Care and Diseases of Trout

Total Page:16

File Type:pdf, Size:1020Kb

Care and Diseases of Trout CARE AND DISEASES OF TROUT By H. S. DAVIS Revised edition, 1946 RESEARCH REPORT 12 Fish and Wildlife Service, Albert M. Day, Director United States Department of the Interior, J. A. Krug, Secretary UNITED STATES GOVERNMENT PRINTING OFFICE: 1947 For sale by the Superintendent of Documents, United States Government Printing Office, ABSTRACT HIS IS the third and most extensive revision of Care and Diseases of Trout. Care of trout at the hatchery, including the care of ponds and raceways, is treated at some length. This is followed by a general discussion of trout foods and methods of feeding, special attention being paid to the use of dry products for supplementing fresh meat in the diet. Some consideration is given to the improvement of brood stock and its practical value. A general discussion of parasites and diseases of trout, and their control, is followed by a detailed account of each disease, including the character- istic symptoms, etiology, pathology, and methods of control. The figures include drawings and photomicrographs of the more important organisms that cause trout diseases and their effects on the tissues. CARE AND DISEASES OF TROUT1 By H. S. DAVIS. PH.D., In charge, Aquicultural Investigations, Fish and Wildlife Service CONTENTS Page Page Introduction ................................................................... 1 Internal animal parasites—Continued Care of fingerling trout ............................................ 2 Schizamoeba salmonis ................................... 53 Care of ponds and raceways ..................................... 10 Myxosporidia ................................................... 54 Trout foods ..................................................................... 11 Coccidia in trout ............................................ 55 Feeding methods ............................................................ 18 Bacterial diseases ..................................................... 55 Improvement of stock ................................................ 19 Furunculosis .......................................................... 55 Parasites and diseases ................................................ 22 Ulcer disease ....................................................... 61 General considerations ......................................... 22 Peduncle disease ................................................ 63 General principles of disease control .............. 23 Fin rot ................................................................... 66 Sterilization of ponds and raceways ................ 27 Gill disease ............................................................ 68 External animal parasites ..................................... 28 Western type of gill disease .......................... 73 Trematoda .............................................................. 28 Cytophaga columnaris ..................................... 74 Gyrodactylus ................................................... 28 Miscellaneous diseases, including those of un- Discocotyle salmonis ..................................... 30 certain origin ................................................... 77 Parasitic copepods .............................................. 31 Fungus diseases ................................................... 77 Mussel glochidia ................................................... 33 Popeye ..................................................................... 82 Protozoa ................................................................... 35 Thyroid tumor or goiter ................................... 84 Costia ................................................................... 35 Intestinal inflammation ................................... 85 Chilodon .............................................................. 37 Fatty degeneration of the liver ..................... 85 Trichodina ....................................................... 39 Acute catarrhal enteritis ................................... 87 Ichthyophthirius .............................................. 41 Anemia ................................................................... 88 Internal animal parasites ..................................... 45 White-spot disease ............................................ 89 Parasitic worms ................................................... 45 Blue-sac disease ................................................... 89 Protozoa ................................................................. 49 Soft-egg disease ................................................... 91 Octomitus salmonis ....................................... 49 Literature cited ............................................................ 92 INTRODUCTION During recent years there has been a constantly increasing demand for larger trout for stocking purposes. At one time, most of the trout were planted as ad- vanced fry or, at least, before they reached a length of 3 to 4 inches. Except in commercial hatcheries few fingerling trout were fed for more than 2 or 3 months. At present, most fingerlings are held for much longer periods and large numbers of trout from 6 to 12 inches or more in length are planted each year. This change in stocking policy is due to the fact that in thickly populated sections, where the streams are fished intensively, even moderately good fish- ing can be maintained only by liberal plantings of large trout. Our streams can produce only a small part of the food required to support a trout population large enough to satisfy the demand in heavily fished waters. Either large trout must be supplied by hatcheries or fishing must be greatly curtailed. It is a comparatively simple matter to produce advanced fry in large num- bers with little loss, but if trout are to be held through the summer the trout culturist will be confronted with difficulties of various kinds, which must be met and overcome if the fish are to be kept healthy and growing rapidly during the summer. There is every reason to believe that heavy losses are unnecessary and, to a considerable extent, can be prevented. There are well-authenticated in- stances of small lots of trout that have been carried through the first year with Approved f or publication June 1945. 1 2 RESEARCH REPORT 12, FISH AND WILDLIFE SERVICE a total loss of less than 10 percent from the time the eggs were taken. No doubt this represents an exceptional condition that cannot be duplicated on a large scale, but, the fish culturist should try to approach this record. There is always some loss among the eggs, especially before they are "eyed," which in many cases reaches 20 to 30 percent or more. From the time the eggs are eyed, however, until the young fish begin to feed, there is usually very little loss. The final absorption of the yolk sac, which compels the advanced fry to seek its food from other sources, marks a critical period in the life of the young trout, which is sometimes attended with heavy losses. From this time until late summer or fall the mortality is often heavy and it is during this period that there is the greatest opportunity to cut down losses through the adoption of better methods of caring for the fingerlings. Usually, little difficulty is ex- perienced in carrying the trout through the ensuing winter if they are carefully graded according to size, so as to allow no opportunity for cannibalism. CARE OF FINGERLING TROUT Before discussing the conditions under which fingerling trout can be reared to best advantage, it is advisable to consider the natural habitat of young trout during the first few months of their lives. As is well known, trout normally spawn in the riffles of comparatively small, swiftly flowing streams. The young remain near the spawning grounds or work their way into even smaller streams during the first summer. In some instances, especially in northern localities, trout may spawn in ponds or lakes; but in such cases they usually seek gravel beds that are infiltrated with ground water from springs or seepage. Small brooks in which trout normally spawn usually contain but few large pools; consequently, there is a perceptible current almost everywhere. Even in the larger streams the small fingerlings are almost invariably found in shallow riffles or small side channels where there is a decided current and the water is well aerated. This fact is emphasized as it is believed that the more nearly natural conditions can be approximated in rearing fingerling trout, the better will be the chances of success. This means that the fish should be held where there is an abundant supply of well-aerated water and a perceptible current. Frequently, fingerling trout are held during their first summer in the troughs in which they were hatched. At many hatcheries, especially in the West, large troughs or tanks are provided to which fingerlings are transferred when the hatching troughs become too crowded. Unquestionably, these are superior to the standard hatchery troughs for rearing fingerlings and very good results are often obtained. Nevertheless, it is believed that there are several serious ob- jections to rearing trout in either troughs or tanks, and that much better re- sults would be obtained if the fish were moved outdoors early in the season. Standard hatchery troughs provide an ideal means of hatching eggs and hold- ing the fry, but after the fish begin feeding, other factors must be taken into consideration. In the first place, the rapidly growing fish constantly require additional space if they are to be kept in vigorous condition.
Recommended publications
  • Some Pathological Changes in Trout Organs Caused by Certain Strains of the Genera Cytophaga and Pseudomonas
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1954 Some pathological changes in trout organs caused by certain strains of the genera Cytophaga and Pseudomonas John W. Jutila The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Jutila, John W., "Some pathological changes in trout organs caused by certain strains of the genera Cytophaga and Pseudomonas" (1954). Graduate Student Theses, Dissertations, & Professional Papers. 6983. https://scholarworks.umt.edu/etd/6983 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. S O m PATHOLOGICAL CHANCES IN TROUT ORGANS CAUSED BY CERTAIN STRAINS OF THE GENERA CYTOPHAGA AND PSEÜDaîOKAS by JOHN WAYNE JUTILA B* A* Montana State University, 1953 Presented in partial fulfillment of the requirements for the degree of Master of Arts MONTANA STATE UNIVERSITY 1954 Approved b Board of JBxamin D^gm, (hrMuate School / Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37784 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Fish Health Quick Guide
    Fish Health Quick Guide Table of contents 1 Fish health ......................................................................................................................................... 1 2 Category 2 (Notifiable) ...................................................................................................................... 1 2.1 Cestodes (Tape worms) ................................................................................................................ 1 2.2 Nematodes (Round worms) .......................................................................................................... 1 2.3 Ergasilus briani .............................................................................................................................. 1 2.4 Ergasilus sieboldi (Gill maggot) .................................................................................................... 2 2.5 Thorny headed worm (Acanthocephalans) ................................................................................... 2 2.6 Gyrodactylus .................................................................................................................................. 2 3 Common FW external Parasites. ...................................................................................................... 3 3.1 Costia (Icthyobodo necatrix). ........................................................................................................ 3 3.2 Trichodina. ....................................................................................................................................
    [Show full text]
  • Cytophaga Aquatilis Sp
    INTERNATIONAL JOURNALOF SYSTEMATIC BACTERIOLOGY, Apr. 1978, p. 293-303 Vol. 28, No. 2 0020-7713/78/0028-0293$02.00/0 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S.A. Cytophaga aquatilis sp. nov., a Facultative Anaerobe Isolated from the Gills of Freshwater Fish WILLIAM R. STROHLT AND LARRY R. TAITtt Department of Biology, Central Michigan University, Mt. Pleasant, Michigan 48859 A facultatively anaerobic, gram-negative, gliding bacterium was isolated from the gills of freshwater fish. Its deoxyribonucleic acid base composition (33.7 mol% guanine plus cytosine), lack of microcysts or fruiting bodies, cell size (0.5 by 8.0 pm), and hydrolysis of carboxymethylcellulose and chitin place it in the genus Cytophaga. This aquatic cytophaga is differentiated from other cytophagas by its fermentation of carbohydrates, proteolytic capabilities, and a number of addi- tional physiological and biochemical tests. The organism was compared to other similar isolates reported from fish, and it appears to belong to a new species, for which the name Cytophaga aquatilis is proposed. The type strain of C. aquatilis, N, has been deposited with the American Type Culture Collection under the accession number 29551. Borg (3) described four strains of facultatively isolates are similar to those strains of faculta- anaerobic cytophagas isolated from salmon at tively anaerobic cytophagas described by Borg the Skagit Fish Hatchery near Seattle, Wash. (3), Pacha and Porter (14), Anderson and Con- He associated those strains with
    [Show full text]
  • My Fish Are Dying!
    My Fish Are Dying! Billy J. Higginbotham Todd D. Sink Professor & Extension Wildlife & Assistant Professor & Extension Fisheries Specialist Fisheries Specialist Fisheries biologists and county Extension agents will hear these words countless times throughout the year, especially during the summer months. As a general rule, small ponds intensively managed for catfish are the most susceptible to die-off problems. Other common scenarios for summer die-off problems are ponds with large quantities of aquatic vegetation, ponds that are heavily or frequently fed with commercial fish diets, ponds that were stocked heavily or excessively and biomass now exceeds carrying capacity, or ponds that experience phytoplankton die-offs caused by a multitude of different reasons. How do you determine the cause of a fish die- off? In most cases, asking the right questions will lead you to the cause or causes. Here are the questions I ask and the assessments made based on answers received to help a frantic pond owner: 1) When did the fish start dying and for how long have they been dying? The reason for this question is to determine if there is acute (very rapid) or chronic (slow and prolonged) mortality. The rate of fish mortality helps provide clues as to the cause. Oxygen depletions are typically acute mortality events in which the fish die quickly, within a few to several Solutions hours, and then the mortality ends. Chronic mortality spanning several days or even weeks is typically associated with disease or parasite issues where portions of the fish population die over prolonged periods. Exposure to lethal concentrations of pesticides or herbicides can cause either acute or chronic mortality, dependent upon the dose of the chemical the Aggie Extension fish were exposed to, although mortality tends to be more acute as toxic pesticides tend to dilute and degrade quickly in the aquatic environment by simple dilution, oxidation, microbial deterioration, or UV exposure.
    [Show full text]
  • Common Conditions in Freshwater Aquarium Fish Fish Are the Largest and Most Species-Rich Group of Vertebrates, Numbering 60,229 Species and Subspecies
    WILDLIFE and EXOTICS | FISH ONLINE EDITION Common conditions in freshwater aquarium fish Fish are the largest and most species-rich group of vertebrates, numbering 60,229 species and subspecies. Given there is such a plethora of species, fish have adapted to a wide range of aquatic environments – from the oceans to desert puddles, and from deep-sea hydrothermal vents to glacial mountain lakes and streams (Weber, Sonya Miles 2013). This article focuses on cold and tropical freshwater fish that are kept as pets. BVSc CertAVP(ZM) MRCVS Sonya qualified from Bristol In this author’s experience, University in 2013. After there are a large variety of beginning her professional pathogens that can affect career in small animal practice, freshwater fish. Stress she now works at Highcroft and subsequent immune Exotic Vets where she sees a suppression – invariably wide variety of species. She caused by poor water has a special interest in reptile quality – often underpin the medicine and surgery, but enjoys pathogenesis of many of all aspects of being an exotic these ubiquitous organisms. species veterinary surgeon. Underlying causes should, therefore, always be Sonya runs North Somerset investigated and corrected Reptile Rescue in her spare time. (Roberts et al, 2009; Roberts- Sweeney, 2016). Unlike mammalian patients, Figure 1. A blood sample being taken from the caudal vein in a fish. samples taken for culture and sensitivity testing in freshwater to cause infections and, as ensuring that the head is also fish should be cultured at such, first-choice antibiotics removed and the remaining room temperature (22°- should target them (Roberts- wound treated with a 25°C).
    [Show full text]
  • Deciphering the Biodiversity of Fish-Pathogenic Flavobacterium Spp
    Vol. 112: 45–57, 2014 DISEASES OF AQUATIC ORGANISMS Published November 13 doi: 10.3354/dao02791 Dis Aquat Org Deciphering the biodiversity of fish-pathogenic Flavobacterium spp. recovered from the Great Lakes basin Thomas P. Loch1, Mohamed Faisal1,2,* 1Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 174 Food Safety and Toxicology Building, Michigan State University, East Lansing, MI 48824, USA 2Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Natural Resources Building, Room 4, Michigan State University, East Lansing, MI 48824, USA ABSTRACT: Flavobacterial diseases negatively impact wild and cultured fishes worldwide. We recently reported on the presence of a large and diverse group of flavobacteria, many of which were associated with lesions in a number of Great Lakes fish species. Herein, we report on the characterization of 65 fish-associated Flavobacterium spp. isolates using 16S rRNA gene sequence analysis and phylogenetic analyses based upon neighbor-joining and Bayesian methodologies. Thirteen isolates were identified as the newly described fish-associated F. plurextorum, F. spar- tansii, and F. tructae, while 3 isolates were similar to F. frigidimaris; however, the remaining Flavobacterium spp. isolates did not conclusively match any described Flavobacterium spp. and thus were suspected as comprising novel flavobacterial species. A more comprehensive polypha- sic characterization was undertaken on 6 isolates, representing a range of association with disease signs in hatchery-raised or free-ranging fish and genetic distinctness. Polyphasic characterization included physiological, morphological, and biochemical analyses, as well as additional phyloge- netic analyses based upon near-complete sequencing of the 16S rRNA gene. Our findings demon- strated that that at least 5 of the 6 isolates are most likely novel species within the genus Flavobac- terium that have never before been reported from fish.
    [Show full text]
  • Fisheries Special/Management Report 08
    llBRARY INSTITUTE FOR FIS"· -��rs �ESEARCH University Museums Annex • Ann Arbor, Michigan 48104 •nuuu.uJt orr---- c om mon DISEASES. PARASITES.AnD AnomALIES OF ffilCHIGAn FISHES ■ ■ •• ■ ■ ■ •••••• ■• ■• ••••••• ■ ••• -••••• -----•• ■ ■ •• ■ ■ •••• ■ •••• ■• ■ ••••.• •• ■ ■ ■ ■• ■ •• ■ •••• ■ ■•• ••••••••••••••• ■• - Michigan Department Of Natural Resources • FIS• h er1es. · D ••IYISIOn• .. � .. ... .- .... ... MICHIGAN DEPARTMENT OF NATURAL RESOURCES INTEROFFICE COMMUNICATION Lake St. Clair Great Lakes Stati.on 33135 South River Road rt!:;..,I. R.. t-1 Mt. Clemens, Michigan 48045 . � ve - �Av . ... � ··�,- , ,. ' . TO: "1>ave Weaver,. Regional Fisheries Program Manager> Region. III RayRon Spitler,. Fisheries Biologist� District 14 .... ;·shepherd, -� Fis�eries Biologis.t11t District 11 FROM: Bob Baas ,. Biologise In Cbarge11t Lake St. Clair Great Lakes. Stati.ou SUBJECT: Impact of the red worm parasite on. Great Lakes yellow perch I recently receive4 an interim report fromh t e State of Ohio on red worm infestation of yellow perch in Lake Erie. The report is very long and tedious so 1·want·to summarize ·for you ·sou of the information which I think is important. The description of the red worm parasite in our 1-IDNR. disease manual is largely.outdated by this work. First ,. the Nematodes or round worms. locally called "red worms" ,. were positively identified as Eustrongylides tubifex. The genus Eustrongylides normally completes its life cycle in the proventiculus of fish-eating birds. E. tubifex was fed to domestic mallards and the red worms successfu11y matured but did not reach patentcy (females with obvtous egg development). Later abl examination of various wild aquatic birds collected on Lake Erie.showed that the red­ breasted merganser is the primary host for the adult worms. Next,. large numbers of perch were (and ra e still) being examined for rate of parasitism and its pot�ntial effects.
    [Show full text]
  • Culture of the Bacterial Gill Disease Organism, Flavobacterium Branchiophilum and Strain Differences Relevant to Epizoology
    Culture of the Bacterial Gill Disease Organism, Flavobacterium branchiophilum and Strain Differences Relevant to Epizoology by Iwona Skulska A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and Cellular Biology Guelph, Ontario, Canada © Iwona Skulska, October 2014 ABSTRACT Culture of the Bacterial Gill Disease Organism, Flavobacterium branchiophilum and strain differences relevant to epizoology. Iwona Skulska Advisor: Dr. Roselynn M.W. Stevenson University of Guelph, 2014 The isolation, growth, and long-term storage of Flavobacterium branchiophilum is difficult. The aims of this work were to define optimal culture and storage media that would allow for growth of F. branchiophilum and determine if there were phenotypic and genotypic differences amongst isolates. Flavobacterium branchiophilum grew best on Anacker and Ordal’s medium that was supplemented with millimolar amounts of KCl, CaCl2, and MgCl2; with growth and colony visibility further improved with the addition of charcoal; 53 isolates were isolated from Ontario on this improved medium. Cultures of F. branchiophilum were viable over a period of 2 years when suspended in 5% (w/v) skim milk powder in Cytophaga Salts Broth or 10% DMSO in Cytophaga Salts Broth and stored at -75°C. By transmission electron microscopy, all isolates examined possessed surface structures resembling pili, and had evidence of membrane vesicles (MV) and tubules. The gyrB gene had a 7% difference in the 820 nucleotides sequenced, which was observed in 10 isolates from a particular case of BGD in brook trout and 4 other isolates. Differences between sequences of atpA and tuf from ONT case 6199 and 4 other isolates were also detected.
    [Show full text]
  • Bacterial Fish Pathogens Diseases of Farmed and Wild Fish B
    Bacterial Fish Pathogens Diseases of Farmed and Wild Fish B. Austin and D. A. Austin Bacterial Fish Pathogens Diseases of Farmed and Wild Fish Fourth Edition J'V'v Published in association with ^ Springer Praxis Publishing Chichester, UK Professor B. Austin School of Life Sciences John Muir Building Heriot-Watt University Riccarton Edinburgh UK Dr D. A. Austin Research Associate Heriot-Watt University Riccarton Edinburgh UK SPRINGER-PRAXIS BOOKS IN AQUATIC AND MARINE SCIENCES SUBJECT ADVISORY EDITOR: Dr Peter Dobbins Ph.D., CEng., F.I.O.A., Senior Consultant, Marine Devision, SEA, Bristol, UK ISBN 978-1-4020-6068-7 Springer Dordrecht Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) A catalogue record of this book is available from the Library of Congress Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. © Praxis Publishing Ltd, Chichester, UK, 2007 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Bacterial Cold-Water Disease in Coho Salmon, Chinook Salmon, and Rainbow Trout
    Bacterial Coldwater Disease An Extension Bulletin for the Western Regional Aquaculture Center (WRAC) B. R. LaFrentz1 and K. D. Cain1 1 Department of Fish and Wildlife Resources and the Aquaculture Research Institute, University of Idaho, Moscow, ID 83844-1136 1 Table of Contents Introduction 1 Distribution 1 Host Susceptibility 2 Clinical Signs 2 Diagnosis 4 Transmission 4 Prevention and Treatment 5 Eggs 5 External Infections 5 Internal infections 6 Management of Coldwater Disease in the Future 6 References 6 Acknowledgments inside back cover Cooperative State Western United States Research Education Regional Department & Extension Service Aquaculture of Agriculture (CSREES) Center (WRAC) (USDA) 2 Introduction Bacterial coldwater disease (CWD) was first described in 1948 (Borg 1948). The causative agent of CWD, Flavobacterium psychrophilum, is a gram-negative bacterium that produces an acute septicemic infection in salmonids (Wood & Yasutake 1956) and a few other species (Lehman et al. 1991). The disease typically occurs at low temperatures and infected fish may exhibit a range of clinical signs, including large open lesions on the caudal peduncle (tail area). Hence, this disease has been referred to as peduncle disease and low-temperature disease. In Europe, the disease is referred to as rainbow trout fry syndrome (RTFS) due to impacts related to early life stage mortalities in trout. Flavobacterium psychrophilum is considered one of the most important salmonid pathogens worldwide (Michel et al. 1999) because of the severe mortalities caused by infection with this pathogen and the resulting economic impact among commercial aquaculture producers and conservation hatcheries. In recent years, the rainbow trout (Oncorhynchus mykiss) industry in the Hagerman Valley of southern Idaho has experienced severe disease problems associated with this bacterium.
    [Show full text]
  • 3 Infectious Diseases of Coldwater Fish in Marine and Brackish Water
    Color profile: Disabled Composite Default screen 3 Infectious Diseases of Coldwater Fish in Marine and Brackish Water Michael L. Kent1,* and Trygve T. Poppe2 1Department of Fisheries and Oceans, Biological Sciences Branch, Pacific Biological Station, Nanaimo, British Columbia V9R 5K6, Canada; 2Department of Morphology, Genetics and Aquatic Biology, The Norwegian School of Veterinary Science, PO Box 8196 Dep., N-0033 Oslo, Norway Introduction transferred with them to sea cages. Brown and Bruno (Chapter 4) deal with these Salmonids are the primary fishes reared in freshwater diseases, and our emphasis is cold seawater netpens. This component of infectious diseases that are contracted after the industry produces approximately transfer to sea cages. − 500,000 t year 1 on a worldwide basis. The principle species reared in netpens are Atlantic salmon (Salmo salar), coho Viral Diseases salmon (Oncorhynchus kisutch), chinook salmon (Oncorhynchus tshawytscha) and Several viruses are important pathogens of rainbow trout (Oncorhynchus mykiss). salmonid fishes, particularly during their Additional species include minor produc- early development in fresh water (Wolf, tion of Arctic char (Salvelinus alpinus), 1988). Viral diseases of fishes have histori- Atlantic cod (Gadus morhua), haddock cally been of great concern to fish health (Melanogrammus aeglefinus), Atlantic managers because they can cause high mor- halibut (Hippoglossus hippoglossus) and tality. In addition, the presence of certain Atlantic wolffish (Anarhichas lupus). The viruses in a fish population causes eco- purpose of this chapter is to review the most nomic hardships to fish farmers due to important infectious diseases affecting fish restrictions on transfer or sale of these fish. reared in cold seawater netpens.
    [Show full text]
  • Fresh-Water Fish Diseases in West Bengal, India
    International Journal of Fisheries and Aquatic Studies 2018; 6(5): 356-362 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 Fresh-water fish diseases in west Bengal, India (GIF) Impact Factor: 0.549 IJFAS 2018; 6(5): 356-362 © 2018 IJFAS Koustav Sen and Rimpa Mandal www.fisheriesjournal.com Received: 11-07-2018 Accepted: 13-08-2018 Abstract Present day diseases issues are of great concern in fish production. Similar to other animals, fish can also Koustav Sen suffer from different diseases. Every fish carry pathogens and parasites. The present study highlight the Department of Zoology, Zoology different fish diseases in west Bengal, India. Generally freshwater fish is the principal source of protein Colour Lab, West Bengal, India for people in many parts of the world. Disease is a main agent affecting fish mortality in young age. This problem affect our fish biodiversity. The most common freshwater fish diseases-Dropsy, Tail and Fin rot, Rimpa Mandal Koi Herpes virus, Vitamin-C Deficiency, Cloudy Eye, Lymphocystis, Furunculosis etc. Due to the water Department of Zoology, Zoology pollution, a huge amount of bacteria affect fish body, so our present study highlight the actual causes of Colour Lab, West Bengal, India different fish disease and their damaging power and their symptom. Keywords: Fish, diseases, micro-organisms and parasites, treatment and control 1. Introduction West Bengal is one of the leading producers of fresh water fish and the largest producer of fish seed production in the country. Similar to other animal’s fish can also suffer from various diseases.
    [Show full text]