The Evolution of Termite Immunity

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Termite Immunity The evolution of termite immunity Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Shulin He 2018 The doctorate studies were conducted under supervision of Prof. Dr. Dino P. McMahon from September 2014 to September 2018 in the Institute of Biology. 1st Reviewer: Prof. Dr. Dino P. McMahon 2nd Reviewer: Prof. Dr. Jens Rolff_____ date of defense: ____25. 10. 2018______ Acknowledgments First and foremost, I would like to express my sincere gratitude to my advisor Prof. Dr. Dino P. McMahon. It has been an honor to be his first PhD student. I appreciate his contribution of time, ideas and funding to my project and any related research. It is his patience, motivation and encouragement that helped me to finish this work. His broad knowledge and his excellent guidance to science helped me succeed my PhD. I would like to express many thanks to the following persons: Thorben, Stefania, Alejandra, James for their professional and personal help and advice. I want to thank Thorben and James for their help to improve this thesis. With their company, the time I spent over the last four years has become invaluable memories. I would like to sincerely thank the Rolff group at Institute of Biology that have contributed immensely to my personal and professional time during my PhD. I am grateful to Prof. Dr. Jens Rolff for his introduce, guidance, instructive advice, valuable professional comments, all of which improved my work and expanded my knowledge in science. His help and advice have excelled me in many other aspects. I am thankful to Dr. Paul R. Johnston for his great help, patient instructions and numerous discussions on bioinformatic analysis and in other ways. It is his guidance that made it possible for me to learn bioinformatics and analyze sequence data in my project. His advice on many other aspects also improved me and gave me courage to keep on. I would like to thank Renate Radek who provided important higher termite species which made a great improvement for my work. I also appreciate other members from that group: Alex, Baydaa, Bin, Christin, Guozhi, Miko, Regina, Sabine for their professional and personal advice and help during my PhD. I also would like to thank the following persons: Sophie, Luis, Bea from the Armitage group for their useful advice and company. My appreciation also goes to the colleagues of Bundesanstalt für Materialforschung und - prüfung where I did almost all my work over the last four years. I would like to thank Dr. Rüdiger Plarre for allowing me to use termites and for his help on improving my thesis. I want to thank Yvonne for providing much help on catching the termites for studies. I also would like to thank Annett, Ronald and Thomas Dimke for their help on performing experiments, collecting termites and other personal matters. I want to thank Kerstin for her help on the improvement of this thesis and many other personal matters. I would like to thank all other colleagues whose names are not listed here but gave me personal or professional help. It is a great honor to meet and work with them. The valuable time and experience with them will always be remembered. I would like to thank Prof. Dr. Zongqing Wang and Prof. Dr. Yanli Che from Southwest University, China, who provided much help on sampling subsocial cockroaches. They were very kind host, had valuable expertise on subsocial cockroaches, and provided students with space for performing experiment. It is a great pleasure to me to know them and collaborate with them. I also would like to thank Susan Mbedi and other members from Berlin Center for Genomics in Biodiversity Research for their professional help and host for all transcriptome sequencing. In addition, I want to acknowledge Benno and Christoph for their help and expertise in proteomics. I also want to thank Jan Šobotník for providing important samples of higher termites. I am grateful to many Chinese friends. My time in last four years was made enjoyable in large part also due to the time we spent together. It is a great pleasure to meet and have fun with them. Their company and support were valuable experiences that will be deeply remembered. I would like to thank my family for their enormous encouragement and support. Most of all, I want to thank my girlfriend, who stands by my side with her patience, encouragement and support. It was them who gave me courage to have this valuable experience and to finish this work. I want to acknowledge the Chinese Scholarship Council that provided me a four year PhD scholarship. At last, I also would like to thank a lot of people whose names are not listed here for any kind of help they provided during my PhD. Words are not enough to express my gratitude. Thank you all. Table of contents List of abbreviations ...................................................................................................................... General introduction .................................................................................................................... 1 1.1 Biology of termites .................................................................................................. 2 1.1.1 Phylogeny of termites ...................................................................................... 2 1.1.2 Termites as social insects ................................................................................ 3 1.2 Immunity in social insects ....................................................................................... 5 1.2.1 Individual immunity .......................................................................................... 6 1.2.2 Social immunity ................................................................................................ 7 1.2.3 Immunity in cockroaches.................................................................................. 8 1.2.4 Evolution of immunity in social insects ............................................................. 8 1.3 Aim of the thesis ..................................................................................................... 8 1.4 Description of project .............................................................................................. 9 Chapter I An expanded repertoire of immune genes in the cockroach Blatta orientalis as revealed by de novo transcriptome analysis ......................................................... 11 2.1 Abstract ................................................................................................................ 12 2.2 Introduction ........................................................................................................... 13 2.3 Material and Methods ........................................................................................... 15 2.4 Results .................................................................................................................. 19 2.4.1 Transcriptome statistics ................................................................................. 19 2.4.2 Immune related gene identification ................................................................ 20 2.4.3 Gene ontology enrichment analysis following immune challenge ................... 20 2.4.4 Immune gene regulation after infection .......................................................... 21 2.5 Discussion ............................................................................................................ 22 2.6 Acknowledgements ............................................................................................... 26 Chapter II Evolution of termite immunity during the transition of eusociality ............... 27 3.1 Abstract ................................................................................................................ 28 3.2 Introduction ........................................................................................................... 29 3.3 Materials and Methods .......................................................................................... 31 3.4 Results .................................................................................................................. 37 3.4.1 Transcriptome and annotation statistics ......................................................... 37 3.4.2 Phylogenetic analysis .................................................................................... 37 3.4.3 Expansion and contraction of immune gene families ...................................... 40 3.4.4 Immune response in termite castes and cockroaches .................................... 41 3.5 Discussion ............................................................................................................ 44 3.6 Acknowledgements ............................................................................................... 48 Charpter III Termite soldiers contribute to social immunity by synthesizing potent oral secretions .......................................................................................................................... 49 4.1 Abstract ................................................................................................................ 50 4.2 Introduction ........................................................................................................... 51 4.3 Materials and Methods .......................................................................................... 52 4.4
Recommended publications
  • Evolution and Ecology of Termite Nesting Behavior and Its Impact On
    1 Evolution and Ecology of Termite Nesting Behavior and Its Impact on Disease Susceptibility A dissertation presented by Marielle Aimée Postava-Davignon to The Department of Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Biology Northeastern University Boston, Massachusetts April, 2010 2 Evolution and Ecology of Termite Nesting Behavior and Its Impact on Disease Susceptibility by Marielle Aimée Postava-Davignon ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology in the Graduate School of Arts and Sciences of Northeastern University, April, 2010 3 Abstract Termites construct nests that are often structurally species-specific. They exhibit a high diversity of nest structures, but their nest evolution is largely unknown. Current hypotheses for the factors that influenced nest evolution include adaptations that improved nest thermoregulation, defense against predators, and competition for limited nest sites. Studies have shown a lower prevalence of pathogens and parasites in arboreal nesting animal species compared to ground nesters. Nest building behavior is plastic and can adapt to changing environments. As termites can detect and avoid pathogens, I hypothesized that the evolution of arboreal termite nests was an adaptation to avoid infection. To test this, bacteria and fungi from nest cores, trails, and surrounding soils of the arboreal nesting Nasutitermes acajutlae were cultured. Abiotic factors such as temperature, relative humidity, and light were measured to elucidate how they influenced the interactions between termites and microbes. Fungi associated with N. acajutlae were identified to determine the potential pathogenic pressures these termites encounter in their nest as compared to the external environment.
    [Show full text]
  • Cockroach Marion Copeland
    Cockroach Marion Copeland Animal series Cockroach Animal Series editor: Jonathan Burt Already published Crow Boria Sax Tortoise Peter Young Ant Charlotte Sleigh Forthcoming Wolf Falcon Garry Marvin Helen Macdonald Bear Parrot Robert E. Bieder Paul Carter Horse Whale Sarah Wintle Joseph Roman Spider Rat Leslie Dick Jonathan Burt Dog Hare Susan McHugh Simon Carnell Snake Bee Drake Stutesman Claire Preston Oyster Rebecca Stott Cockroach Marion Copeland reaktion books Published by reaktion books ltd 79 Farringdon Road London ec1m 3ju, uk www.reaktionbooks.co.uk First published 2003 Copyright © Marion Copeland All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publishers. Printed and bound in Hong Kong British Library Cataloguing in Publication Data Copeland, Marion Cockroach. – (Animal) 1. Cockroaches 2. Animals and civilization I. Title 595.7’28 isbn 1 86189 192 x Contents Introduction 7 1 A Living Fossil 15 2 What’s in a Name? 44 3 Fellow Traveller 60 4 In the Mind of Man: Myth, Folklore and the Arts 79 5 Tales from the Underside 107 6 Robo-roach 130 7 The Golden Cockroach 148 Timeline 170 Appendix: ‘La Cucaracha’ 172 References 174 Bibliography 186 Associations 189 Websites 190 Acknowledgements 191 Photo Acknowledgements 193 Index 196 Two types of cockroach, from the first major work of American natural history, published in 1747. Introduction The cockroach could not have scuttled along, almost unchanged, for over three hundred million years – some two hundred and ninety-nine million before man evolved – unless it was doing something right.
    [Show full text]
  • Isoptera) in New Guinea 55 Doi: 10.3897/Zookeys.148.1826 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 148: 55–103Revision (2011) of the termite family Rhinotermitidae (Isoptera) in New Guinea 55 doi: 10.3897/zookeys.148.1826 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea Thomas Bourguignon1,2,†, Yves Roisin1,‡ 1 Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium 2 Present address: Graduate School of Environmental Science, Hokkaido Uni- versity, Sapporo 060–0810, Japan † urn:lsid:zoobank.org:author:E269AB62-AC42-4CE9-8E8B-198459078781 ‡ urn:lsid:zoobank.org:author:73DD15F4-6D52-43CD-8E1A-08AB8DDB15FC Corresponding author: Yves Roisin ([email protected]) Academic editor: M. Engel | Received 19 July 2011 | Accepted 28 September 2011 | Published 21 November 2011 urn:lsid:zoobank.org:pub:27B381D6-96F5-482D-B82C-2DFA98DA6814 Citation: Bourguignon T, Roisin Y (2011) Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea. In: Engel MS (Ed) Contributions Celebrating Kumar Krishna. ZooKeys 148: 55–103. doi: 10.3897/zookeys.148.1826 Abstract Recently, we completed a revision of the Termitidae from New Guinea and neighboring islands, record- ing a total of 45 species. Here, we revise a second family, the Rhinotermitidae, to progress towards a full picture of the termite diversity in New Guinea. Altogether, 6 genera and 15 species are recorded, among which two species, Coptotermes gambrinus and Parrhinotermes barbatus, are new to science. The genus Heterotermes is reported from New Guinea for the first time, with two species restricted to the southern part of the island.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Isoptera Book Chapter
    Isoptera 535 See Also the Following Articles Biodiversity ■ Biogeographical Patterns ■ Cave Insects ■ Introduced Insects Further Reading Carlquist , S. ( 1974 ) . “ Island Biology . ” Columbia University Press , New York and London . Gillespie , R. G. , and Roderick , G. K. ( 2002 ) . Arthropods on islands: Colonization, speciation, and conservation . Annu. Rev. Entomol. 47 , 595 – 632 . Gillespie , R. G. , and Clague , D. A. (eds.) (2009 ) . “ Encyclopedia of Islands. ” University of California Press , Berkeley, CA . Howarth , F. G. , and Mull , W. P. ( 1992 ) . “ Hawaiian Insects and Their Kin . ” University of Hawaii Press , Honolulu, HI . MacArthur , R. H. , and Wilson , E. O. ( 1967 ) . “ The Theory of Island Biogeography . ” Princeton University Press , Princeton, NJ . Wagner , W. L. , and Funk , V. (eds.) ( 1995 ) . “ Hawaiian Biogeography Evolution on a Hot Spot Archipelago. ” Smithsonian Institution Press , Washington, DC . Whittaker , R. J. , and Fern á ndez-Palacios , J. M. ( 2007 ) . “ Island Biogeography: Ecology, Evolution, and Conservation , ” 2nd ed. Oxford University Press , Oxford, U.K . I Isoptera (Termites) Vernard R. Lewis FIGURE 1 Castes for Isoptera. A lower termite group, University of California, Berkeley Reticulitermes, is represented. A large queen is depicted in the center. A king is to the left of the queen. A worker and soldier are he ordinal name Isoptera is of Greek origin and refers to below. (Adapted, with permission from Aventis Environmental the two pairs of straight and very similar wings that termites Science, from The Mallis Handbook of Pest Control, 1997.) Thave as reproductive adults. Termites are small and white to tan or sometimes black. They are sometimes called “ white ants ” and can be confused with true ants (Hymenoptera).
    [Show full text]
  • Dictyoptera: Blattaria: Polyphagidae) from Korea Reveal About Cryptocercus Evolution? a Study in Morphology, Molecular Phylogeny, and Chemistry of Tergal Glands
    PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 151: 61±79. 31 DECEMBER 2001 What does Cryptocercus kyebangensis, n.sp. (Dictyoptera: Blattaria: Polyphagidae) from Korea reveal about Cryptocercus evolution? A study in morphology, molecular phylogeny, and chemistry of tergal glands PHILIPPE GRANDCOLAS,1 YUNG CHUL PARK,2 JAE C. CHOE,3 MARIA-DOLORS PIULACHS,3 XAVIER BELLEÂS,3 CYRILLE D'HAESE,1 JEAN-PIERRE FARINE,4 AND REÂMY BROSSUT4 1ESA 8043 CNRS, Laboratoire d'Entomologie, MuseÂum national d'Histoire naturelle, 45, rue Buffon, 75005 Paris, FranceÐ [email protected] 2School of Biological Sciences, Seoul National University, Kwanak-ku Shilim-dong San 56-1, Seoul 151-742, South Korea 3Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona (CSIC), Jordi Girona 18, 0834 Barcelona, Spain 4UMR 5548 CNRS, Faculte des Sciences, Universite de Bourgogne, 6, bd. Gabriel, 21000 Dijon, France ABSTRACTÐThe description of a new species of the woodroach Cryptocercus kyebangensis Grandcolas from South Korea offers the opportunity to bring comparative information within the genus. This species, though morphologically very similar to other East Asian and North American species, presents conspicuous differentiation of both ribosomal genes (sequenced fragments of 12S and 16S) and chemical blends from tergal glands (proportions of linalyl acetate and the alcohol 4, 6, 8-trimethyl-7, 9- undecadien-5-ol, compounds previously identi®ed in females originating from North America). A phylogenetic reconstruction involving Blatta orientalis as an outgroup, Therea petiveriana as a polyphagid relative, C. kyebangensis and 17 North American Cryptocercus populations showed that C. kyebangensis stands as a sister-group of North American Cryptocercus, thus suggesting that one beringian vicariance has taken place in the early differentiation of the genus.
    [Show full text]
  • Termite Biology and Research Techniques
    Termite Biology and Control 2017 ENY 4221 / ENY 6248 2 credit hours Ft. Lauderdale Research and Education Center University of Florida 3205 College Ave. Ft. Lauderdale, FL 33314 Dates: Registration Deadline is Friday May 5, 2017 for Summer C Lectures and Laboratory Activities June 19-23, 2017 in FLREC Teaching Lab Rm 121 Exam and Term Papers due Friday July 28, 2017 Instructors: Dr. Rudolf Scheffrahn (954) 577-6312 [email protected] Dr. Nan-Yao Su (954) 577-6339 [email protected] Dr. William Kern, Jr. (954) 577-6329 [email protected] Dr. Thomas Chouvenc (954) 577-6320 [email protected] Teaching Assistant: Aaron Mullins (954) 577-6395 [email protected] Course Objectives: • Students will learn about the natural history, ecology, behavior, and distribution of all seven major termite families. • Students will be able to recognize three major termite families and 16 important genera. • Six primary invasive pest species must be recognized to species. • Students will produce a reference collection of termites for their future use. • Student will learn and gain field experience in a range of techniques for the collection and control of subterranean and drywood termites. Topics to be covered Monday 8:00 Introduction to the Isoptera Anatomy and Terminology – Chouvenc Higher Taxonomy - Scheffrahn Evolution – Chouvenc Ecological Significance – Su/Scheffrahn 12:00 Lunch 1:00 Biology and ecology of Kalotermitidae – Scheffrahn 2:00 Biology and ecology of Rhinotermitidae – Chouvenc 3:00 Principles of IPM and the Use of Bait and Alternative Technologies for Control of Subterranean Termites – Mullins 4:00 Biology and ecology of Termitidae - Scheffrahn 5:00 Biology and ecology of “minor” families (Hodotermitidae, Serritermitidae, Mastotermitidae, Termopsidae) – Scheffrahn 5:30 Welcome Dinner Tuesday 8:00 – 12:00 Termite collection field trip to FLL property or Secret Woods Park – Scheffrahn/Kern 1:00 – 5:00 ID Laboratories (Rm 205) Scheffrahn Identification of Important Rhinotermitidae Laboratory: Coptotermes, Heterotermes, and Reticulitermes, Prorhinotermes.
    [Show full text]
  • Treatise on the Isoptera of the World Kumar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications KRISHNA ET AL.: ISOPTERA OF THE WORLD: 7. REFERENCES AND INDEX7. TREATISE ON THE ISOPTERA OF THE WORLD 7. REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA, AND MICHAEL S. ENGEL A MNH BULLETIN (7) 377 2 013 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY TREATISE ON THE ISOPTERA OF THE WORLD VolUME 7 REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192 AND MICHAEL S. ENGEL Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192; Division of Entomology (Paleoentomology), Natural History Museum and Department of Ecology and Evolutionary Biology 1501 Crestline Drive, Suite 140 University of Kansas, Lawrence, Kansas 66045 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 377, 2704 pp., 70 figures, 14 tables Issued April 25, 2013 Copyright © American Museum of Natural History 2013 ISSN 0003-0090 2013 Krishna ET AL.: ISOPtera 2435 CS ONTENT VOLUME 1 Abstract...................................................................... 5 Introduction.................................................................. 7 Acknowledgments . 9 A Brief History of Termite Systematics ........................................... 11 Morphology . 44 Key to the
    [Show full text]
  • Taxonomy, Biogeography, and Notes on Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands
    SYSTEMATICS Taxonomy, Biogeography, and Notes on Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands RUDOLF H. SCHEFFRAHN,1 JAN KRˇ ECˇ EK,1 JAMES A. CHASE,2 BOUDANATH MAHARAJH,1 3 AND JOHN R. MANGOLD Ann. Entomol. Soc. Am. 99(3): 463Ð486 (2006) ABSTRACT Termite surveys of 33 islands of the Bahamas and Turks and Caicos (BATC) archipelago yielded 3,533 colony samples from 593 sites. Twenty-seven species from three families and 12 genera were recorded as follows: Cryptotermes brevis (Walker), Cr. cavifrons Banks, Cr. cymatofrons Schef- Downloaded from frahn and Krˇecˇek, Cr. bracketti n. sp., Incisitermes bequaerti (Snyder), I. incisus (Silvestri), I. milleri (Emerson), I. rhyzophorae Herna´ndez, I. schwarzi (Banks), I. snyderi (Light), Neotermes castaneus (Burmeister), Ne. jouteli (Banks), Ne. luykxi Nickle and Collins, Ne. mona Banks, Procryptotermes corniceps (Snyder), and Pr. hesperus Scheffrahn and Krˇecˇek (Kalotermitidae); Coptotermes gestroi Wasmann, Heterotermes cardini (Snyder), H. sp., Prorhinotermes simplex Hagen, and Reticulitermes flavipes Koller (Rhinotermitidae); and Anoplotermes bahamensis n. sp., A. inopinatus n. sp., Nasuti- termes corniger (Motschulsky), Na. rippertii Rambur, Parvitermes brooksi (Snyder), and Termes http://aesa.oxfordjournals.org/ hispaniolae Banks (Termitidae). Of these species, three species are known only from the Bahamas, whereas 22 have larger regional indigenous ranges that include Cuba, Florida, or Hispaniola and beyond. Recent exotic immigrations for two of the regional indigenous species cannot be excluded. Three species are nonindigenous pests of known recent immigration. IdentiÞcation keys based on the soldier (or soldierless worker) and the winged imago are provided along with species distributions by island. Cr. bracketti, known only from San Salvador Island, Bahamas, is described from the soldier and imago.
    [Show full text]
  • Discovery of a Cryptic Termite Genus, Stylotermes (Isoptera: Stylotermitidae), in Taiwan, with the Description of a New Species
    Annals of the Entomological Society of America, 110(4), 2017, 360–373 doi: 10.1093/aesa/sax034 Advance Access Publication Date: 23 March 2017 Research Research article Discovery of a Cryptic Termite Genus, Stylotermes (Isoptera: Stylotermitidae), in Taiwan, With the Description of a New Species Wei-Ren Liang, Chia-Chien Wu, and Hou-Feng Li1 Department of Entomology, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan ([email protected]; [email protected]; [email protected]), and 1Corresponding author, e-mail: [email protected] Subject Editor: Allen Szalanski Received 18 October 2016; Editorial decision 11 January 2017 Abstract The termite family Stylotermitidae consists of a single extant genus, Stylotermes, present only in eastern Asia. Stylotermes has distinctively trimerous tarsi and is considered an intermediate between the Rhinotermitidae and Kalotermitidae families. The present study reports the first discovery of the Stylotermitidae family in Taiwan. On the basis of a comparison between the Taiwanese samples and the original descriptions of all the other 44 Stylotermes species, a new species collected from eastern Taiwan is described as Stylotermes halumi- cus sp. nov. This study is the first to report the gene sequence and detailed morphological descriptions of the winged imago, soldier, and worker of a single Stylotermes sp. Furthermore, a preliminary review of the Stylotermes taxonomy is provided. Key words: Stylotermitidae, wood-feeding termite, Taiwan, 16S, COII Holmgren and Holmgren (1917) established a new genus, Malaysia. In China, 35 Stylotermes spp. were described between Stylotermes, as the type genus of the new Stylotermitinae subfamily 1963 and 1993 from eight provinces: Fujian [no.
    [Show full text]
  • Termites (Isoptera) in the Azores: an Overview of the Four Invasive Species Currently Present in the Archipelago
    Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago MARIA TERESA FERREIRA ET AL. Ferreira, M.T., P.A.V. Borges, L. Nunes, T.G. Myles, O. Guerreiro & R.H. Schef- frahn 2013. Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago. Arquipelago. Life and Marine Sciences 30: 39-55. In this contribution we summarize the current status of the known termites of the Azores (North Atlantic; 37-40° N, 25-31° W). Since 2000, four species of termites have been iden- tified in the Azorean archipelago. These are spreading throughout the islands and becoming common structural and agricultural pests. Two termites of the Kalotermitidae family, Cryp- totermes brevis (Walker) and Kalotermes flavicollis (Fabricius) are found on six and three of the islands, respectively. The other two species, the subterranean termites Reticulitermes grassei Clemént and R. flavipes (Kollar) of the Rhinotermitidae family are found only in confined areas of the cities of Horta (Faial) and Praia da Vitória (Terceira) respectively. Due to its location and weather conditions the Azorean archipelago is vulnerable to coloni- zation by invasive species. The fact that there are four different species of termites in the Azores, all of them considered pests, is a matter of concern. Here we present a comparative description of these species, their known distribution in the archipelago, which control measures are being used against them, and what can be done in the future to eradicate and control these pests in the Azores.
    [Show full text]
  • Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes Darwiniensis and Cryptocercus Wood Roaches
    GBE Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches Yukihiro Kinjo1,2,3,4, Thomas Bourguignon3,5,KweiJunTong6, Hirokazu Kuwahara2,SangJinLim7, Kwang Bae Yoon7, Shuji Shigenobu8, Yung Chul Park7, Christine A. Nalepa9, Yuichi Hongoh1,2, Moriya Ohkuma1,NathanLo6,*, and Gaku Tokuda4,* 1Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan 2Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan 3Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan 4Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan 5Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic 6School of Life and Environmental Sciences, University of Sydney, NSW, Australia 7Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea 8National Institute for Basic Biology, NIBB Core Research Facilities, Okazaki, Japan 9Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: May 29, 2018 Data deposition: This project has been deposited in the International Nucleotide Sequence Database (GenBank/ENA/DDBJ) under the accession numbers given in Table 1. Abstract Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti.Onthebasisof genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of 630 kbp, with the exception of the termite Mastotermes darwiniensis (590 kbp) and Cryptocercus punctulatus (614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes.
    [Show full text]