Download (6MB)

Total Page:16

File Type:pdf, Size:1020Kb

Download (6MB) This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. AN INVESTIGATION OF SOME FACTORS AFFECTING THE VARIABILITY OF THE MCCOLLOUGH EFFECT 1 by N.J. Lund, B.Sc., Wales Thesis submitted for the degree of Doctor of Philosophy to the University of Keele Department of Communication and Neuroscience 1982 Dedication: To my parents, John and Cynthia Lund ABSTRACT A series of experiments are reported which have attempted to isolate some factors causing inter and intrasubject variability of the McCollough effect.* A number of such factors were found. 1. The initial strength of the OCCA is strongly influenced by sleep duration. Reduction of up to one third of a normal nights sleep caused a marked decrease in the aftereffect strength. Sleep periods of under a third of normal were found to have no further effect. Decay rates were not affected by prior sleep duration. 2. Both the strength and decay of the McCollough effect undergo diurnal changes late in the evening. These changes were linked with the sleep cycle and evidence is presented indicating that the effect of the time of day upon the initial strength may be linked with the effect of sleep duration. 3. Some visual defects result in abnormalities of binocular,' dichoptic and transferred McCollough effects. 4. Different visual stimuli presented after induction cause large variations in the rate of decay of the OCCA. Greatest decay was caused by those stimuli with identical characteristics to those of the induction stimuli. 5. Variation in the visual stimulation presented before induction strongly influences the initial strength of the aftereffect but does not affect subsequent decay rates. Chromatic fields of identical f colours as the induction stimuli, and gratings of orientations of not more than 20 from those of the induction stimuli cause a large reduction in the strength of the OCCA. ACKNOWLEDGEMENTS The work reported in this thesis has been performed at the Department of Communication and Neuroscience and I am grateful for the use of all its facilities. There are many members of the Department who have helped me over the past few years and I would like to thank all of them. I owe a particular debt to my supervisor, Prof. D.M. MacKay who, despite his own research and administrative duties, was always available to discuss my work and offer invaluable advice. I would also like to thank him for his cheerful guiding and detailed correcting of the writing of this thesis. I am grateful to Dr. V. MacKay for a number of practical suggestions and some long discussions about the McCollough effect. i Like all psychophysical research this thesis could not have been completed without the patient forbearance of the subjects. I would like to thank all of them, particularly Mr. M.J. Musselwhite whose initials adorn practically every figure on the following pages. I am also indebted to him, together with Mr. P. Frost and Dr. R.J. Watt for a number of computer programs. I am grateful to my fellow research students, Salv Gravano, Rosie Snelgar, Paul Frost.and Malcolm Musselwhite for their friendship, .good humour and strange antics. ' Finally I must express my deep appreciation to Sue Dixon for her help and support during the writing of this thesis. Without her help in correcting, typing and in many other ways it may never have been completed. SOME FACTORS AFFECTING THE VARIABILITY OF THE MCCOLLOUGH EFFECT PAGE ABSTRACT ACKNOWLEDGEMENTS CONTENTS: chapter 1. INTRODUCTION 1.1 Introduction 1 1.2 Phantom fringes 2 ~\ 1.3 The McCollough Effect 3 1.4 Variability of the McCollough Effect 5 chapter 2. PARAMETERS KNOWN TO AFFECT THE PATTERN CONTINGENT . AFTEREFFECTS 2.1 Orientation 6 2.2 Spatial frequency g 2.3 Pattern aftereffects contingent on colour 10 2.4 Luminance and contrast 11 2.5 Hue 13 2.6 Monocularity and binocularity 14 2.7 Retinal specificity 13 » 2.8 Time course of the aftereffects 19 2.9 Further factors affecting the variability Of the McCollough 22 Effect Chapter 3. EQUIPMENT' AND EXPERIMENTAL PROCEDURES 3.1 Introduction 24 3.2 Induction of the McCollough Effect 24 3.2.1 Tachistoscope 24 3.2.2 Patterns * 27 3.2.3 Colour Filters : 27 3.2. .'4 Luminance 28 3.3 Measurement of the McCollough Effect 28 3.3.1 Apparatus ■* 28 3.3.2 Calibration of the apparatus 31 3.4 Experimental procedure 33 3.4.1 Pre-induction test 35 3.4.2 Induction procedure 36 3.4.3 Post-induction tests 37 3.5 Subjects 38 3.6 Subject reliability 38 3.6.1 Colour match settings 38 3.6.2 Repeatability 39 3.7 Decay curves 39 3.7.1 Comparisons of methods of measurement ! 39 3.7.2 Measurement intervals 43 3.7.3 Red and green decay 44 3.8 Terminology .49 Chapter 4. EXPLORATORY EXPERIMENTS 4.1 Introduction , 50 4.2 Controlled factors 50 4.3 Temporal characteristics of the induction period 52 4.4 Build—up of after cffsct strength . 56 4.5 Monocular- and binocular results 61 4.6 Conclusions 65 Chapter 5. SLEEP AND THE MCCOLLOUGH EFFECT 5.1 Introduction 69 5.2 Changing sleep durations: bedtime variable, induction 70 hour f ixed ' ' 5.2.1 Introductory experiments 70 5.2.2 Subjects with different sleep habits 74 5.2.3 . Further subjects 74 5.2.4 Induction hour in the later afternoon 77 5.2.5 Effects of prior sleep on decay 78 5.2.6 Conclusions 78 * . 5.3 Subject alertness and ability 80 5.3.1 Pre-test variability 81 5.3.2 Contrast.measurement 82 5.3.3 Conclusions 83 5.4 Effects of darkness 84 5.4.1 Patching one eye for 5hrs. before sleep 84 5.4.2 Effects of patching one eye while sleeping 86 5.4.3 Conclusions 87 5.5 Effects of patching in the morning 87 5.6 Bedtime fixed, induction hour variable 89 5.7 Bedtime fixed, induction hour fixed; sleep variable 90 5.8 Bedtime variable, induction hour fixed; 2hr. shift in prior 92 sleep cycle 5.9 Conclusions and discussion 94 Chapter 6. TIME OF DAY AND THE MCCOLLOUGH EFFECT 6.1 Introduction 98 6.2 Variation of OCCA strength throughout the day 98 6.3 Induction in the evening 101 6.3.1 Initial OCCA strength 101 6.3.2 Induction in the evening, shift in sleep period i 103 6.3.3 Decay rates of the OCCA 103 6.4 Effects of eye patching in the evening 106 6.5 Induction late evening after variable sleep the night before 106 6.6 Decay at 12pm after different sleep durations 109 6.7 Conclusions and discussion 109 Chapter 7. VISUAL ABNORMALITIES AND THE MCCOLLOUGH EFFECT 7.1 Introduction 112 7.2 Subject data 113 7.3 Binocular stimulation 114 7.3.1 Initial strength 115 7.3.2. Amblyopia and interocular generalization 115 7.3.3 Decay 118 7.3.4 Conclusions . ! 119 7.4 Monocular stimulation 123 7.4.1 Initial strength 123 7.4.2 Interocular transfer 125 7.4.3 Decay of transferred McCollough Effect 129 7.5 Binocular rivalry ’ 131 7.6 Dichoptic stimulation , 133 7.6.1 Initial strength 134 7.6.2 Decay of dichoptic aftereffects 136 7.7 Conclusions and discussion 136 Chapter 8. EFFECTS OF VISUAL STIMULATION UPON DECAY 8.1 Introduction ' 140 8.2 Monocular experiments 142 8.3 Dichoptic comparisons of thfe effects of visual stimuli 147 8.3.1 Comparison of homogeneous chromatic fields with darkness 148 8.3.2 Comparison of achromatic gratings with darkness 148 8.3.3 Comparison of homogeneous chromatic fields with 151 achromatic gratings 8.3.4 Comparison of homogeneous chromàtic fields with 151 achromatic gratings: alternating gratings 8.3.5 Comparison of darkness with white fields 154 1 8.3.6 Comparison of homogeneous chromatic fields with white 157 fields ' 8.3.7 Comparison of achromatic gratings with white fields 157 8.3.8 Summary of results 157 8.4 Investigations of other chromatic and patterned stimuli upon 160 the decay 8.4.1 Comparison of red-green with blue-orange homogeneous 160 fields 8.4.2 Comparison of left-right oblique with horizontal-vertical 163 achromatic gratings 8.5 Conclusions 166 Chapter 9. EFFECTS OF VISUAL STIMULATION BEFORE INDUCTION 9.1 Introduction 169 9.2 Monocular stimulation 169 9.3 Effects of stimulation prior to induction upon decay 172 9.4 Dichoptic comparisons of the effects of stimulation before 172 induction 9.4.1 Comparison of homogeneous chromatic fields with darkness 174 9.4.2 Comparison of achromatic gratings with darkness 174 9.4.3 Comparison of homogeneous chromatic fields with white 177 fields 9.4.4 Comparison of achromatic gratings with white fields 177 9.4.5 Comparison of white fields with darkness 177 9.4.6 Comparison of achromatic gratings with homogeneous 181 chromatic fields 9.5 Effects of grating orientation 181 9.6 Effects of different colours 187 9.7 Conclusions 188 Chapter 10. GENERAL CONCLUSIONS AND FURTHER RESEARCH 191 BIBLIOGRAPHY 199 APPENDIX A. METHODS OF MEASUREMENT i 211 1 CHAPTER 1. INTRODUCTION Of the many findings of visual psychophysics in recent years some of the most interesting have been the family of aftereffects which are contingent upon one or several parameters of visual stimulation suggesting that some elements (colour, form and motion for instance) are processed together to some extent.
Recommended publications
  • Qt6hb7321d.Pdf
    UC Berkeley UC Berkeley Previously Published Works Title Recovering stereo vision by squashing virtual bugs in a virtual reality environment. Permalink https://escholarship.org/uc/item/6hb7321d Journal Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 371(1697) ISSN 0962-8436 Authors Vedamurthy, Indu Knill, David C Huang, Samuel J et al. Publication Date 2016-06-01 DOI 10.1098/rstb.2015.0264 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Submitted to Phil. Trans. R. Soc. B - Issue Recovering stereo vision by squashing virtual bugs in a virtual reality environment. For ReviewJournal: Philosophical Only Transactions B Manuscript ID RSTB-2015-0264.R2 Article Type: Research Date Submitted by the Author: n/a Complete List of Authors: Vedamurthy, Indu; University of Rochester, Brain & Cognitive Sciences Knill, David; University of Rochester, Brain & Cognitive Sciences Huang, Sam; University of Rochester, Brain & Cognitive Sciences Yung, Amanda; University of Rochester, Brain & Cognitive Sciences Ding, Jian; University of California, Berkeley, Optometry Kwon, Oh-Sang; Ulsan National Institute of Science and Technology, School of Design & Human Engineering Bavelier, Daphne; University of Geneva, Faculty of Psychology and Education Sciences; University of Rochester, Brain & Cognitive Sciences Levi, Dennis; University of California, Berkeley, Optometry; Issue Code: Click <a href=http://rstb.royalsocietypublishing.org/site/misc/issue- 3DVIS codes.xhtml target=_new>here</a> to find the code for your issue.: Subject: Neuroscience < BIOLOGY Stereopsis, Strabismus, Amblyopia, Virtual Keywords: Reality, Perceptual learning, stereoblindness http://mc.manuscriptcentral.com/issue-ptrsb Page 1 of 29 Submitted to Phil. Trans. R. Soc. B - Issue Phil.
    [Show full text]
  • Daily Mixed Visual Experience That Prevents Amblyopia in Cats Does Not Always Allow the Development of Good Binocular Depth Perception
    Journal of Vision (2009) 9(5):22, 1–7 http://journalofvision.org/9/5/22/ 1 Daily mixed visual experience that prevents amblyopia in cats does not always allow the development of good binocular depth perception Department of Psychology, Dalhousie University, Donald E. Mitchell Halifax, NS, Canada Department of Psychology, Dalhousie University, Jan Kennie Halifax, NS, Canada WT Centre for Neuroimaging, UCL Institute of Neurology, D. Samuel Schwarzkopf London, UK School of Biosciences, Cardiff University, Frank Sengpiel Cardiff, Wales, UK Kittens reared with mixed daily visual input that consists of episodes of normal (binocular) exposure followed by abnormal (monocular) exposure can develop normal visual acuity in both eyes if the length of the former exposure exceeds a critical amount. However, later studies of the tuning of cells in primary visual cortex of animals reared in this manner revealed that their responses to interocular differences in phase were not reliable suggesting that their binocular depth perception may not be normal. We examined this possibility in 3 kittens reared with mixed daily visual exposure (2 hrs binocular vision followed by 5 hrs monocular exposure) that allowed development of normal visual acuity in both eyes. Measurements made of the threshold differences in depth that could be perceived under monocular and binocular viewing revealed a 10-fold superiority of binocular over monocular depth thresholds in one animal while the depth thresholds of the other two animals were poor and there was no binocular superiority. Thus, there was evidence that only one animal possessed stereopsis while the other two were likely stereoblind. While 2 hrs of daily binocular vision protected against the development of amblyopia, the poor outcome with respect to stereopsis points to the need for additional measures to promote binocular vision.
    [Show full text]
  • Stereopsis and Stereoblindness
    Exp. Brain Res. 10, 380-388 (1970) Stereopsis and Stereoblindness WHITMAN RICHARDS Department of Psychology, Massachusetts Institute of Technology, Cambridge (USA) Received December 20, 1969 Summary. Psychophysical tests reveal three classes of wide-field disparity detectors in man, responding respectively to crossed (near), uncrossed (far), and zero disparities. The probability of lacking one of these classes of detectors is about 30% which means that 2.7% of the population possess no wide-field stereopsis in one hemisphere. This small percentage corresponds to the probability of squint among adults, suggesting that fusional mechanisms might be disrupted when stereopsis is absent in one hemisphere. Key Words: Stereopsis -- Squint -- Depth perception -- Visual perception Stereopsis was discovered in 1838, when Wheatstone invented the stereoscope. By presenting separate images to each eye, a three dimensional impression could be obtained from two pictures that differed only in the relative horizontal disparities of the components of the picture. Because the impression of depth from the two combined disparate images is unique and clearly not present when viewing each picture alone, the disparity cue to distance is presumably processed and interpreted by the visual system (Ogle, 1962). This conjecture by the psychophysicists has received recent support from microelectrode recordings, which show that a sizeable portion of the binocular units in the visual cortex of the cat are sensitive to horizontal disparities (Barlow et al., 1967; Pettigrew et al., 1968a). Thus, as expected, there in fact appears to be a physiological basis for stereopsis that involves the analysis of spatially disparate retinal signals from each eye. Without such an analysing mechanism, man would be unable to detect horizontal binocular disparities and would be "stereoblind".
    [Show full text]
  • Stereoscopic Therapy: Fun Or Remedy?
    STEREOSCOPIC THERAPY: FUN OR REMEDY? SARA RAPOSO Abstract (INDEPENDENT SCHOLAR , PORTUGAL ) Once the material of playful gatherings, stereoscop­ ic photographs of cities, the moon, landscapes and fashion scenes are now cherished collectors’ items that keep on inspiring new generations of enthusiasts. Nevertheless, for a stereoblind observer, a stereoscopic photograph will merely be two similar images placed side by side. The perspective created by stereoscop­ ic fusion can only be experienced by those who have binocular vision, or stereopsis. There are several caus­ es of a lack of stereopsis. They include eye disorders such as strabismus with double vision. Interestingly, stereoscopy can be used as a therapy for that con­ dition. This paper approaches this kind of therapy through the exploration of North American collections of stereoscopic charts that were used for diagnosis and training purposes until recently. Keywords. binocular vision; strabismus; amblyopia; ste- reoscopic therapy; optometry. 48 1. Binocular vision and stone (1802­1875), which “seem to have access to the visual system at the same stereopsis escaped the attention of every philos­ time and form a unitary visual impres­ opher and artist” allowed the invention sion. According to the suppression the­ Vision and the process of forming im­ of a “simple instrument” (Wheatstone, ory, both similar and dissimilar images ages, is an issue that has challenged 1838): the stereoscope. Using pictures from the two eyes engage in alternat­ the most curious minds from the time of as a tool for his study (Figure 1) and in­ ing suppression at a low level of visual Aristotle and Euclid to the present day.
    [Show full text]
  • Investigating Intermittent Stereoscopy: Its Effects on Perception and Visual Fatigue
    ©2016 Society for Imaging Science and Technology DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-041 INVESTIGATING INTERMITTENT STEREOSCOPY: ITS EFFECTS ON PERCEPTION AND VISUAL FATIGUE Ari A. Bouaniche, Laure Leroy; Laboratoire Paragraphe, Université Paris 8; Saint-Denis; France Abstract distance in virtual environments does not clearly indicate that the In a context in which virtual reality making use of S3D is use of binocular disparity yields a better performance, and a ubiquitous in certain industries, as well as the substantial amount cursory look at the literature concerning the viewing of of literature about the visual fatigue S3D causes, we wondered stereoscopic 3D (henceforth abbreviated S3D) content leaves little whether the presentation of intermittent S3D stimuli would lead to doubt as to some negative consequences on the visual system, at improved depth perception (over monoscopic) while reducing least for a certain part of the population. subjects’ visual asthenopia. In a between-subjects design, 60 While we do not question the utility of S3D and its use in individuals under 40 years old were tested in four different immersive environments in this paper, we aim to position conditions, with head-tracking enabled: two intermittent S3D ourselves from the point of view of user safety: if, for example, the conditions (Stereo @ beginning, Stereo @ end) and two control use of S3D is a given in a company setting, can an implementation conditions (Mono, Stereo). Several optometric variables were of intermittent horizontal disparities aid in depth perception (and measured pre- and post-experiment, and a subjective questionnaire therefore in task completion) while impacting the visual system assessing discomfort was administered.
    [Show full text]
  • Audiovisual Spatial Congruence, and Applications to 3D Sound and Stereoscopic Video
    Audiovisual spatial congruence, and applications to 3D sound and stereoscopic video. C´edricR. Andr´e Department of Electrical Engineering and Computer Science Faculty of Applied Sciences University of Li`ege,Belgium Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Engineering Sciences December 2013 This page intentionally left blank. ©University of Li`ege,Belgium This page intentionally left blank. Abstract While 3D cinema is becoming increasingly established, little effort has fo- cused on the general problem of producing a 3D sound scene spatially coher- ent with the visual content of a stereoscopic-3D (s-3D) movie. The percep- tual relevance of such spatial audiovisual coherence is of significant interest. In this thesis, we investigate the possibility of adding spatially accurate sound rendering to regular s-3D cinema. Our goal is to provide a perceptually matched sound source at the position of every object producing sound in the visual scene. We examine and contribute to the understanding of the usefulness and the feasibility of this combination. By usefulness, we mean that the technology should positively contribute to the experience, and in particular to the storytelling. In order to carry out experiments proving the usefulness, it is necessary to have an appropriate s-3D movie and its corresponding 3D audio soundtrack. We first present the procedure followed to obtain this joint 3D video and audio content from an existing animated s-3D movie, problems encountered, and some of the solutions employed. Second, as s-3D cinema aims at providing the spectator with a strong impression of being part of the movie (sense of presence), we investigate the impact of the spatial rendering quality of the soundtrack on the reported sense of presence.
    [Show full text]
  • Holliman 3D Display Systems 2005.Pdf
    3D Display Systems Dr Nick Holliman, Department of Computer Science, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE. February 2, 2005 Contents 1 Introduction 3 2 Human Depth Perception 4 2.1 Monocular and oculomotor depth cues . 4 2.2 Binocular depth perception in the natural world . 6 2.3 Depth perception in electronic stereoscopic images. 9 2.4 Benefits of binocular vision . 12 3 3D Display Designs using Micro-optics 14 3.1 Stereoscopic Systems . 15 3.2 Autostereoscopic Systems . 16 3.3 Two view twin-LCD systems. 17 3.4 A Note on Viewing Windows . 20 3.5 Two-view single LCD systems . 22 3.5.1 Parallax barrier designs . 22 3.5.2 Lenticular element designs . 27 3.5.3 Micro-polariser designs . 31 3.5.4 Holographic elements . 32 3.6 Multi-view systems . 32 4 3D Display Performance and Use 37 4.1 Comparing perceived depth reproduction . 37 4.2 Perceived depth control and image generation . 41 5 Summary 42 1 3D Display Systems 2 List of Figures 1 Picture illustrating the depth cues available in a 2D image, (pho- tographer David Burder). 5 2 The geometry of the binocular vision when viewing the natural world. 6 3 Angular disparity is defined relative to the current fixation point. 7 4 Stereo acuity defines smallest depth difference an observer can per- ceive. 8 5 Perceived depth behind (1) and in front (2) of the display plane. 11 6 The VREX micro-polariser stereoscopic display principle. 16 7 Two-view displays create two viewing windows.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Stereoscopic 3D Technologies for Accurate Depth Tasks: A Theoretical and Empirical Study FRONER, BARBARA How to cite: FRONER, BARBARA (2011) Stereoscopic 3D Technologies for Accurate Depth Tasks: A Theoretical and Empirical Study, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3324/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Stereoscopic 3D Technologies for Accurate Depth Tasks: A Theoretical and Empirical Study by Barbara Froner A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy School of Engineering and Computing Sciences Durham University United Kingdom Copyright °c 2011 by Barbara Froner Abstract Stereoscopic 3D Technologies for Accurate Depth Tasks: A Theoretical and Empirical Study Barbara Froner In the last decade an increasing number of application ¯elds, including medicine, geoscience and bio-chemistry, have expressed a need to visualise and interact with data that are inherently three-dimensional.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Validating Stereoscopic Volume Rendering ROBERTS, DAVID,ANTHONY,THOMAS How to cite: ROBERTS, DAVID,ANTHONY,THOMAS (2016) Validating Stereoscopic Volume Rendering, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11735/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Validating Stereoscopic Volume Rendering David Roberts A Thesis presented for the degree of Doctor of Philosophy Innovative Computing Group School of Engineering and Computing Sciences Durham University United Kingdom 2016 Dedicated to My Mom and Dad, my sisters, Sarah and Alison, my niece Chloe, and of course Keeta. Validating Stereoscopic Volume Rendering David Roberts Submitted for the degree of Doctor of Philosophy 2016 Abstract The evaluation of stereoscopic displays for surface-based renderings is well established in terms of accurate depth perception and tasks that require an understanding of the spatial layout of the scene.
    [Show full text]
  • A Method for the Assessment of the Quality of Stereoscopic 3D Images Raluca Vlad
    A Method for the Assessment of the Quality of Stereoscopic 3D Images Raluca Vlad To cite this version: Raluca Vlad. A Method for the Assessment of the Quality of Stereoscopic 3D Images. Signal and Image Processing. Université de Grenoble, 2013. English. tel-00925280v2 HAL Id: tel-00925280 https://tel.archives-ouvertes.fr/tel-00925280v2 Submitted on 10 Jan 2014 (v2), last revised 28 Feb 2014 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Signal, Image, Parole, Télécommunications (SIPT) Arrêté ministériel : 7 août 2006 Présentée par Mlle Raluca VLAD Thèse dirigée par Mme Anne GUÉRIN-DUGUÉ et Mme Patricia LADRET préparée au sein du laboratoire Grenoble - Images, Parole, Signal, Automatique (GIPSA-lab) dans l’école doctorale d’Électronique, Électrotechnique, Automatique et Traitement du signal (EEATS) Une méthode pour l’évaluation de la qualité des images 3D stéréoscopiques Thèse soutenue publiquement le 2 décembre 2013, devant le jury composé de : Patrick LE CALLET
    [Show full text]
  • Could People with Stereo-Deficiencies Have a Rich
    Could People with Stereo-Deficiencies Have a Rich 3D Experience Using HMDs? Sonia Cárdenas-Delgado1, M.-Carmen Juan1(&), Magdalena Méndez-López2, and Elena Pérez-Hernández3 1 Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain {scardenas,mcarmen}@dsic.upv.es 2 Departamento de Psicología y Sociología, Universidad de Zaragoza, Saragossa, Spain [email protected] 3 Departamento de Psicología Evolutiva y de la Educación, Universidad Autónoma de Madrid, Madrid, Spain [email protected] Abstract. People with stereo-deficiencies usually have problems for the per- ception of depth using stereo devices. This paper presents a study that involves participants who did not have stereopsis and participants who had stereopsis. The two groups of participants were exposed to a maze navigation task in a 3D environment in two conditions, using a HMD and a large stereo screen. Fifty-nine adults participated in our study. From the results, there were no statistically significant differences for the performance on the task between the participants with stereopsis and those without stereopsis. We found statistically significant differences between the two conditions in favor of the HMD for the two groups of participants. The participants who did not have stereopsis and could not perceive 3D when looking at the Lang 1 Stereotest did have the illusion of depth perception using the HMD. The study suggests that for the people who did not have stereopsis, the head tracking largely influences the 3D experience. Keywords: HMD Á Large stereo screen Á Virtual reality Á Stereopsis Á 3D experience Á Stereoblindness Á Stereo-deficiency Á Head tracking 1 Introduction Stereopsis refers to the perception of depth through visual information that is obtained from the two eyes of an individual with normally developed binocular vision [1].
    [Show full text]
  • Stereoscopic Media
    Stereoscopic media Digital Visual Effects Yung-Yu Chuang 3D is hot today 3D has a long history • 1830s, stereoscope • 1920s, first 3D film, The Power of Love projected dual-strip in the red/green anaglyph format • 1920s, teleview system Teleview was the earliest alternate-frame seqqguencing form of film ppjrojection. Through the use of two interlocked projectors, alternating left/right frames were projected one after another in rapid succession. Synchronized viewers attached to the arm-rests of the seats in the theater open and closed at the same time, and took advantage of the viewer's persistence of vision, thereby creating a true stereoscopic image. 3D has a long history • 1950s, the "golden era" of 3-D • The attempts filfaile d because immature technology results in viewer discomfort. • 1980s, rebirth of 3D, IMAX Why could 3D be successful today? • It finally takes off until digital processing makes 3D films both easier to shoot and watch. • New technology for more comfortable viewing experiences – Accurately-adjustable 3D camera rigs – Digital processing and post-shooting rectification – Digital projectors for accurate positioning – Polarized screen to reduce cross-talk 3D TVs Computers Notebooks Game consoles Nintendo 3DS HTC EVO 3D 3D contents (()games) 3D contents (()films) 3D contents (()broadcasting) 3D cameras Fu ji R eal3D W1 and W3 ($600) Sony HDR-TD10E Outline • Human depth perception • 3D disp lays • 3D cinematography • Stereoscopic media postprocessing Human depth perception Space perception • The ability to perceive and interact with the structure of space is one of the fundamental goals of the visual system. • Our visual system reconstructs the world from two non- Euclidean inputs, the two distinct retinal images.
    [Show full text]