. Multiseriate rays are tall. Correlations between wood anatomy and habit are summarized under the headings: Australian short-lived perennials and short-lived shrubs; montane Pacific species of Scaevola; and maritime species of Scaevola. INTRODUCTION Wood anatomy of Goodeniaceae has been little studied. This no doubt derives from the fact that no species in the family provides any economically used wood. Although a few species of Scaevola become small trees, most of the family can be described as herbs. However, a predominantly herbaceous family that becomes woody during its evolution provides interesting patterns of wood anatomy and ought to be an especially valuable subject for that reason. Goodeniaceae is an outstanding example of this mode of evolution. The center of origin and diversification of the family is obviously Australian. If we take into account Brunonia and the recently named Neogoodenia (Gardner & George, 1963) and Coopernookia (Carolin, 1967), ten of the 16 genera are endemic to Australia. In four genera, only one species extends beyond Australia, and that species occurs in Australia also: Selliera radicans (southern and south eastern Australia, Tasmania, New Zealand, Chile); Velleia spathulata (eastern Australia, southeastern New Guinea); Calogyne pilosa (northern Australia, Mo luccas, southern New Guinea, southern China); and Leschenaultia fihiformis (northern Australia, Moluccas, New Guinea). The remainder of these genera are exclusively Australian species. Goodenia koningsbergii occurs only in Indo nesia and southeastern Asia, but this is a single species of a large genus. That none of these genera (except Goodenia) has preponderantly primitive features for 1 This study has been supported by grants from the National Science Foundation, NSFG—23396, GB—4977X, and GB—14o92. Preliminary comments on this topic were pre sented at the 10th Pacific Science Congress. 2 Claremont Graduate School, Rancho Santa Ana Botanic Garden, Claremont Califor nia 91711. ANN. MISSOURI B0T. GARD. 56: 358—390. 1969. 19691 CARLQUIST—GOODENIACEAE 359 the family suggests strongly that the origin and diversificaion of Goodeniaceae has taken place within Australia. The only other genus with non-Australian species is Scaevola. This genus, too, has been regarded as specialized within the family (Krause, 1912; Carolin, 1959, 1966). It is the only genus of the family which becomes markedly shrubby or arborescent. The most arborescent species are S. gau dichaudiana and S. glabra of the Hawaiian Islands; these can form trees five or six meters tall. On the basis of circumstantial evidence alone, the family has an herbaceous origin and has become woodier on islands. Floral morphology and geographical distribution seem to support this view. Of the genera other than Scaevoltz, few show any appreciable woodiness. This seems to be related to adaptation to the dry temperate Australian environment. Many Australian Goodeniaceae are annuals or short-lived perennials. The latter are often branched from the base, so that little wood accumulates, and a wood sample, if one can be collected at all, has to be taken from the short rootstock. Wood in this structure is probably not really comparable to wood of a true shrub, and the grain is often so contorted that sections are difficult to prepare and of limited value. Growth forms such as these are related to Mediterranean climates. In the present study, Dampiera brownii and D. glabrescens represent caudex bearing perennials, branched from near the base. Short-lived shrubs, usually less than a meter high, are formed by Goodenia scapigera, G. ovata, Coopernookia polygakicea, C. strophiolata, and Verreauxia reinwardtii. Of these, only Goodenia ovata grows in a mesic situation, the eucalypt forests in which tree ferns may also be found. The other shrubby species listed grow in relatively dry sandy areas of Western Australia. Within the genus Scaevola some of the Australian species correspond to the above growth forms, but some are more genuinely woody. Scaevola sericophylla and S. fasciculata are short-lived shrubs of Western Australian scrub heath, whereas S. crassifolia, S. nitida, and S. porocarya are larger shrubs (to one meter or more), probably of relatively short duration (10 years or less). These three species occupy sites near the coast: S. crassifolia is typically a dune plant. Scaevola spinescens is a shrub, usually less than a meter in height, that grows near salt lakes in Western Autralia and other states of Australia. Scaevola tornentosa, al though a close relative of S. spinescens, is a prostrate shrub of coastal limestones in Western Australia. Scaevola holosericea and S. paludosa are Australian species, little more than perennial herbs, in which only a few older stems have sufficient wood for study. None of the Australian scaevolas could be called clearly mesic in habitat except S. oppositifolia, a scandent species of disturbed places in wet forests of Queens land. In localities north of Australia, including islands as far north as the Philip pines, S. oppositifolia has been given a multiplicity of segregate specific names. These have been justifiably designated as synonyms by Leenhouts (l9S7a). With respect to taxonomy, Krause (1912) has placed all of the Australian species studied here in section Xerocarpaea except S. spinescens, S. tomentosa, S. oppositifolia, and the wide-ranging S. taccada. Scaevola spinescens and S. tomentosa [VoL. 56 360 ANNALS OF THE MISSOURI BOTANICAL GARDEN FIGURES 1—4.—Wood sections of Coopernookia. — 1—2. Coopernookia polygalacea (Carl quist 3475).—1. Transection. Note narrowness of vessels.—2. Tangential section. Rays are numerous, narrow. — 3—4. Cciopernookza straphiolata (Cariquist 3393).—3. Transection. Note growth rings.—4. Tangential section. Rays are few, wide; light portions are the wider vessels from early wood. — Scale to the left of Fig. 1 is a stage micrometer photographed at the same scale as Fig. 1—41. Length shown is 1.8 mm; divisions 1Os each. 1969) CARLQUIST—GOODENIACEAE 361 are members of sect. Crossotoma; S. oppositifolia belongs to sect. Enantiophyllum, and S. taccada belongs to sect. Scaevola. Species of section Scaevola (formerly sect. Sarcocarpaea), sometimes termed the “fleshy-fruited scaevolas,” bear purple or white fruits with a fleshy exocarp attractive to birds and a woody endocarp in which seeds are embedded. Because of the excellence of this dispersal mechanism for long-distance dispersal (Carl quist, 1967), the fleshy-fruited scaevolas have spread around the world. This is undoubtedly a relatively recent, although pre-human, pattern. The widespread pan-Pacific beach Scaevola, S. taccada, occurs in Australia and might have orig inated there. Scaevola plumieri does not occur in Australia, but its distribution might be said to represent a radiation from the Australian region. The species of section Scaevola are otherwise non-Australian. However, perhaps the closely- related fleshy-fruited sections, Crossotoma and Enantiophyllum represent remnants of this stock on the Australian continent. Scaevola calendulacea, a beach species of eastern Australia, has fleshy white fruits, tinged purple, that float in seawater and remind one of fruits of S. taccada. It supposedly belongs to section Xerocarpaea, but if so (and that disposition needs to be reinvestigated), it shows rapid evolution of a beach species with fleshy fruits both attractive to birds and dispersible by flotation in seawater. Either interpretation of S. calendulacea as a derivative of dry-fruited Scaewola species or hypothesizing it as a relict of sect. Scaevola stresses the same result—origin of the fleshy-fruited stock termed section Seaevola in the Australian region. Two species of section Scaevola are exclusively maritime and distributed by oceanic drift of the fruits: S. taccada (also known as S. sericea, S. frutescens, S. koenigii, etc.) and S. plumieri (also known as S. lobelia). Guppy (1917) demon strated that S. taccada fruits can float for a year or more in seawater, while fruits of S. plumieri can withstand only four or five months of flotation. Scaevola taccada ranges across the Pacific, reaching all tropical Pacific coasts (except the west coasts of Mexico, Central and South
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • TAXON:Portulaca Pilosa L. SCORE:23.0 RATING:High
    TAXON: Portulaca pilosa L. SCORE: 23.0 RATING: High Risk Taxon: Portulaca pilosa L. Family: Portulacaceae Common Name(s): hairy pigweed Synonym(s): Portulaca cyanosperma Egler kiss-me-quick Assessor: Chuck Chimera Status: Assessor Approved End Date: 8 Jan 2021 WRA Score: 23.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Prostrate Herb, Widely Naturalized, Environmental Weed, Palatable, Self-Compatible Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 n Creation Date: 8 Jan 2021 (Portulaca pilosa L.) Page 1 of 18 TAXON: Portulaca pilosa L.
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Scaevola Taccada (Gaertn.) Roxb
    BioInvasions Records (2021) Volume 10, Issue 2: 425–435 CORRECTED PROOF Rapid Communication First record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) in southeastern Mexico Gonzalo Castillo-Campos1,*, José G. García-Franco2 and M. Luisa Martínez2 1Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Xalapa, Veracruz, 91073, México 2Red de Ecología Funcional, Instituto de Ecología, A.C. Xalapa, Veracruz, 91073, México Author e-mails: [email protected] (GCC), [email protected] (JGGF), [email protected] (MLM) *Corresponding author Citation: Castillo-Campos G, García- Franco JG, Martínez ML (2021) First Abstract record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) Scaevola taccada (Gaertn.) Roxb. is native of Asia and eastern Africa but has been in southeastern Mexico. BioInvasions introduced into the Americas as an ornamental urban plant. This paper reports, for Records 10(2): 425–435, https://doi.org/10. the first time, the presence of Scaevola taccada in natural environments from 3391/bir.2021.10.2.21 southeastern Mexico. Several populations of S. taccada were identified during a Received: 23 July 2020 botanical survey of the coastal dunes of the Cozumel Island Biosphere Reserve Accepted: 22 October 2020 (State of Quintana Roo, Mexico) aimed at recording the most common plant Published: 22 January 2021 species. Scaevola taccada is considered as an invasive species of coastal areas in this region. Evidence of its invasiveness is suggested by the fact that populations Handling editor: Oliver Pescott consisting of individuals of different size classes are found distributed throughout Thematic editor: Stelios Katsanevakis the island. Furthermore, they appear to belong to different generations since we Copyright: © Castillo-Campos et al.
    [Show full text]
  • The Origin of the Bifurcating Style in Asteraceae (Compositae)
    Annals of Botany 117: 1009–1021, 2016 doi:10.1093/aob/mcw033, available online at www.aob.oxfordjournals.org The origin of the bifurcating style in Asteraceae (Compositae) Liliana Katinas1,2,*, Marcelo P. Hernandez 2, Ana M. Arambarri2 and Vicki A. Funk3 1Division Plantas Vasculares, Museo de La Plata, La Plata, Argentina, 2Laboratorio de Morfologıa Comparada de Espermatofitas (LAMCE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina and 3Department of Botany, NMNH, Smithsonian Institution, Washington D.C., USA *For correspondence. E-mail [email protected] Received: 20 November 2015 Returned for revision: 22 December 2015 Accepted: 8 January 2016 Published electronically: 20 April 2016 Background and Aims The plant family Asteraceae (Compositae) exhibits remarkable morphological variation in the styles of its members. Lack of studies on the styles of the sister families to Asteraceae, Goodeniaceae and Calyceraceae, obscures our understanding of the origin and evolution of this reproductive feature in these groups. The aim of this work was to perform a comparative study of style morphology and to discuss the relevance of im- portant features in the evolution of Asteraceae and its sister families. Methods The histochemistry, venation and general morphology of the styles of members of Goodeniaceae, Calyceraceae and early branching lineages of Asteraceae were analysed and put in a phylogenetic framework to dis- cuss the relevance of style features in the evolution of these families. Key Results The location of lipophilic substances allowed differentiation of receptive from non-receptive style papillae, and the style venation in Goodeniaceae and Calyceraceae proved to be distinctive.
    [Show full text]
  • Scaevola Crassifolia THICK-LEAVED SCAEVOLA Labill
    Plants of the West Coast family: GoodeniaCeae Scaevola crassifolia THICK-LEAVED SCAEVOLA Labill. Flowering period: July–February. Description: Erect to ground-hugging, often intensely sticky-leaved shrub, 0.1–1.5 m high in the Perth region. Leaves variable depending upon location and proximity to the ocean-front, usually paddle-shaped and rounded, 30–75 mm long, 10–33 mm wide with finely toothed margins. Flowers terminal to sub-terminal, in open heads, petals 7–10 mm long with a prominent style protruding from just beyond the flower. Seed a hard nut, within a thin, fleshy, flattened spherical fruit 2.5 mm wide, 1.5 mm long, green, ripening yellow to orange. Pollination: Open pollinated by a variety of insects. Distribution: Widespread from Shark Bay to Eyre in the Great Australian Bight. In the Perth region a number of forms occur in frontal dunes or over limestone. The limestone form is similar to the clone-forming type occurring on Rottnest Island and is lower growing and can form growth circles with age as the centre parts of the plant die out. At Swanbourne Beach both the clonal and shrub form co-occur. Habit Propagation: From cuttings taken in early summer. Strike cuttings directly into pots to be used in plantings and ensure plants are sun-hardened to maximise survival when transplanted. Plant in full sun. Uses in restoration: One of the main species for primary dune restoration. Adapts well to both full exposure and protected sites and is a useful nurse plant for establishing other slower growing and taller species such as coastal Acacia species.
    [Show full text]
  • Pacific Islands Area
    Habitat Planting for Pollinators Pacific Islands Area November 2014 The Xerces Society for Invertebrate Conservation www.xerces.org Acknowledgements This document is the result of collaboration with state and federal agencies and educational institutions. The authors would like to express their sincere gratitude for the technical assistance and time spent suggesting, advising, reviewing, and editing. In particular, we would like to thank the staff at the Hoolehua Plant Materials Center on the Hawaiian Island of Molokai, NRCS staff in Hawaii and American Samoa, and researchers and extension personnel at American Samoa Community College Land Grant (especially Mark Schmaedick). Authors Written by Jolie Goldenetz-Dollar (American Samoa Community College), Brianna Borders, Eric Lee- Mäder, and Mace Vaughan (The Xerces Society for Invertebrate Conservation), and Gregory Koob, Kawika Duvauchelle, and Glenn Sakamoto (USDA Natural Resources Conservation Service). Editing and layout Ashley Minnerath (The Xerces Society). Updated November 2014 by Sara Morris, Emily Krafft, and Anne Stine (The Xerces Society). Photographs We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Cover main: Jolie Goldenetz-Dollar, American Samoa Community College. Cover bottom left: John Kaia, Lahaina Photography. Cover bottom right: Gregory Koob, Hawaii Natural Resources Conservation Service. Funding This technical note was funded by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and produced jointly by the NRCS and The Xerces Society for Invertebrate Conservation. Additional support was provided by the National Institute for Food and Agriculture (USDA). Please contact Tony Ingersoll ([email protected]) for more information about this publication.
    [Show full text]
  • A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
    Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U.
    [Show full text]
  • New Hawaiian Plant Records from Herbarium Pacificum for 20081
    Records of the Hawaii Biological Survey for 2008. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 107: 19–26 (2010) New Hawaiian plant records from Herbarium Pacificum for 2008 1 BARBARA H. K ENNEDY , S HELLEY A. J AMES , & CLYDE T. I MADA (Hawaii Biological Survey, Bishop Museum, 1525 Bernice St, Honolulu, Hawai‘i 96817-2704, USA; emails: [email protected], [email protected], [email protected]) These previously unpublished Hawaiian plant records report 2 new naturalized records, 13 new island records, 1 adventive species showing signs of naturalization, and nomen - clatural changes affecting the flora of Hawai‘i. All identifications were made by the authors, except where noted in the acknowledgments, and all supporting voucher speci - mens are on deposit at BISH. Apocynaceae Rauvolfia vomitoria Afzel. New naturalized record The following report is paraphrased from Melora K. Purell, Coordinator of the Kohala Watershed Partnership on the Big Island, who sent an email alert to the conservation com - munity in August 2008 reporting on the incipient outbreak of R. vomitoria, poison devil’s- pepper or swizzle stick, on 800–1200 ha (2000–3000 acres) in North Kohala, Hawai‘i Island. First noticed by field workers in North Kohala about ten years ago, swizzle stick has become a growing concern within the past year, as the tree has spread rapidly and invaded pastures, gulches, and closed-canopy alien and mixed alien-‘ōhi‘a forest in North Kohala, where it grows under the canopies of eucalyptus, strawberry guava, common guava, kukui, albizia, and ‘ōhi‘a. The current distribution is from 180–490 m (600–1600 ft) elevation, from Makapala to ‘Iole.
    [Show full text]
  • TC CISMA Barrier Island Scaevola Removal
    The Treasure Coast CISMA Barrier Island Scaevola Removal Project Seaside Homeowners Living Adjacent to Public Conservation Lands… What Does Your Beach Look Like? Well-Managed Beach in Jupiter, Florida Unmanaged, Unhealthy Beach in Jupiter, Florida Healthy Treasure Coast Dune Habitat Unhealthy Treasure Coast Dune Habitat ° Long, flat beaches with softly rolling dunes ° Scaevola taccada invades dunes and shorelines ° Sea oats are plentiful and prevent beach erosion. ° Non-native dunes erode and cliff under Scaevola One of the few plants that actually grows better when taccada’s shallow root system regularly buried by sand! ° Scaevola taccada displaces sea oats, which prevent ° Invasive, dune-altering Scaevola taccada is absent beach erosion and rare plants such as inkberry , beach peanut and beach clustervine ° Sea oats and other dune grasses and herbs colonize ° Scaevola taccada degrades critical habitat for the shoreline, capturing blowing sand and provide federally listed sea turtles, shorebirds and a variety of superior dune protection rare plants and animals ° Scaevola taccada grows tall and blocks views ° Habitat is ideal for nesting sea turtles and shorebirds, as well as a variety of native songbirds, ° Beach erosion is a costly, long-term problem for butterflies and other desirable wildlife that are valued coastal property owners by residents and nature lovers alike ° Thousands of dollars have been spent restoring ° Long, sandy beaches are enjoyable for beachgoers beach dune habitat by removing Scaevola taccada from the Treasure Coast’s state parks, national wildlife ° Superior ocean views and accessibility refuges and county lands ° Lower long-term management costs ° Adjacent, private beaches serve as a Scaevola taccada seed source to public conservation lands Are you a good neighbor? Help Our Public Conservation Lands Endure For Future Generations… Coral Cove, Palm Beach County John D.
    [Show full text]
  • ASBS Newsletter Will Recall That the Collaboration and Integration
    Newsletter No. 174 March 2018 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Darren Crayn Daniel Murphy Australian Tropical Herbarium (ATH) Royal Botanic Gardens Victoria James Cook University, Cairns Campus Birdwood Avenue PO Box 6811, Cairns Qld 4870 Melbourne, Vic. 3004 Australia Australia Tel: (+617)/(07) 4232 1859 Tel: (+613)/(03) 9252 2377 Email: [email protected] Email: [email protected] Secretary Treasurer Jennifer Tate Matt Renner Institute of Fundamental Sciences Royal Botanic Garden Sydney Massey University Mrs Macquaries Road Private Bag 11222, Palmerston North 4442 Sydney NSW 2000 New Zealand Australia Tel: (+646)/(6) 356- 099 ext. 84718 Tel: (+61)/(0) 415 343 508 Email: [email protected] Email: [email protected] Councillor Councillor Ryonen Butcher Heidi Meudt Western Australian Herbarium Museum of New Zealand Te Papa Tongarewa Locked Bag 104 PO Box 467, Cable St Bentley Delivery Centre WA 6983 Wellington 6140, New Zealand Australia Tel: (+644)/(4) 381 7127 Tel: (+618)/(08) 9219 9136 Email: [email protected] Email: [email protected] Other constitutional bodies Hansjörg Eichler Research Committee Affiliate Society David Glenny Papua New Guinea Botanical Society Sarah Mathews Heidi Meudt Joanne Birch Advisory Standing Committees Katharina Schulte Financial Murray Henwood Patrick Brownsey Chair: Dan Murphy, Vice President, ex officio David Cantrill Grant application closing dates Bob Hill Hansjörg Eichler Research Fund: th th Ad hoc
    [Show full text]
  • Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
    Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp.
    [Show full text]