1St Cover April2017 Issue.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infrared Spectra of Noble Gases (12000 to 19000 Ar Curtis 1
Journal of Research of the Nationa l Bureau of Sta ndards Vol. 49, No. 2, August 1952 Resea rch Paper 2345 Infrared Spectra of Noble Gases (12000 to 19000 Ar Curtis 1. Humphreys and Henry 1. Kostkowski . The first spectra of heliUl.n, neon, argon, krypton, and xe non, excited by discharges in gelssler t ubes, operated by direct connection to a transformer, have been explored in the ll1frared (1 2090 to 19000 A) . A hi~h-reso lu t.i o n , automatically recording, infrared spec trom eter, emploYlllg a. 15009-h~ es -p e r-lllch gratlllg and lead-sulfi de photocond ucting detector, was used as t he dlspersmg mstrument. A new set of wavelength values is reported for all t hese spectra. New data include 18 pre viously unreported lines of neon and 36 of krypton all of which have been. classified . .~h e descriptions of t he spectra of argon, krypton, and xe non represent essent ially a repetit IOn of t he observations of Sitt ner and Peck. Several prev io~ s l y missing classificat ions a re supplied, also a few amended interpretat ions. The analysIs of t hese spectra m ay be regarded as complete. Use of selected lines as wavelength standards is suggested., 1. Introduction mocouple detector were reported by Humphreys and Plyler [2] . These observations covered the same The essentially complete character of both the spec tral region in which the data herein reported were d escription and interpretation of th e photographed obtained, but, because of well-known limitations af spec tra of the noble atmospheric gases makes it fecting the precision of spectral data obtained by apparent that any reopening of th e subject can be prism spec trometers with thermal detectors, may be justified only on the basis of th e availability of new' considered as en tirely sup erseded by the presen t sources of information, such as a new technique of work. -
Nikola Tesla
Nikola Tesla Nikola Tesla Tesla c. 1896 10 July 1856 Born Smiljan, Austrian Empire (modern-day Croatia) 7 January 1943 (aged 86) Died New York City, United States Nikola Tesla Museum, Belgrade, Resting place Serbia Austrian (1856–1891) Citizenship American (1891–1943) Graz University of Technology Education (dropped out) ‹ The template below (Infobox engineering career) is being considered for merging. See templates for discussion to help reach a consensus. › Engineering career Electrical engineering, Discipline Mechanical engineering Alternating current Projects high-voltage, high-frequency power experiments [show] Significant design o [show] Awards o Signature Nikola Tesla (/ˈtɛslə/;[2] Serbo-Croatian: [nǐkola têsla]; Cyrillic: Никола Тесла;[a] 10 July 1856 – 7 January 1943) was a Serbian-American[4][5][6] inventor, electrical engineer, mechanical engineer, and futurist who is best known for his contributions to the design of the modern alternating current (AC) electricity supply system.[7] Born and raised in the Austrian Empire, Tesla studied engineering and physics in the 1870s without receiving a degree, and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. He emigrated in 1884 to the United States, where he became a naturalized citizen. He worked for a short time at the Edison Machine Works in New York City before he struck out on his own. With the help of partners to finance and market his ideas, Tesla set up laboratories and companies in New York to develop a range of electrical and mechanical devices. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company eventually marketed. -
Induction in Alocasia Macrorrhiza' Received for Publication December 8, 1987 and in Revised Form March 18, 1988
Plant Physiol. (1988) 87, 818-821 0032-0889/88/87/081 8/04/$0 1.00/0 Gas Exchange Analysis of the Fast Phase of Photosynthetic Induction in Alocasia macrorrhiza' Received for publication December 8, 1987 and in revised form March 18, 1988 MIKO U. F. KIRSCHBAUM2 AND ROBERT W. PEARCY* Department ofBotany, University ofCalifornia, Davis, California 95616 ABSTRACT and Pearcy (10) used gas exchange techniques to investigate the slow phase of induction from about 1 to 45 min. These studies When leaves ofAlocasia macrorrhiza that had been preconditioned in indicated that there might also be a fast phase of induction that 10 micromoles photons per square meter per second for at least 2 hours is complete within the first minute after an increase in PFD. This were suddenly exposed to 500 micromoles photons per square meter per fast induction phase is difficult to analyze with gas exchange second, there was an almost instantaneous increase in assimilation rate. techniques because instrument response times are typically so After this initial increase, there was a secondary increase over the next slow as to obscure the underlying plant response. In the present minute. This secondary increase was more pronounced in high CO2 (1400 study, measurements of the induction response were made in a microbars), where assimilation rate was assumed to be limited by the gas-exchange system modified to resolve very fast responses. This rate of regeneration of ribulose 1,5-bisphosphate (RuBP). It was absent investigation of the fast induction phase extends our work done in low CO2 (75 microbars), where RuBP carboxylase/oxygenase (Rub- previously on the dynamics of photosynthesis of the Australian isco) was assumed to be limiting. -
Modelling Transitions in Consumer Lighting — Consequences of the E.U
Modelling Transitions in Consumer Lighting — Consequences of the E.U. ban on light bulbs Maarten Afman Energy & Industry section Infrastructure Systems & Services Faculty of Technology, Policy and Management Delft University of Technology Modelling Transitions in Consumer Lighting — Consequences of the E.U. ban on light bulbs M.Sc. Thesis ‘Final version d.d. 4th February 2010’ Maarten Afman Graduation committee: Prof.dr.ir. M.P.C. Weijnen (chair; TU Delft, Energy & Industry section ) Dr.ir. G.P.J. Dijkema (first supervisor; TU Delft, Energy & Industry section) Dr.ir. C. van Daalen (second supervisor; TU Delft, Policy Analysis section) ir. E.J.L. Chappin (daily supervisor; TU Delft, Energy & Industry section) dr. W. Jager (external supervisor; University of Groningen, Marketing department) Programme SEPAM – Systems Engineering, Policy Analysis and Management Graduation Delft, 18th February 2010 Address M.R. Afman, v.d. Heimstr. 55, 2613EA Delft, The Netherlands E-mail addr. [email protected] Student no. 9006424 Energy & Industry section Infrastructure Systems & Services Faculty of Technology, Policy and Management Delft University of Technology Summary The need for a ban on bulbs? Energy consumption of the residential lighting sector is high: 3.8 TWh per year for the Netherlands alone, approximately the production of a power plant of 800 MW. Consequently, if 40% of the energy consumption for consumer lighting could be saved, a 320 MW power plant could be taken off the grid. Such a saving would be realistic if consumers would not rely so much on outdated and inefficient lighting technology, i.e. the standard incandescent light bulb and halogen lighting. -
Lesson 2: Ohm's Law with Light Bulbs and Leds
NNIN Nanotechnology Education Teacher’s Preparatory Guide Lesson 2: Ohm’s Law with Light Bulbs and LEDs Purpose: The purpose of this activity is to illustrate ohmic and non-ohmic materials in a simple series circuit. This activity will introduce semiconductors as diodes so that future activities may build upon this idea to conclude with micro/nano-circuits. Time required: 45 – 55 minutes Level: High School Physics Teacher Background: Ohm’s Law. Georg Simon Ohm discovered that materials have an ohmic, or linear, region. His equation (Eqn 1) explains that as the potential Figure 1. Photograph of LEDs. difference (V) increases, so does the current (I), and the (www.ohgizmo.com/wp- content/uploads/2007/10/led_of_l relationship is linear to a point. The slope of a voltage vs. ed_1%20(Custom).jpg) current plot yields the resistance (R). Temperature affects the resistance. If a resistor heats up, the value of its resistance increases, and the resistor is now considered non-ohmic. Non-ohmic materials have a non-linear relationship between voltage and current. ∆V = IR Eqn 1 Resistivity Resistivity () is an electrical property of a material. Its relation to resistance (R) is shown in Equation 2. The equations that relate resistivity to temperature, and resistance to temperature, are shown below in Equation 3 & 4. The temperature coefficient of resistance is alpha () and it is a material constant. T0, 0, and R0 represent the known temperature, resistivity, and resistance, respectively. L R = ρ Eqn 2 A ρ = ρ0 [1+ α(T − T0 )] Eqn 3 R = R0 [1+ α(T − T0 )] Eqn 4 Diodes & LEDs Figure 1 shows typical LEDs used in electrical circuits. -
Tracing the Recorded History of Thin-Film Sputter Deposition: from the 1800S to 2017
Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017 Cite as: J. Vac. Sci. Technol. A 35, 05C204 (2017); https://doi.org/10.1116/1.4998940 Submitted: 24 March 2017 . Accepted: 10 May 2017 . Published Online: 08 September 2017 J. E. Greene COLLECTIONS This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Review Article: Plasma–surface interactions at the atomic scale for patterning metals Journal of Vacuum Science & Technology A 35, 05C203 (2017); https:// doi.org/10.1116/1.4993602 Microstructural evolution during film growth Journal of Vacuum Science & Technology A 21, S117 (2003); https://doi.org/10.1116/1.1601610 Overview of atomic layer etching in the semiconductor industry Journal of Vacuum Science & Technology A 33, 020802 (2015); https:// doi.org/10.1116/1.4913379 J. Vac. Sci. Technol. A 35, 05C204 (2017); https://doi.org/10.1116/1.4998940 35, 05C204 © 2017 Author(s). REVIEW ARTICLE Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017 J. E. Greenea) D. B. Willett Professor of Materials Science and Physics, University of Illinois, Urbana, Illinois, 61801; Tage Erlander Professor of Physics, Linkoping€ University, Linkoping,€ Sweden, 58183, Sweden; and University Professor of Materials Science, National Taiwan University Science and Technology, Taipei City, 106, Taiwan (Received 24 March 2017; accepted 10 May 2017; published 8 September 2017) Thin films, ubiquitous in today’s world, have a documented history of more than 5000 years. However, thin-film growth by sputter deposition, which required the development of vacuum pumps and electrical power in the 1600s and the 1700s, is a much more recent phenomenon. -
!History of Lightingv2.Qxd
CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting. -
Incandescent Light Bulb Disposal Halogen Light Bulb Disposal CFL
What do you do when your light bulbs burn out? Different types of light bulbs require different disposal methods to keep your family, and the planet, safe and healthy. Check out our light bulb disposal guide for information on how you should dispose of or recycle the various bulb types you may have around the house. Incandescent light bulb disposal The old, incandescent light bulbs are on their way out, being replaced by more efficient alternatives. These traditional bulbs are either a vacuum, or have been filled with an inert gas to avoid chemical reactions. Since the materials which make up these bulbs are nontoxic, it is ok to dispose of them with your garbage. Many areas do not accept incandescent light bulbs for recycling, but check with your local provider to make sure. Incandescent bulbs are fragile and can break in your garbage container; avoid accidents by disposing of your incandescent bulbs inside used packaging or another item which can contain the glass if it breaks. Halogen light bulb disposal Halogen light bulbs are typically used as flood lights, and can be found outdoors as well as inside. They contain halogen gas inside the tube which holds their filament. Like incandescent bulbs, recycling programs do not commonly accept halogen bulbs. Halogen bulbs do not contain toxic materials, so it is safe to throw them out with your household garbage if you cannot find a recycling solution. CFL light bulb disposal Unlike incandescent and halogen light bulbs, CFLs (compact fluorescent lamps) contain small amounts of mercury. Because of the mercury they contain, CFLs should be recycled for safe light bulb disposal. -
The Electric-Lamp Industry
Massachusetts Institute of Technology Studies of Innovation • GiSma,..=("EaEssormat THE MACMILLAN COMPANY THE ELECTRIC-LAMP INDUSTRY: NEW YORK a BOSTON a CHICAGO DALLAS • ATLANTA • SAN FRANCISCO MACMILLAN AND CO., LIMITED Technological Change and Economic LONDON a BOMBAY a CALCUTTA MADRAS a MELBOURNE Development from 1800 to 1947 THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO By ARTHUR A. BRIGHT, Jr. THE MACMILLAN COMPANY • NEW YORK 1949 FOREWORD THIS study of the economic development of the electric- lamp industry is the second volume in a series of studies on the economics of innovation, undertaken at the Massachusetts Insti- tute of Technology. The creative role played by science and technology in modern economic life is apparent to everyone. But we know relatively little about the human factors which condition the introduction of technological change into our environment. Are there barriers to innovation inherent in the increasing concentration of power in a few large concerns? Does the patent system, designed as an incentive to invention, act more often as a brake on new develop- ments? What has been the role of key personalities in creating change? Are there lessons to be drawn from the past on how the innovating process can be more effective, not only from the standpoint of achieving a higher standard of material being but from the point of view of smoother human relations? Certainly, material progress at any price is not a satisfactory goal. On the other hand, freedom for creative action in initiating and carrying out new developments is a basic human drive for many individu- als. I believe, personally, that a great society should strive toward a goal which will give to individuals and groups the maximum opportunities for creative expression; yet this means to me that the State must act to prevent the compulsive pressure of some particular group from overriding others to the destruction of human values. -
History of Electric Light
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal -
General Bulb
General Bulb Standard Ultra Bright 7 SMT LED Light-45859……………………………...…………………………..1 Standard Ultra Bright 6 Watt LED Light-78469……………………………………..…..……..………...1 Standard Ultra Bright Five 1 Watt LED Light-42522……..……………………………………………...2 Side Firing LED Light-45376………..……………………………………………………………………2 GU24 5 Watt LED Light-24325……………………………….……………………………………...…..2 Ultra Bright Candle LED Light-63452………………………...………………………………………….3 8 Watt LED Light Bulb-56963……………………………………………………………………………3 1.3 Watt LED Light Bulb-34678……………………...……………………………………………..……3 24 LED Light Bulb-48645……………………………………………………………………..………….4 3 Watt LED Light Bulb-75644……………….…………………………………………………………...4 104 LED 5 Watt LED Light Bulb-47208…………………………………………………………………4 Low Profile Candle E14 Base LED Light Bulb-34324………………………………………………..….5 Motion activated LED Light Bulb-45703…….…………………………………………………………..5 5 Watt LED Light-83428……………..…………………………………………………………………...5 8 ½ Watt L.E.D. Light Bulb-47856………………………………………………………………...……..6 13.5 Watt 88 Super Flux L.E.D. Light Bulb-43567…………………………………...………………….6 20 Watt 128 Super Flux L.E.D. Light Bulb-73215……………………………………………………….6 Globe LED Lamp E12 Base-19567…………….…………...………………………………………..…...7 High Power Appliance LED Light Bulb-83548…………………………….…………………………….7 1.5 Watt Appliance E17 Base LED Light Bulb-94753…………………………………………………...7 Standard 3 Watt LED Light Bulb-23430…………………………………………………………...……..8 7 Watt LED Light Bulb-74556……………….…………………………………………………………...8 11 Watt LED Light Bulb-34562…………………….……………...………..……………………………8 Globe LED Light Bulb-78427………………….…………………………………………………………9 -
Incandescent Light Bulbs Based on a Refractory Metasurface "2279
hv photonics Article Incandescent Light Bulbs Based on a Refractory y Metasurface Hirofumi Toyoda 1, Kazunari Kimino 1, Akihiro Kawano 1 and Junichi Takahara 1,2,* 1 Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; [email protected] (H.T.); [email protected] (K.K.); [email protected] (A.K.) 2 Photonics Center, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan * Correspondence: [email protected]; Tel.: +81-6-6879-8503 Invited paper. y Received: 5 September 2019; Accepted: 9 October 2019; Published: 12 October 2019 Abstract: A thermal radiation light source, such as an incandescent light bulb, is considered a legacy light source with low luminous efficacy. However, it is an ideal energy source converting light with high efficiency from electric power to radiative power. In this work, we evaluate a thermal radiation light source and propose a new type of filament using a refractory metasurface to fabricate an efficient light bulb. We demonstrate visible-light spectral control using a refractory metasurface made of tantalum with an optical microcavity inserted into an incandescent light bulb. We use a nanoimprint method to fabricate the filament that is suitable for mass production. A 1.8 times enhancement of thermal radiation intensity is observed from the microcavity filament compared to the flat filament. Then, we demonstrate the thermal radiation control of the metasurface using a refractory plasmonic cavity made of hafnium nitride. A single narrow resonant peak is observed at the designed wavelength as well as the suppression of thermal radiation in wide mid-IR range under the condition of constant surface temperature.