The Pennsylvania State University the Graduate School the Huck

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School the Huck The Pennsylvania State University The Graduate School The Huck Institutes of the Life Sciences COMPARATIVE TRANSCRIPTOME AND PHYLOGENOMIC ANALYSES ON THE EVOLUTION OF PARASITIC OROBANCHACEAE A Dissertation in Plant Biology by Zhenzhen Yang © 2016 Zhenzhen Yang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 The dissertation of Zhenzhen Yang was reviewed and approved* by the following: Claude W. dePamphilis Professor of Biology Dissertation Advisor Chair of Committee Charles T. Anderson Assistant Professor of Biology Naomi S. Altman Professor of Statistics Yinong Yang Associate Professor of Plant Pathology and Environmental Microbiology Teh-hui Kao Distinguished Professor of Biochemistry and Molecular Biology Chair of the Plant Biology Graduate Program *Signatures are on file in the Graduate School ii ABSTRACT Parasitic plants are plants that form a parasitic association with their host using a connecting organ called the haustorium, a novel feeding structure through which parasites withdraw nutrients such as carbon and nitrogen from the conducting tissues of the host. Orobanchaceae is the only family containing species with the full spectrum of parasitic capabilities, including one nonparasitic autotrophic genus, Lindenbergia, and more than 90 genera (>2000 species) of parasites with varying degrees of photosynthesis and host dependence. To understand the genetic changes that led to a parasitic lifestyle, a transcriptome sequencing project was initialized to interrogate multiple stages of growth and development of three parasitic plants that span the range of parasitic dependence. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. The majority of parasitism genes were duplicated before the divergence of Orobanchaceae and Mimulus, a related nonparasitic plant. This suggests that gene duplication plays a role in the origin of parasitism. A comparative analysis of these genes’ homologs in sequenced nonparasitic plant genomes revealed that parasitic plants make haustoria by co-opting genes from root and floral development. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. Horizontal gene transfer (HGT), acts as another evolutionary force contributing to parasite adaptation. At least 42 gene families accounting for 52 transfers – largely via genomic integration - result in functional transcripts that were primarily involved in translation, defense responses, transposable element (TE), and other diverse roles. Three lines of evidence indicate an adaptive role of HGT in parasite evolution - (i) A majority of HGT genes are upregulated in haustoria- related tissues in the most parasitic Phelipanche aegyptiaca; (ii) A higher frequency of HGTs are observed in parasites with a higher degree of parasitism; (iii) A portion of genes detected to have evolved some adaptive sites under positive selection. The study of strigolactone (SL) pathway in parasitic plants reveals that parasitic plants still retain genes in SL synthesis. Two SL biosynthesis genes and D14 (the receptor) are upregulated in haustorial structures, indicating a possibility of SL in haustoria development. iii TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................. viii LIST OF TABLES ................................................................................................................... x ACKNOWLEDGEMENTS ..................................................................................................... xi Chapter 1 Introduction to parasitic plants and related research .............................................. 1 1.1 Introduction to parasitic plants .................................................................................... 2 1.1.1 Parasitic plants – classification and morphology ............................................ 2 1.1.2 Parasitic Orobanchaceae ................................................................................. 3 1.2 Biology of parasitic plants .......................................................................................... 3 1.2.1 Germination of parasitic plants ....................................................................... 3 1.2.2 The haustorium ................................................................................................ 4 1.2.3 Haustorium initiation and early development ................................................. 4 1.2.4 Haustorium penetration and development ....................................................... 5 1.2.5 Physiology of parasitic plants ......................................................................... 6 1.2.6 Nutrient transfer .............................................................................................. 7 1.3 Parasite control ............................................................................................................ 8 1.3.1 Problems and germination-based approaches ................................................. 8 1.3.2 Known parasitism genes .................................................................................. 9 1.3.3 Parasite and host defense – the arms race ....................................................... 10 1.4 Evolution of novel traits .............................................................................................. 12 1.4.1 Haustorium as a good model to study the evolution of novel traits ................ 12 1.4.2 Mechanisms for the origin of novel traits ....................................................... 12 1.4.3 Gene duplication and regulatory networks (origin of flower) ......................... 13 1.4.4 Homeobox domain-mediated regulation of leaf development ........................ 14 1.4.5 Co-option of existing genes and gene family expansion ................................. 14 1.4.6 Mutation-driven positive selection .................................................................. 15 1.4.7 Haustoria origins – the exogenous model (HGT) ........................................... 15 1.4.8 Haustoria origins – the endogenous model (gene recruitment) ....................... 17 1.5 Horizontal gene transfer .............................................................................................. 18 1.5.1 Mitochondrial HGT ......................................................................................... 18 1.5.2 HGT in parasitic plants ................................................................................... 19 1.5.3 HGT of non-plant origin ................................................................................. 20 1.5.4 Models for HGT .............................................................................................. 21 1.5.5 HGT – where do we go from here? ................................................................. 21 1.6 A transcriptomic and phylogenomic approaches to study parasitic plants ................. 22 1.6.1 Driving questions for research on parasitic plants .......................................... 22 1.6.2 Sequencing technologies allow the capture of transcriptomes and genomes ............................................................................................................ 23 1.6.3 The power of phylogenomic approaches (polyploidy (gene duplication) and HGT) .......................................................................................................... 24 1.6.4 Overview of PPGP .......................................................................................... 26 iv Chapter 2 Identification of parasitism genes and the origin of the haustorium ...................... 28 2.1 Introduction to novel traits ......................................................................................... 29 2.2 Results ........................................................................................................................ 31 2.2.1 Assembly statistics and coverage .................................................................... 31 2.2.2 Validation of genes with known roles in Orobanchaceae parasitism .............. 34 2.2.3 Differential gene expression and clustering to identify haustorial genes ........ 36 2.2.4 Shared haustorial genes are enriched for proteolysis and extracellular region localization ............................................................................................ 38 2.2.5 Two examples illustrating haustorial gene expression evolution .................... 42 2.2.6 Identifying haustorial initiation genes and “parasitism genes” ....................... 44 2.2.7 A majority of parasitism genes evolved through gene duplication ................. 47 2.2.8 Regulatory neofunctionalization and origin of the haustorium from root and flower ......................................................................................................... 48 2.2.9 Parasitism genes show signatures of adaptive evolution or relaxed constraint in parasitic lineages ......................................................................... 52 2.2.10 The majority of the parasite-specific sequences have unknown functions ... 54 2.3 Discussion .................................................................................................................
Recommended publications
  • Attachment F - Additional Information on Ecology 2 December 2016 for Macmines Austasia Pty Ltd Page F-I
    PROJECT CHINA STONE Attachment MineF Additional Waste Information Storage Facilityon Ecology Conceptual Design Report F PROJECT CHINA STONE ADDITIONAL INFORMATION ON ECOLOGY COMMERCIAL IN CONFIDENCE INFORMATION HAS BEEN REDACTED Prepared by: HANSEN BAILEY Level 15, 215 Adelaide Street Brisbane QLD 4000 14 July 2017 For: MacMines Austasia Pty Ltd Suite 17, Level 9, 320 Adelaide Street Brisbane QLD 4000 Project China Stone Attachment F - Additional Information on Ecology 2 December 2016 for MacMines Austasia Pty Ltd Page F-i TABLE OF CONTENTS 1 INTRODUCTION ........................................................................................................... 1 1.1 OVERVIEW ................................................................................................................................ 1 1.2 PURPOSE AND SCOPE............................................................................................................ 1 1.3 DOCUMENT STRUCTURE ....................................................................................................... 2 2 HABITAT MODELLING FOR THREATENED FAUNA SPECIES.................................. 2 2.1 INTRODUCTION ........................................................................................................................ 2 2.2 BLACK THROATED-FINCH....................................................................................................... 2 2.2.1 Introduction ...................................................................................................... 2 2.2.2
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Resolution of Deep Angiosperm Phylogeny Using Conserved Nuclear Genes and Estimates of Early Divergence Times
    ARTICLE Received 24 Mar 2014 | Accepted 11 Aug 2014 | Published 24 Sep 2014 DOI: 10.1038/ncomms5956 OPEN Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times Liping Zeng1, Qiang Zhang2, Renran Sun1, Hongzhi Kong3, Ning Zhang1,4 & Hong Ma1,5 Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (B99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation. 1 State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratoryof Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China. 2 Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China.
    [Show full text]
  • An Overview About the Chemical Composition and Biological Activity of Medicinal Species Found in the Brazilian Amazon
    Journal of Applied Pharmaceutical Science Vol. 6 (12), pp. 233-238, December, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.601234 ISSN 2231-3354 An Overview about the chemical composition and Biological Activity of Medicinal species found in the Brazilian Amazon Fernanda Brum Pires1, Carolina Bolssoni Dolwitsch1, Valéria Dal Prá1, Débora Luana Monego2, Viviane Maria Schneider2, Roberta Fabrício Loose2, Marcella Emília Petra Schmidt2, Lucas P. Bressan2, Marcio Antônio Mazutti³, Marcelo Barcellos da Rosa1,2* 1Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. 2Post-Graduate Program in Chemistry, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ³Department of Chemical Engineering, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ABSTRACT ARTICLE INFO Article history: This paper presents an overview on the chemical composition and biological activity of plants found in the Received on: 20/05/2016 Brazilian Amazon – Bauhinia variegata, Cecropia obtusa, Cecropia palmata, Connarus perrottetti var. Revised on: 14/09/2016 angustifolius, Chrysobalanus icaco and Mansoa alliacea. The lack of information regarding these species, along Accepted on: 11/11/2016 with their importance given their pharmacological and nutritional use in Latin American folk medicine, justifies Available online: 28/12/2016 the demand for this study. However, various interesting and important actions, as antioxidant, antibacterial, Key words: cytotoxic, hypoglycemic, antifungal, antiangiogenic, antitumor, anti-inflammatory, antiulcer, and Biological activity, chemical chemopreventive have been modestly reported so far. In other words, these species can play a very important composition, Brazilian role in terms of biological and chemical activity, but their pharmacology is still poorly investigated.
    [Show full text]
  • An Account of Orobanche L. in Britain and Ireland
    Watsonia, 18, 257-295 (1991) 257 An accountof OrobancheL. in Britain and Ireland J. RUMSEY and S. L. JURY Departmentof Botany, Universityof Reading,P.O. Box 221,Reading, Berkshire, RG6 2AS ABSTRACT Morphological descriptions are given of the 14 speciesof Orobanche (Orobanchaceae) recorded in the British Isles, together with separate keys for identifying fresh material and herbarium specimens. Accounts of the history of the speciesare presented together with illustrations and distribution maps. The variation in Orobanche minor is accounted for with the recognition of four varieties. INTRODUcnON ..,,; . The genus Orobanche is renowned as a taxonomically very difficult one. In most casesthis is a result of many of the useful charactersbecoming lost on drying, and the lack of adequate field notes. Plants which are very distinct in the field become reduced to a hideous brown uniformity when pressed. Therefore, herbarium specimens are often incorrectly determined (an average of 5-10% in fact). The loss of characters on drying, considerable intra-specific variation, confusing synonymies, incorrectly cited names and badly described specieswith poor types (often with different specieson the same sheet) have done little to generate interest in the genus. Too many botanists have shown a reluctance to deal with this genusin herbaria, perpetuating the myth that the speciesare impossible to identify once dried. Certainly, Orobanche minor Sm. and its close relatives often cannot be positively determined without descriptive notes made at the time of gathering, but all other species from the British Isles are distinct enough not to need any additional information. It is hoped that this account will stimulate other botanists to study, identify and record members of this fascinating parasitic genus in Britain and Ireland, as well as clear up some errors and confusions made in the past.
    [Show full text]
  • Intriguing World of Weeds Orobanche-The Broomrapes1
    Intriguing World of Weeds Orobanche-The Broomrapes1 LARRY W. MIT1CH2 INTRODUCTION other early botanists. Broomrape first appeared in En!!­ Orobanchaceae, the broomrape family, comprises ap­ lish in Dodoens, "a new herbal or historie of plants" :is proximately 150 species in. 17 genera. Four genera translated from the French by Henry Lyte (1529?-1607) represented by four species occur in and published in 1578. Wrote he, "That excrescence the southeastern U.S. (21). A comming from the roote of Broome is called in Latine majority of the genera and about Ragum Genistae, that is to say Broome Rape" (20). 90% of the species in Oroban­ Cattle and sheep graze broomrape shoots with impu­ chaceae are Old World natives. The nity. However, the seeds pass unharmed through their family is primarily'one of the north­ alimentary tracts and can infest tobacco plants (9). ern warm and temperate zones. Indiscriminate grazing in infested fields disseminates the parasite. Only about 10% of the species oc­ cur in the tropics; only one species reaches the arctic (21). ECONOMIC IMPORTANCE A few species in Orobanchaceae are used in folk Broomrape-infested crops result in great economi-: medicine (21). Several Old World species are widely losses in southern Europe, particularly to beans distributed weeds. The genus Orobanche accommodates (Phaseolus sp.) in Italy. In the U.S., broomrape causes about 60 species of unbranched parasitic herbs, without considerable yield losses in tobacco, clover, tomatoes chlorophyll (21). The broomrapes are variable in color, (Lycopersicon esculentum Mill.), sunflowers (Helian­ ranging from yellowish-brown and reddish-violet to thus annuus L.), and broad beans (Vicia faba L.).
    [Show full text]
  • Download File
    International Journal of Current Advanced Research ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: SJIF: 5.995 Available Online at www.journalijcar.org Volume 7; Issue 3(B); March 2018; Page No. 10523-10525 DOI: http://dx.doi.org/10.24327/ijcar.2018.10525.1787 Research Article MORPHOLOGICAL AND STEM ANATOMICAL CHARACTERIZATION OF TRIBE BIGNONIEAE DUMORT. (BIGNONIACEAE) IN KERALA Anish Babu V B1* and Antony V T2 1Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India 2Development, St. Berchmans College Changanassery, Kottayam, Kerala 686101 ARTICLE INFO ABSTRACT Article History: Stem anatomical studies of four species; clytostoma binatum, Mansoa alliacea, Doxantha Received 7th December, 2017 unguis cacti, Pyrostegia venusta coming under tribe. Bignonieae (Bignoniaceae) were Received in revised form 16st carried out and compared. Tribe Bignonieae shows anomalous secondary growth and January, 2018 Accepted 25th February, 2018 special phloem wedges. Taxonomic confirmation depends on morphological and floral Published online 28th March, 2018 features.Based on stem anatomical characters a diagnostic key prepared which can be used as supporting tool for taxonomic delimitation of species. Key words: Clytostoma binatum, Mansoa alliacea, Doxantha unguis cacti, Pyrostegia venusta Copyright©2018 Anish Babu V B and Antony V T. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION Specimens all species were collected in the flowering stage, studied their morphology, compared with authenticated Bignonieae largest tribe in the family Bignoniaceae. It consist [1] specimens and determined their taxonomic identity. Voucher 377 species and nearly half of the species in this family .
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
    NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica.
    [Show full text]
  • Eucalyptus Parvula L.Johnson & K
    NSW SCIENTIFIC COMMITTEE Eucalyptus parvula L.Johnson & K. Hill (Myrtaceae) Review of Current Information in NSW June 2008 Current status: Eucalyptus parvula is currently listed as Vulnerable under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). The NSW Scientific Committee recently determined that Eucalyptus parvula meets criteria for listing as Endangered in NSW under the Threatened Species Conservation Act 1995 (TSC Act), based on information contained in this report and other information available for the species. Species description: Eucalyptus parvula is described in Brooker et al. (2000) as follows: “Tree to 10 m tall. Bark smooth throughout or with some persistent rough, grey bark on lower trunk; smooth bark predominantly dark grey, at times with ribbons of decorticated bark in the upper branches. Juvenile stem rounded in cross-section; juvenile leaves opposite for many pairs, sessile, elliptical to ovate or lanceolate, 1.6-4cm long, 0.9-1.3cm wide, green. Crown characteristically retains large numbers of juvenile leaves, with some petiolate, lanceolate intermediate and adult leaves. Crown leaves opposite or alternate, petiole 0-0.3cm long, elliptical to lanceolate, 3-8cm long, 0.5- 1.5cm wide, base tapering to petiole, concolorous, dull, green, penniveined, moderately reticulate, intramarginal vein parallel to and just within margin, oil glands mostly island. Inflorescences axillary unbranched, peduncles 0.3-0.7cm long, 7-flowered; buds sessile, ovoid to clavate, smooth or slightly warty, scar present, operculum conical to rounded, stamens irregularly flexed or inflexed, anthers cuboid to globoid, versatile, slits separate, style short, stigma blunt, locules 3 or 4, the placentae each with 4 vertical ovule rows; flowers white.
    [Show full text]
  • Horizontal Gene Transfer Is More Frequent with Increased
    Horizontal gene transfer is more frequent with PNAS PLUS increased heterotrophy and contributes to parasite adaptation Zhenzhen Yanga,b,c,1, Yeting Zhangb,c,d,1,2, Eric K. Wafulab,c, Loren A. Honaasa,b,c,3, Paula E. Ralphb, Sam Jonesa,b, Christopher R. Clarkee, Siming Liuf, Chun Sug, Huiting Zhanga,b, Naomi S. Altmanh,i, Stephan C. Schusteri,j, Michael P. Timkog, John I. Yoderf, James H. Westwoode, and Claude W. dePamphilisa,b,c,d,i,4 aIntercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; bDepartment of Biology, The Pennsylvania State University, University Park, PA 16802; cInstitute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; dIntercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; eDepartment of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; fDepartment of Plant Sciences, University of California, Davis, CA 95616; gDepartment of Biology, University of Virginia, Charlottesville, VA 22904; hDepartment of Statistics, The Pennsylvania State University, University Park, PA 16802; iHuck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; and jDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved September 20, 2016 (received for review June 7, 2016) Horizontal gene transfer (HGT) is the transfer of genetic material diverse angiosperm lineages (13, 14) and widespread incorpo- across species boundaries and has been a driving force in prokaryotic ration of fragments or entire mitochondrial genomes from algae evolution.
    [Show full text]
  • Vascular Plants of Santa Cruz County, California
    ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise.
    [Show full text]