Orthopedic Evaluation of the Knee- Palpation and Special Tests

Total Page:16

File Type:pdf, Size:1020Kb

Orthopedic Evaluation of the Knee- Palpation and Special Tests Orthopedic Evaluation of the Knee- Palpation and Special Tests Any knee injuries? Evaluation Lab Palpation Bony Landmarks Medial Aspect – Medial Tibial Plateau – Med. Femoral Condyle – Medial Joint line Lateral Aspect – Lateral Tibial Plateau – Lat. Femoral Condyle – Head of Fibula – Gerdy’s Tubercle Bony Landmarks (cont.) Anterior Aspect Patella – Tibial Tubercle – Superior Patellar Border – Inferior Patellar Border – Around Periphery w/ knee relaxed – Around Periphery w/ knee in full extension Soft-Tissue Palpation Anterior Aspect – Rectus Femoris – Vastus Lateralis – Vastus Medialis Obl. – Quadriceps Tendon – Pre-patella Bursa – Patellar Tendon – Tibial Tubercle Medial Soft Tissue Medial Aspect – MCL – Pes Anserinus Insertion (Sartorius, Gracilis, Semitendinosus) Medial Plica Soft-Tissue Palpation (cont.) Posterior Aspect – Baker’s Cyst – Popliteus – Medial and Lateral Heads of Gastrocnemius Lateral Aspect – LCL – Iliotibial Band – Fibular Head Typical Pain Sites of the Knee Special Tests Patella Tests Brush Test Ballottement Clarke’s Test Apprehension Brush Test Pt in supine with knee supported on the table and slightly flexed. PT places one hand below the joint line on the medial surface of the patella and strokes proximally with the palm and fingers as far as the suprapatellar pouch. The other hand then strokes down the lateral surface of the patella. (+) wave of fluid just below the medial distal border of the patella. Indicates knee effusion. Ballotable Patella Pt in supine with the knee extended on table. PT applies a slight tap over the center of the patella. (+) patella appears to be floating ("dancing patella" sign). Indicates retro-patellar effusion. Clarke’s Test Pt in supine with knee extended on table. PT applies slight posterior pressure with the web space of their hand over the superior pole of the patella while PT instructs the pt to contract the quadriceps muscle. (+) pain upon contraction. Indicates patello-femoral dysfunction. Patella Apprehension Test Pt in supine with the knees extended on table. PT places both thumbs on the medial border of the patella and passively glides patella in lateral direction. (+) look of apprehension or an attempt to contract the quadriceps in an effort to avoid subluxation. Indicates (hx of) patella subluxation or dislocation. Ligamentous Tests Valgus stress at 0 degrees = Capsule/MCL Valgus stress at 20-30 degrees =MCL Varus stress at 0 degrees = Capsule/LCL Valgus stress at 20-30 degree = LCL Anterior drawer = ACL Posterior drawer = PCL Lachman test = ACL Modified Lachman = ACL Posterior Sag = PCL Lateral Pivot Shift Ligamentous Instability Anterior Drawer Test Pt in supine with the knee flexed to 90 degrees and the hip flexed to 45 degrees. PT stabilizes the lower leg by sitting on the forefoot and grasps the patient's proximal tibia with both hands placing the thumbs on the tibial plateau. PT administers an anterior directed force to the tibia on the femur. (+) excessive anterior translation of the tibia on the femur with a diminished or absent end-point. Indicates ACL injury. Posterior Drawer Test Pt in supine with the knee flexed to 90 degrees and the hip flexed to 45 degrees. PT stabilizes the lower leg by sitting on the forefoot and grasps the patient's proximal tibia with both hands placing the thumbs on the tibial plateau. PT administers an posterior directed force to the tibia on the femur. (+) excessive posterior translation of the tibia on the femur with a diminished or absent end-point. Indicates PCL injury. Lachman Test Pt in supine with knee flexed to 20-30 degrees. PT stabilizes distal femur with one hand and places other hand on proximal tibia. PT applies anterior directed force to tibia on femur. (+) excess anterior translation of tibia on femur with diminished/absent end- point. Indicates ACL injury. Modified Lachman Test Pt. is supine with hip at 45 degrees and knee at 30 degrees. PT places bent knee under pt’s knee. PT uses one hand to stabilize femur and other to draw tibia forward. + if tibia translates forward with excess laxity and no endpoint. Lateral Pivot Shift Test Pt in supine with knee extended, hip flexed and ABD to 30 degrees with slight IR. PT grasps leg with one hand and places other hand over lateral surface of prox. tibia. PT IR tibia and applies valgus force to knee while knee slowly flexes. (+) palpable shift/clunk occurring between 20-40 deg. flexion (resulting from reduction of tibia on femur). Indicates anterolateral rotary instability/ACL integrity. Posterior Sag Sign pt in supine with knee flexed 90 deg. & hip flexed 45 deg. PT observes position. (+) tibia "sags" posterior. Indicates PCL injury. Valgus Stress Test Pt in supine with entire LE supported and knee flexed to 20-30 deg. PT places one hand on medial surface of ankle and other hand on lateral surface of knee. PT applies valgus force to the knee with distal hand. (+) excess valgus movement and/or pain. Indicates MCL sprain. Note: a (+) test with knee in full extension may be indicative of damage to MCL, PCL, posterior oblique ligament, posteromedial capsule Varus Stress Test pt in supine with entire LE supported and knee flexed 20- 30 deg. PT places one hand on lateral surface of ankle and other hand on medial surface of knee. PT applies varus force to knee with distal hand. (+) excess varus movement and/or pain. Indicates LCL sprain. NOTE: a (+) test with knee in full extension may be indicative of damage to LCL, PCL, poterolateral capsule Meniscal Tests McMurray’s test-IR of the tibia with knee extension = torn lateral meniscus and vice-versa. Apley’s Compression Meniscal Pathology Apley’s Compression Test Pt in prone with knee flexed 90 deg. PT stabilizes femur with PT's hand. PT passively distracts the knee joint then slowly rotates tibia internally and externally then apply a compressive force through tibia while continuing the rotation of the tibia. (+) pain/clicking or decreased motion during compression indicates meniscal dysfunction. (+) pain/clicking or decreased motion during distraction indicates ligamentous dysfunction. McMurray Test Pt in supine with knee in full extension. PT grasps distal leg with one hand and palpates knee joint line with other. PT medially rotates tibia and extends knee. Repeat same while laterally rotating tibia. (+) pain &/or click over joint line. Indicates dysfunction in lateral meniscus with passive IR of tibia and medial meniscus with ER of tibia Modified meniscal grind test Flexion & extension of the knee with a valgus stress = compression of the lateral meniscus Flexion & extension of the knee with a varus stress = compression of the medial meniscus Pain with end-range flexion may = posterior horn. Pain with end-range extension may = anterior horn Paul’s Meniscal Grind Test Pt. is supine. PT places a valgus stress to the knee while passively flexing and extending the knee. Pain in the lateral joint is indicative of lateral meniscal pathology. Vice-versa for medial meniscus. Other Tests Noble Compression Test Ober’s Test Q-angle Functional Squat- Look for: -Ankle DF -Knee Valgus -Hip Varus -Inability to keep back straight • IT Band Friction Syndrome Noble Compression Test Pt in supine with the hip flexed 45 deg and the knee flexed 90 deg. PT places the thumb of one hand over the lateral epicondyle of the femur and the other hand around the pt's ankle. PT maintains pressure over the lateral epicondyle while pt is instructed to slowly extend the knee. (+) pain over the lateral femoral epicondyle at approx 30 deg of knee flexion. Indicates iliotibial band friction syndrome. Q angle Measurement Measurement of angle b/w the quadriceps muscle and the patellar tendon. Normal is 13 deg for men & 18 deg for women. Landmarks for measurement are the ASIS, mid patella and tibial tubercle. Ober’s Test Functional Squat Selective tissue tension tests Must differentiate between contractile and non-contractile tissue (I.e. popliteus mm. Vs. posterior horn of lateral meniscus) .
Recommended publications
  • Effusion =S Fluid in Pleural Space (Outside of Lung) Fremitus - Pathophysiology • Fremitus: – Increased W/Consolidation (E.G
    General Part Head and Neck Cardiovascular Abdomen Lung Muscles Lung Exam • Includes Vital Signs & Cardiac Exam • 4 Elements (cardiac & abdominal too) – Observation – Palpation – Percussion – Auscultation Pulmonary Review of Systems • All organ systems have an ROS • Questions to uncover problems in area • Need to know right questions & what the responses might mean! Exposure Is Key – You Cant Examine What You Can’t See! Anatomy Of The Spine Cervical: 7 Vertebrae Thoracic: 12 Vertebrae Lumbar: 5 Vertebrae Sacrum: 5 Fused Vertebrae Note gentle curve ea segment Hammer & Nails icon indicates A Slide Describing Skills You Should Perform In Lab Spine Exam As Relates to the Thorax • W/patient standing, observe: – shape of spine. – Stand behind patient, bend @ waist – w/Scoliosis (curvature) one shoulder appears “higher” Pathologic Changes In Shape Of Spine – Can Affect Lung Function Scoliosis (curved to one side) Thoracic Kyphosis (bent forward) Observation • ? Ambulates w/out breathing difficulty? • Readily audible noises (e.g. wheezing)? • Appearance →? sitting up, leaning forward, inability to speak, pursed lips → significant compromise • ? Use of accessory muscles of neck (sternocleidomastoids, scalenes), inter-costals → significant compromise / Make Note of Chest Shape: Changes Can Give Insight into underlying Pathology Barrel Chested (hyperinflation secondary to emphysema) Examine Nails/Fingers: Sometimes Provides Clues to Pulmonary Disorders Cyanosis Nicotine Staining Clubbing Assorted other hand and arm abnormalities: Shape, color, deformity
    [Show full text]
  • HEENT EXAMINIATION ______HEENT Exam Exam Overview
    HEENT EXAMINIATION ____________________________________________________________ HEENT Exam Exam Overview I. Head A. Visual inspection B. Palpation of scalp II. Eyes A. Visual Acuity B. Visual Fields C. Extraocular Movements/Near Response D. Inspection of sclera & conjunctiva E. Pupils F. Ophthalmoscopy III. Ears A. External Inspection B. Otoscopy C. Hearing Acuity D. Weber/Rinne IV. Nose A. External Inspection B. Speculum/otoscope C. Sinus areas V. Throat/Mouth A. Mouth Examination B. Pharynx Examination C. Bimanual Palpation VI. Neck A. Lymph nodes B. Thyroid gland 29 HEENT EXAMINIATION ____________________________________________________________ HEENT Terms Acuity – (ehk-yu-eh-tee) sharpness, clearness, and distinctness of perception or vision. Accommodation - adjustment, especially of the eye for seeing objects at various distances. Miosis – (mi-o-siss) constriction of the pupil of the eye, resulting from a normal response to an increase in light or caused by certain drugs or pathological conditions. Conjunctiva – (kon-junk-ti-veh) the mucous membrane lining the inner surfaces of the eyelids and anterior part of the sclera. Sclera – (sklehr-eh) the tough fibrous tunic forming the outer envelope of the eye and covering all of the eyeball except the cornea. Cornea – (kor-nee-eh) clear, bowl-shaped structure at the front of the eye. It is located in front of the colored part of the eye (iris). The cornea lets light into the eye and partially focuses it. Glaucoma – (glaw-ko-ma) any of a group of eye diseases characterized by abnormally high intraocular fluid pressure, damaged optic disk, hardening of the eyeball, and partial to complete loss of vision. Conductive hearing loss - a hearing impairment of the outer or middle ear, which is due to abnormalities or damage within the conductive pathways leading to the inner ear.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Carpal-Instability-Slide-Summary.Pdf
    Carpal Instabilities Definition by IFSSH Orthopaedic Hand Conference Wrist is unstable only if it exhibits • symptomatic dysfunction Bernard F. Hearon, M.D. inability to bear loads Clinical Assistant Professor, Department of Surgery • University of Kansas School of Medicine - Wichita May 7, 2019 • abnormal carpal kinematics Garcia-Elias, JHS 1999 Carpal Instability Mayo Classification CID - Dissociative Wright, JHS (Br) 1994 Instability within carpal row usually due to intrinsic ligament injury • Carpal Instability Dissociative (CID) • Carpal Instability Non-Dissociative (CIND) • Scapholunate dissociation • Carpal Instability Adaptive (CIA) • Lunotriquetral dissociation • Carpal Instability Complex (CIC) • Scaphoid fracture Carpal Instability Carpal Instability CIND - Nondissociative Instability between carpal rows due CIA - Adaptive to extrinsic ligament injury Extra-carpal derangement causing carpal malalignment • CIND - Volar Intercalated Segment Instability (VISI) Midcarpal instability caused by malunited • CIND - Dorsal Intercalated fractures of the distal radius Segment Instability (DISI) Taleisnik, JHS 1984 • Combined CIND Carpal Instability Carpal Instability CIC - Complex Instability patterns with qualities of both CID and CIND patterns • Dorsal perilunate dislocations (lesser arc) Perilunate • Dorsal perilunate fracture-dislocations (greater arc injuries) Instability • Volar perilunate dislocations • Axial dislocations, fracture-dislocations Carpal Instability Carpal Instability Perilunate Dislocations Mayfield Classification Progressive
    [Show full text]
  • Advanced Interpretation of Adult Vital Signs in Trauma William D
    Advanced Interpretation of Adult Vital Signs in Trauma William D. Hampton, DO Emergency Physician 26 March 2015 Learning Objectives 1. Better understand vital signs for what they can tell you (and what they can’t) in the assessment of a trauma patient. 2. Appreciate best practices in obtaining accurate vital signs in trauma patients. 3. Learn what teaching about vital signs is evidence-based and what is not. 4. Explain the importance of vital signs to more accurately triage, diagnose, and confidently disposition our trauma patients. 5. Apply the monitoring (and manipulation of) vital signs to better resuscitate trauma patients. Disclosure Statement • Faculty/Presenters/Authors/Content Reviewers/Planners disclose no conflict of interest relative to this educational activity. Successful Completion • To successfully complete this course, participants must attend the entire event and complete/submit the evaluation at the end of the session. • Society of Trauma Nurses is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. Vital Signs Vital Signs Philosophy: “View vital signs as compensatory to the illness/complaint as opposed to primary.” Crowe, Donald MD. “Vital Sign Rant.” EMRAP: Emergency Medicine Reviews and Perspectives. February, 2010. Vital Signs Truth over Accuracy: • Document the true status of the patient: sick or not? • Complete vital signs on every patient, every time, regardless of the chief complaint. • If vital signs seem misleading or inaccurate, repeat them! • Beware sending a patient home with abnormal vitals (especially tachycardia)! •Treat vital signs the same as any other diagnostics— review them carefully prior to disposition. The Mother’s Vital Sign: Temperature Case #1 - 76-y/o homeless ♂ CC: 76-y/o homeless ♂ brought to the ED by police for eval.
    [Show full text]
  • Disorders of the Knee
    DisordersDisorders ofof thethe KneeKnee PainPain Swelling,Swelling, effusioneffusion oror hemarthrosishemarthrosis LimitedLimited jointjoint motionmotion Screw home mechanism – pain, stiffness, fluid, muscular weakness, locking InstabilityInstability – giving way, laxity DeformityDeformity References: 1. Canale ST. Campbell’s operative orthopaedics. 10th edition 2003 Mosby, Inc. 2. Netter FH. The Netter collection of Medical illustrations – musculoskeletal system, Part I & II. 1997 Novartis Pharmaceuticals Corporation. 3. Magee DJ. Orthopedic Physical assessment. 2nd edition 1992 W. B. Saunders Company. 4. Hoppenfeld S. Physical examination of the spine and extremities. 1976 Appleton-century-crofts. AnteriorAnterior CruciateCruciate LigamentLigament Tibial insertion – broad, irregular, diamond-shaped area located directly in front of the intercondylar eminence Femoral attachment Femoral attachment Figure 43-24 In addition to their – semicircular area on the posteromedial synergistic functions, cruciate aspect of the lateral condyle and collateral ligaments exercise 33 mm in length basic antagonistic function 11 mm in diameter during rotation. A, In external Anteromedial bundle — tight in flexion rotation it is collateral ligaments that tighten and inhibit excessive Posterolateral bundle — tight in extension rotation by becoming crossed in 90% type I collagen space. B, In neutral rotation none 10% type III collagen of the four ligaments is under unusual tension. C, In internal Middle geniculate artery rotation collateral ligaments Fat
    [Show full text]
  • Meniscus Injury
    Introduction Role of menisci • Medial meniscus lesions are more common than 01 lateral meniscus because it is attached to the improving articular capsule that make it less mobile thus it cannot congruency and increasing easily to accommodate the abnormal stresses. the stability of the knee • In increasing age – gradual degeneration and change in the material properties of the menisci Meniscus controlling the complex thus splits and tears are more likely that usually associated with osteoarthritic articular damage or rolling and gliding actions of chondrocalcinosis. Injury the joint • In younger people - meniscal tears are usually the result of trauma, with a specific injury identified in distributing load during the history. movement Tear of Meniscus Pathology Pathology • Usually, meniscus more likely to tear along its Vertical tear Horizontal tear length than across its width because the Bucket-handle tear usually ‘degenerative’ or due to repetitive minor trauma meniscus consists mainly of circumferential the separated fragment remains attached front complex with the tear pattern lying in many collagen fibres held by a few radial strands. and back planes The torn portion can sometimes displace towards may be displaced or likely to displace • The meniscus is usually torn by a twisting the centre of the joint and becomes jammed If the loose piece of meniscus can be displaced, it between femur and tibia acts as a mechanical irritant, giving rise to force with the knee bent and taking weight. This causes a block to movement with the patient recurrent synovial effusion and mechanical describing a ‘locked knee’ symptoms • In middle life, tears can occur with relatively posterior or anterior horn tears Some are associated with meniscal cysts little force when fibrotic change has the very back or front of the meniscus is It is also suggested that synovial cells infiltrate into the vascular area between meniscus and restricted mobility of the meniscus.
    [Show full text]
  • Analysis of Rehabilitation Procedure Following Arthroplasty of the Knee with the Use of Complete Endoprosthesis
    © Med Sci Monit, 2011; 17(3): CR165-168 WWW.MEDSCIMONIT.COM PMID: 21358604 Clinical Research CR Received: 2010.10.01 Accepted: 2010.12.23 Analysis of rehabilitation procedure following Published: 2011.03.01 arthroplasty of the knee with the use of complete endoprosthesis Authors’ Contribution: Magdalena Wilk-Frańczuk¹,²ACDEF, Wiesław Tomaszewski3ACDEF, Jerzy Zemła²ABDEF, A Study Design Henryk Noga4DEF, Andrzej Czamara3ADEF B Data Collection C Statistical Analysis 1 Andrzej Frycz Modrzewski Cracow University, Cracow, Poland D Data Interpretation 2 Cracow Rehabilitation Centre, Cracow, Poland E Manuscript Preparation 3 College of Physiotherapy, Wroclaw, Poland F Literature Search 4 Endoscopic Surgery Clinic and Sport Clinic Żory, Żory, Poland G Funds Collection Source of support: Departmental sources Summary Background: The use of endoprosthesis in arthroplasty requires adaptation of rehabilitation procedures in or- der to reinstate the correct model of gait, which enables the patient to recover independence and full functionality in everyday life, which in turn results in an improvement in the quality of life. Material/Methods: We studied 33 patients following an initial total arthroplasty of the knee involving endoprosthesis. The patients were divided into two groups according to age. The range of movement within the knee joints was measured for all patients, along with muscle strength and the subjective sensation of pain on a VAS, and the time required to complete the ‘up and go’ test was measured. The gait model and movement ability were evaluated. The testing was conducted at baseline and after com- pletion of the rehabilitation exercise cycle. Results: No significant differences were noted between the groups in the tests of the range of movement in the operated joint or muscle strength acting on the knee joint.
    [Show full text]
  • Comparison of the Thesslay Test and Mcmurray Test: a Systematic
    py & Ph ra ys e i th c Alexanders et al.,Physiother Rehabil 2016, 1:1 a io l s R y e Journal of DOI: 10.4172/2573-0312.1000104 h h a P b f i o l i l t a ISSN:a 2573-0312 t n i r o u n o J Physiotherapy & Physical Rehabilitation Research Article Open Access Comparison of the Thesslay Test and McMurray Test: A Systematic Review of Comparative Diagnostic Studies Jenny Alexanders1*, Anna Anderson2, Sarah Henderson1 and Ulf Clausen3 1Sport, Health and Sciences Department, The University of Hull, Washburn Building, Cottingham Road, Hull, United Kingdom 2Leeds Teaching Hospitals, Beckett Street, Leeds, LS9 7TF, United Kingdom 3Dr Hill and Partners, Beverly Health Practice, Manor Road, Hull, HU17 7BZ, United Kingdom Abstract Background: The Thessaly test is a relatively recently developed meniscal test; therefore research compared to other meniscal tests is somewhat limited. In addition, a systematic review comparing the Thessaly’s test with a long standing test such as the McMurray test has not been previously conducted. Objective: To systematically identify and appraise all empirical studies comparing the diagnostic accuracy of the Thessaly test and McMurray test. Procedure: Eligible studies were identified through a rigorous search of ScienceDirect, CINAHL Plus, Pubmed, PEDro, EMBASE and Cochrane Library from January 2004 until August 2014. Full English reports of studies investigating the accuracy of the Thessaly test and McMurray test. Quality Assessment of Studies of Diagnostic Accuracy (QUADAS) scores were completed on each selected article. Results: The Thessaly test reported to have higher diagnostic accuracy values (61-96%) compared to the McMurray test (56-84%).
    [Show full text]
  • Physical Esxam
    Pearls in the Musculoskeletal Exam Frank Caruso MPS, PA-C, EMT-P Skin, Bones, Hearts & Private Parts 2019 Examination Key Points • Area that needs to be examined, gown your patients - well exposed • Understand normal functional anatomy • Observe normal activity • Palpation • Range of Motion • Strength/neuro-vascular assessment • Special Tests General Exam Musculoskeletal Overview Physical Exam Preview Watch Your Patients Walk!! Inspection • Posture – Erectness – Symmetry – Alignment • Skin and subcutaneous tissues – Swelling – Redness – Masses Inspection • Extremities – Size – Deformities – Enlargement – Alignment – Contour – Symmetry Inspection • Muscles – Bilateral symmetry – Hypertrophy – Atrophy – Fasciculations – Spasms Palpation • Palpate bones, joints, and surrounding muscles for the following: – Heat – Tenderness – Swelling – Fluctuation – Crepitus – Resistance to pressure – Muscle tone Muscles • Size and strength affected by the following: – Genetics – Exercise – Nutrition • Muscles move joints through range of motion (ROM). Muscle Strength • Compare bilateral muscles – Strength – Symmetry – Equality – Resistance End Feel Think About It!! • The sensation the examiner feels in the joint as it reaches the end of the range of motion of each passive movement • Bone to bone: This is hard, unyielding – normal would be elbow extension. • Soft–tissue approximation: yielding compression that stops further movement – elbow and knee flexion. End Feel • Tissue stretch: hard – springy type of movement with a slight give – toward the end of range of motion – most common type of normal end feel : knee extension and metacarpophalangeal joint extension. Abnormal End Feel • Muscle spasm: invoked by movement with a sudden dramatic arrest of movement often accompanied by pain - sudden hard – “vibrant twang” • Capsular: Similar to tissue stretch but it does not occur where one would expect – range of motion usually reduced.
    [Show full text]
  • Blood Pressure Year 1 Year 2 Core Clinical/Year 3+
    Blood Pressure Year 1 Year 2 Core Clinical/Year 3+ Do Do • Patient at rest for 5 minutes • Measure postural BP and pulse in patients with a • Arm at heart level history suggestive of volume depletion or • Correct size cuff- bladder encircles 80% of arm syncope • Center of cuff aligns with brachial artery -Measure BP and pulse in supine position • Cuff wrapped snugly on bare arm with lower -Slowly have patient rise and stand (lie them down edge 2-3 cm above antecubital fossa promptly if symptoms of lightheadedness occur) • Palpate radial artery, inflate cuff to 70 mmHg, -Measure BP and pulse after 1 minute of standing then increase in 10 mmHg increments to 30 mmHg above point where radial pulse disappears. Know Deflate slowly until pulse returns; this is the • Normally when a person stands fluid shifts to approximate systolic pressure. lower extremities causing a compensatory rise in • Auscultate the Korotkoff sounds pulse by up to 10 bpm with BP dropping slightly -place bell lightly in antecubital fossa • Positive postural vital signs are defined as -inflate BP to 20-30mmHg above SBP as determined symptoms of lightheadedness and/or a drop in by palpation SBP of 20 mmHg with standing -deflate cuff at rate 2mmHg/second while auscultating • Know variations in BP cuff sizes -first faint tapping (Phase I Korotkoff) = SBP; • A lack of rise in pulse in a patient with an Disappearance of sound (Phase V Korotkoff)=DBP orthostatic drop in pressure is a clue that the Know cause is neurologic or related or related to -Korotkoff sounds are lower pitch, better heard by bell medications (eg.
    [Show full text]
  • Evaluation and Management of Sports Injuries in Children
    2019 Frontiers in Pediatrics Sports Medicine Mini-Symposium Presented by MUSC Health Sports Medicine Sports Medicine Panel of Experts Michael J. Barr, PT, DPT, MSR Sports Medicine Manager MUSC Health Sports Medicine Alec DeCastro, MD Assistant Professor CAQ Sports Medicine Director, MUSC/Trident Family Medicine Residency MUSC Health Sports Medicine MUSC Department of Family Medicine Harris S. Slone, MD Associate Professor Orthopaedic Surgery and Sports Medicine MUSC Health Sports Medicine MUSC Department of Orthopaedics Sports Medicine Breakout Group Leaders Aaron Brown, ATC Athletic Trainer MUSC Health Sports Medicine Amelia Brown, MS, ATC Athletic Trainer MUSC Health Sports Medicine Brittney Lang, MS, ATC Athletic Trainer MUSC Health Sports Medicine Bobby Weisenberger, MS, ATC, PES Athletic Trainer MUSC Health Sports Medicine Sports Medicine Schedule Approximate Timeline: 2:00: Introduction – Michael Barr, PT, DPT, MSR – Sports Medicine Manager 2:05: Ankle Case Report – Harris Slone, MD 2:20: Knee Case Report – Harris Slone, MD 2:35: Shoulder Instability Case Report – Michael Barr, PT, DPT, MSR 2:50: Back Case Report – Alec DeCastro, MD 3:05: High BP Case Report – Alec DeCastro, MD 3:20: Hands On Practice of Exam Techniques – All + Athletic Trainers 3:50: Question/Answer Open Forum – All 4:00: End Sports Medicine Disclosers No relevant financial disclosers Sports Medicine Learning Objectives Learning Objectives: 1. Describe mechanisms of injury and clinical presentation for common pediatric sports related injuries of the ankle, knee, back and shoulder. 2. Demonstrate examination techniques to support the diagnosis of common pediatric sports related injuries of the ankle, knee, back and shoulder 3. Determine what imaging studies should be ordered and when to refer to a sports med/orthopaedic surgeon or to physical therapy 4.
    [Show full text]