Identifying Genes That Confer Ethanol Tolerance in Saccharomyces Cerevisiae

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Genes That Confer Ethanol Tolerance in Saccharomyces Cerevisiae Identifying genes that confer ethanol tolerance in Saccharomyces cerevisiae A thesis submitted for the degree of Doctor of Philosophy Tina Thi My Tien Tran Bachelor of Applied Biology (Biotechnology/Microbiology) - Honours 2011 The Australian Wine Research Institute School of Molecular Sciences Faculty of Health, Engineering and Science Wine Innovation Cluster Hoppers Lane, Werribee Corner of Hartley Grv and Paratoo Rd Melbourne Urrbrae Victoria South Australia DECLARATION “I, Tina Thi My Tien Tran, declare that the PhD thesis entitled ‘Identifying genes that confer ethanol tolerance in Saccharomyces cerevisiae’ is no more than 100,000 words in length including quotes and exclusive of tables, figures, appendices, bibliography, references and footnotes. This thesis contains no material that has been submitted previously, in whole or in part, for the award of any other academic degree or diploma. Except where otherwise indicated, this thesis is my own work”. Signature Date i ACKNOWLEDGMENTS I am most grateful to my mentor and supervisor, Dr. Paul Chambers. Thank-you for being such a patient, understanding, and compassionate person. You generously donated a great deal of time and energy to mentor me. I would be lost without your valuable guidance and direction throughout my entire candidature. I am very grateful for your in-depth knowledge and willingness to share it with me. You have gone above and beyond to help me in my personal and professional development, and I am extremely thankful for your kindness. I would also like to thank my supervisor Professor Grant Stanley who has been my mentor since my undergraduate years. Your encouragement and support throughout my PhD candidature will always be remembered. I have been very blessed to have you both as my lecturers, supervisors, and mentors. Thank-you to my supportive friends in Melbourne and Victoria University, especially Dr. Dragana Stanley for having faith in me to continue your project, I appreciate your openness in sharing your data and friendship. To Dr. Anthony Borneman, thank-you for all your guidance and invaluable knowledge. I have learnt a great deal from you and would not have been able to complete this thesis without your help. To Dr Simon Schmidt, thank-you for your valuable input throughout the years, Your constant willingness to lend a hand or ear, is most appreciated. Thank-you for donating your valuable time to read my thesis and give me valuable feedback. To Mr. Angus Forgan, thank-you for being so understanding and supportive. I have always enjoyed having a chuckle and learning new things from you. Xin ciào Mrs. Jenny Bellon, Cám ơn for teaching me GLP. To Aunty June Robinson, thank-you for your friendship, encouragement and support. To the AWRI staff, in particular Prof. Sakkie Pretorius, Dr. Markus Herderich, Mr. Hans Muhlack, and Ms. Linda Halse, thank-you for your immense support, understanding and giving me the privileged opportunity to work at the AWRI during my PhD. ii To my fellow AWRI Wine Biosciences Team, particularly Dr. Eveline Bartowsky, Dr. Paul Henschke, Dr. Toni Cordente, Dr. Darek Kutyna, Ms. Jane McCarthy, Dr. Peter Costello, Dr. Cristian Varela, Ms. Robyn Kievit, Ms. Caroline Abrahamse, Ms. Gal Winter and Ms. Corine Ting, Thank-you for your friendship and much needed coffee breaks over these past few years. You have all made working at the AWRI, one of the best experiences of my life. Thank-you to the Grape and Wine Research Development Corporation (GWRDC) and Victoria University, for their generous financial support during my PhD candidature. To Mary and Gerry Rigter, you have been my family away from home. The generosity, kindness and love you have shown The Tran Family, will be in our hearts always. To My Family; my father, Nam Van Tran and my mother Lang Thi Nguyen, I cannot articulate the extent of how grateful I am to have you both. You have always had the utmost faith in me; your encouragement and unconditional love, gave me strength and hope. You have both sacrificed so much for us and I am forever indebted to you both. To my brothers Sang Tran, Dung Tran and Peter Tran, thank-you for making me laugh when I needed to most and for going above and beyond to take care of me. You guys have been there for me through all my trials and tribulations. To my extended family in Phu Quoc Island, especially Bà ngoại, your courage is inspirational. I am blessed to have you all in my life, sincere thanks for all the generosity, understanding, support, kindness and love that you have shown me over the years. I would not have been able to complete this thesis without you all. This has been a very rewarding experience for me both personally and professionally. Thank you all from the bottom of my heart. iii ABSTRACT S. cerevisiae has evolved the ability to tolerate high concentrations of ethanol, a trait that has contributed to this yeast being a cornerstone of beverage and biofuel industries. The key genes involved in conferring ethanol tolerance in S. cerevisiae are unknown. One strategy used to identify genes conferring ethanol tolerance, was to create ethanol-tolerant (ET) mutants from a laboratory yeast strain and use these to identify ethanol-tolerance conferring loci. Dr. Dragana Stanley (Victoria University) created two ET mutants, a spontaneous (SM) and a chemical (CM) mutant from W303, via adaptive evolution (Stanley 2008). Transcriptome analysis of the resultant ET mutants found that expression levels of hundreds of genes were altered, relative to the parent under ethanol-stress conditions. The primary objective of this thesis was to identify genes that confer ethanol tolerance in SM and CM. As a starting point, the mutants backcrossed and aporulated to characterize the genetics of the ethanol-tolerance mutations. A Rapid Ethanol Tolerance Assay (RETA) was developed from this work, enabling accurate quantification ethanol tolerance levels in the numerous progeny and spores generated. The segregation ratios of ethanol tolerance in CM indicated that a single gene was responsible for conferring the phenotype. In SM, ethanol tolerance segregated in a less straightforward fashion, suggesting more than two genes were responsible for conferring the phenotype. In attempt to identify the genetic mutations conferring ethanol tolerance in the mutants, Affymetrix Tiling Microarrays were applied. However, this method generated large amounts of background noise and was unable to resolve the mutations. Genomis sequencing of CM was then used revealing a large number of mutations across the genome. Candidate loci were screened, leading to identification of an intergenic region containing four SNPs, and this was found to confer ethanol tolerance when transformed into the parent. This Ethanol Tolerance Conferring Sequence (ETCS), was further characterized to reveal that only SNP1 (Chromosome II: 697,850 – SNP1 = C→A) and SNP3 (Chromosome II: 697,907 – SNP1 = C→T) were required to confer ethanol tolerance. iv Interestingly, ETCS resides in a transcribed, intergenic region between ORFs YBR238C and ERT1, genes which have not been previously associated with ethanol tolerance. Upstream of ERT1 is THI2, and transcriptome data from Stanley et al (2010) indicated that expression of these two genes is up-regulated under ethanol-stress conditions in CM. The intergenic region is highly conserved across a number of industrial S. cerevisiae strains. When industrial wine strains were made homozygous for ETCS, it was found that the effect of ETCS on the ethanol tolerance phenotype was genetic background dependent. Future work is required to elucidate the mechanism by which ETCS confers the ethanol tolerance in S. cerevisiae. v PUBLICATIONS AND PRESENTATIONS Publication Liccioli, T*., Tran T. M. T.,*., Cozzolino D., Jiranek V., Chambers P. J., & Schmidt S. A., “Microvinification – how small can we go?”, Applied and Environmental Microbiology, 89 (5):1621-1628 (2010) * Liccioli, T. and Tran T. M. contributed equally to the article. Conference Presentation Tran T. M. T ., Stanley D., Schmidt S. A., Bellon J. R., Borneman A., Stanley G. A., and Chambers P. J., “Identifying and Characterizing genes that confer the ethanol tolerance phenotype in Saccharomyces cerevisiae”, Yeast Products and Discovery, Adelaide, Australia (2009) Conference Poster Tran T. M. T., Stanley D., Schmidt S. A., Bellon J. R., Borneman A., Stanley G. A., and Chambers P. J., “Identification of genes that confer ethanol tolerance in Saccharomyces cerevisiae”..XXIIIrd International Conference on Yeast Genetics and Molecular Biology, Melbourne, Australia, 2007 Note An electronic PDF version of the thesis is located in the Appendix CD. vi ABBREVIATIONS Abbreviation Shortened Word % v/v Percentage volume per volume bp Base pair CIP Calf Intestinal Phosphatase CORE COunterselectable REporter DIG Digoxygenin EDTA Ethylenediaminetetraacetic acid EMS Ethylmethane Sulphonate ET Ethanol Tolerant ETCS Ethanol Tolerance Conferring Sequence gDNA Genomic Deoxyribonucleic Acid hrs Hours ITS Inter-transcribed Spacer LB Luria Broth min Minutes nET not Ethanol Tolerant PCI Phenol Chloroform Iso-amyl alcohol PEG Polyethylene Glycol PMPP Plasma Membrane Proton Pump RETA Rapid Ethanol Tolerance Assay SC Synthetic Complete SGD Saccharomyces Genome Database SNPs Single Nucleotide Polymorphisms SSC Saline Sodium Citrate ssDNA Salmon Sperm DNA TBE Tris Borate EDTA TE Tris-EDTA VIS Visible YPD Yeast Peptone Dextrose YPG Yeast Peptone Glycerol vii TABLE OF CONTENTS IDENTIFYING GENES THAT CONFER ETHANOL TOLERANCE IN SACCHAROMYCES
Recommended publications
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • Analysis of Viral RNA-Host Protein Interactomes Enables Rapid Antiviral Drug Discovery
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441316; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Analysis of viral RNA-host protein interactomes 2 enables rapid antiviral drug discovery 3 Shaojun Zhang1,5, Wenze Huang1,5, Lili Ren2,3,5, Xiaohui Ju4,5, Mingli Gong4,5, 4 Jian Rao2,3, 5, Lei Sun1, Pan Li1, Qiang Ding4,*, Jianwei Wang2,3,*, Qiangfeng Cliff 5 Zhang1,* 6 7 1 MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for 8 Structural Biology & Frontier Research Center for Biological Structure, Center for 9 Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, 10 School of Life Sciences, Tsinghua University, Beijing, 100084, China 11 2 NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux 12 Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & 13 Peking Union Medical College, Beijing, 100730, China 14 3 Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical 15 Sciences and Peking Union Medical College, Beijing, 100730, China 16 4 Center for Infectious Disease Research, School of Medicine, Tsinghua University, 17 Beijing, 100084, China 18 5 Co-first author 19 * Correspondence: [email protected] (Q.D.), [email protected] (J.W.), 20 [email protected] (Q.C.Z.) 21 Short title: Viral RNA and host protein interactome 22 Keywords: RNA-protein interaction, SARS-CoV-2, EBOV, ZIKV, drug discovery 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441316; this version posted April 26, 2021.
    [Show full text]
  • Efficient Prediction of Human Protein-Protein Interactions at a Global Scale
    Efficient prediction of human protein-protein interactions at a global scale. Andrew Schoenrock, Bahram Samanfar, Sylvain Pitre, Mohsen Hooshyar, Ke Jin, Charles A Phillips, Hui Wang, Sadhna Phanse, Katayoun Omidi, Yuan Gui, Md Alamgir, Alex Wong, Fredrik Barrenäs, Mohan Babu, Mikael Benson, Michael A Langston, James R Green, Frank Dehne and Ashkan Golshani Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Andrew Schoenrock, Bahram Samanfar, Sylvain Pitre, Mohsen Hooshyar, Ke Jin, Charles A Phillips, Hui Wang, Sadhna Phanse, Katayoun Omidi, Yuan Gui, Md Alamgir, Alex Wong, Fredrik Barrenäs, Mohan Babu, Mikael Benson, Michael A Langston, James R Green, Frank Dehne and Ashkan Golshani, Efficient prediction of human protein-protein interactions at a global scale., 2014, BMC bioinformatics, (15), 1, 383. http://dx.doi.org/10.1186/s12859-014-0383-1 Copyright: BioMed Central http://www.biomedcentral.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-114135 Schoenrock et al. BMC Bioinformatics 2014, 15:383 http://www.biomedcentral.com/1471-2105/15/383 RESEARCH ARTICLE Open Access Efficient prediction of human protein-protein interactions at a global scale Andrew Schoenrock1, Bahram Samanfar2, Sylvain Pitre1†, Mohsen Hooshyar2†, Ke Jin3, Charles A Phillips4, Hui Wang5,6, Sadhna Phanse3, Katayoun Omidi2, Yuan Gui2, Md Alamgir2, Alex Wong2, Fredrik Barrenäs5,6, Mohan Babu7, Mikael Benson5,6, Michael A Langston4, James R Green8, Frank Dehne1 and Ashkan Golshani2* Abstract Background: Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods.
    [Show full text]
  • A Genome-Scale Yeast Library with Inducible Expression of Individual Genes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424776; this version posted January 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A genome-scale yeast library with inducible expression of individual genes 1,2,3,* 4,* 1,2,* 1,2 4 4 Yuko Arita ,​ Griffin Kim ,​ Zhijian Li ,​ Helena Friesen ,​ Gina Turco ,​ Rebecca Y. Wang ,​ ​ 1,2 1,2​ ​ 4 4 ​ ​ 4 ​ Dale Climie ,​ Matej Usaj ,​ Manuel Hotz ,​ Emily Stoops ,​ Anastasia Baryshnikova ,​ Charles 1,2,3,^ ​ ​ 4,^ ​ ​ 1,2,^ ​ 4,^ ​ Boone ,​ David Botstein ,​ Brenda J. Andrews ,​ R. Scott McIsaac ​ ​ ​ ​ 1. Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada. 2. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada. 3. RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan. ​ 4. Calico Life Sciences LLC, South San Francisco, CA 94080, USA. *Authors contributed equally to this study. ^Corresponding authors: R. Scott McIsaac ([email protected]); David Botstein ​ ​ ([email protected]); Charles Boone ([email protected]); Brenda J. Andrews ​ ​ ​ ​ ([email protected]) ​ ​ For requesting the YETI library in pooled format, contact R. Scott McIsaac. Running title: The YETI strain library ​ Keywords: BAR-seq / gene overexpression / yeast genomics / yeast mutant array / CRISPRi ​ ORCID ID for R. Scott McIsaac: https://orcid.org/0000-0002-5339-6032 ​ 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424776; this version posted January 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • Use of Yeast Chemigenomics and COXEN Informatics in Preclinical
    Volume 13 Number 1 January 2011 pp. 72–80 72 www.neoplasia.com Steven C. Smith*, Dmytro M. Havaleshko*, Use of Yeast Chemigenomics † ‡ Kihyuck Moon*, Alexander S. Baras , Jae Lee , and COXEN Informatics in Stefan Bekiranov§, Daniel J. Burke§ ¶ Preclinical Evaluation of and Dan Theodorescu 1,2 *Department of Urology, University of Virginia, Anticancer Agents † Charlottesville, VA, USA; Department of Pathology, University of Virginia, Charlottesville, VA, USA; ‡Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA; §Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA; ¶University of Colorado Comprehensive Cancer Center, Aurora, CO, USA Abstract Bladder cancer metastasis is virtually incurable with current platinum-based chemotherapy. We used the novel COXEN informatic approach for in silico drug discovery and identified NSC-637993 and NSC-645809 (C1311), both imidazoacridinones, as agents with high-predicted activity in human bladder cancer. Because even highly effective monotherapy is unlikely to cure most patients with metastasis and NSC-645809 is undergoing clinical trials in other tumor types, we sought to develop the basis for use of C1311 in rational combination with other agents in bladder cancer. Here, we demonstrate in 40 human bladder cancer cells that the in vitro cytotoxicity profile for C1311 corre- lates with that of NSC-637993 and compares favorably to that of standard of care chemotherapeutics. Using genome- wide patterns of synthetic lethality of C1311 with open reading frame knockouts in budding yeast, we determined that combining C1311 with a taxane could provide mechanistically rational combinations. To determine the preclini- cal relevance of these yeast findings, we evaluated C1311 singly and in doublet combination with paclitaxel in human bladder cancer in the in vivo hollow fiber assay and observed efficacy.
    [Show full text]
  • Identifying Gene Function and Module Connections by the Integration of Multispecies Expression Compendia
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Method Identifying gene function and module connections by the integration of multispecies expression compendia Hao Li,1 Daria Rukina,2 Fabrice P.A. David,3,4,5 Terytty Yang Li,1 Chang-Myung Oh,1 Arwen W. Gao,1 Elena Katsyuba,1 Maroun Bou Sleiman,1 Andrea Komljenovic,5,6 Qingyao Huang,7 Robert W. Williams,8 Marc Robinson-Rechavi,5,6 Kristina Schoonjans,7 Stephan Morgenthaler,2 and Johan Auwerx1 1Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; 2Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; 3Gene Expression Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; 4SV-IT, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; 5Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; 6Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland; 7Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; 8Department of Genetics, Genomics and Informatics, University of Tennessee, Memphis, Tennessee 38163, USA The functions of many eukaryotic genes are still poorly understood. Here, we developed and validated a new method, termed GeneBridge, which is based on two linked approaches to impute gene function and bridge genes with biological processes. First, Gene-Module Association Determination (G-MAD) allows the annotation of gene function. Second, Module-Module Association Determination (M-MAD) allows predicting connectivity among modules. We applied the GeneBridge tools to large-scale multispecies expression compendia—1700 data sets with over 300,000 samples from hu- man, mouse, rat, fly, worm, and yeast—collected in this study.
    [Show full text]
  • Gene Modules Associated with Human Diseases Revealed by Network
    bioRxiv preprint doi: https://doi.org/10.1101/598151; this version posted June 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Gene modules associated with human diseases revealed by network analysis Shisong Ma1,2*, Jiazhen Gong1†, Wanzhu Zuo1†, Haiying Geng1, Yu Zhang1, Meng Wang1, Ershang Han1, Jing Peng1, Yuzhou Wang1, Yifan Wang1, Yanyan Chen1 1. Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China 2. School of Data Science, University of Science and Technology of China, Hefei, Anhui 230027, China * To whom correspondence should be addressed. Email: [email protected] † These authors contribute equally. 1 bioRxiv preprint doi: https://doi.org/10.1101/598151; this version posted June 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Despite many genes associated with human diseases have been identified, disease mechanisms often remain elusive due to the lack of understanding how disease genes are connected functionally at pathways level. Within biological networks, disease genes likely map to modules whose identification facilitates etiology studies but remains challenging. We describe a systematic approach to identify disease-associated gene modules.
    [Show full text]
  • Novel Insights Into the Molecular Mechanisms Underlying Risk Of
    www.oncotarget.com Oncotarget, 2021, Vol. 12, (No. 19), pp: 1863-1877 Research Paper Novel insights into the molecular mechanisms underlying risk of colorectal cancer from smoking and red/processed meat carcinogens by modeling exposure in normal colon organoids Matthew Devall1,2, Christopher H. Dampier1,2, Stephen Eaton1,2, Mourad W. Ali1,2, Virginia Díez-Obrero3,4,5,6, Ferran Moratalla-Navarro3,4,5,6, Jennifer Bryant1,2, Lucas T. Jennelle1,2, Victor Moreno3,4,5,6, Steven M. Powell7, Ulrike Peters8 and Graham Casey1,2 1Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA 2Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA 3Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain 4Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain 5Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain 6Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain 7Digestive Health Center, University of Virginia, Charlottesville, VA, USA 8Public Health Sciences Division, Fred Hutchinson Cancer Center Research Institute, Seattle, WA, USA Correspondence to: Graham Casey, email: [email protected] Keywords: colon organoids; microsatellite instability; smoking; single-cell deconvolution; weighted gene co-expression network analysis Received: July 15, 2021 Accepted: August 13, 2021 Published: September 14, 2021 Copyright: © 2021 Devall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date: 17-Dec-2009 I, Tiffany Michelle Joffrion , hereby submit this original work as part of the requirements for the degree of: Doctor of Philosophy in Pathobiology & Molecular Medicine It is entitled: Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii Student Signature: Tiffany Michelle Joffrion This work and its defense approved by: Committee Chair: Melanie Cushion, PhD Melanie Cushion, PhD Gary Dean, PhD Gary Dean, PhD Alan Smulian, MD Alan Smulian, MD Sean Davidson, PhD Sean Davidson, PhD Laura Woollett, PhD Laura Woollett, PhD David Askew, PhD David Askew, PhD 3/2/2010 418 Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pathobiology and Molecular Medicine of the College of Medicine by Tiffany M. Joffrion B.S. Dillard University, 2000 Committee Chair: Melanie T. Cushion, PhD Abstract Fungi in the genus Pneumocystis are the cause of a potentially life threatening pneumonia, Pneumocystis pneumonia (PCP). The understanding of the lifecycle, metabolism, and drug development has been hindered due to a lack of a long term in vitro culture system. Unlike most other fungi, members of the genus Pneumocystis do not appear to synthesize the major fungal sterol, ergosterol. However, genome scans and in vitro assays suggest the presence of functional genes involved in a sterol pathway. One of the goals of this work was to characterize the P. carinii sterol enzyme, lanosterol synthase (Erg7p), an essential enzyme of the sterol pathway.
    [Show full text]
  • Functional Discovery Via a Compendium of Expression Profiles
    Cell, Vol. 102, 109±126, July 7, 2000, Copyright 2000 by Cell Press Functional Discovery via a Compendium of Expression Profiles Timothy R. Hughes,*# Matthew J. Marton,*# Means have been devised to survey gene functions en Allan R. Jones,* Christopher J. Roberts,* masse either computationally (Marcotte et al., 1999) or Roland Stoughton,* Christopher D. Armour,* experimentally; among these, highly parallel assays of Holly A. Bennett,* Ernest Coffey,* Hongyue Dai,* thousands of mapped mutants (Shoemaker et al., 1996; Yudong D. He,* Matthew J. Kidd,* Amy M. King,* Ross-Macdonald et al. 1999; Spradling et al., 1999) Michael R. Meyer,* David Slade,* Pek Y. Lum,* seem most likely to succeed comprehensively because Sergey B. Stepaniants,* Daniel D. Shoemaker,* they screen for phenotypes. However, just as high- Daniel Gachotte,² Kalpana Chakraburtty,³ throughput screens of chemical libraries require simple Julian Simon,§ Martin Bard,² assays, highly parallel mutant analyses depend on easily and Stephen H. Friend*k scored phenotypes such as unusual appearance or sen- *Rosetta Inpharmatics, Inc. sitivity to certain culture conditions. Such convenient 12040 115th Avenue N.E. phenotypes do not exist for many important cellular Kirkland, Washington 98034 functions. ² Biology Department Whole-genome expression profiling, facilitated by the Indiana UniversityÐPurdue University Indianapolis development of DNA microarrays (Schena et al., 1995; 723 W. Michigan Street Lockhart et al., 1996), represents a major advance in Indianapolis, Indiana 46202 genome-wide functional analysis. In a single assay, the ³ Department of Biochemistry transcriptional response of each gene to a change in Medical College of Wisconsin cellular state can be measured, whether it is disease, a Milwaukee, Wisconsin 53226 process such as cell division, or a response to a chemi- § Fred Hutchinson Cancer Research Center cal or genetic perturbation (DeRisi et al., 1997; Heller et 1100 Fairview Avenue N.
    [Show full text]
  • Meiotic Recombination-Based Genome Shuffling of Saccharomyces Cerevisiae and Characterization by Genome Sequencing and RNA-Seq T
    Meiotic recombination-based genome shuffling of Saccharomyces cerevisiae and characterization by genome sequencing and RNA-seq transcriptional expression profiling for improved tolerance to spent sulfite liquor ! ! Dominic Pinel A Thesis In The Department Of Biology Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy at Concordia University ©Dominic Pinel, June 2013 ! CONCORDIA UNIVERSITY SCHOOL OF GRADUATE STUDIES This is to certify that the thesis prepared By: Dominic Pinel Entitled: Meiotic recombination-based genome shuffling of Saccharomyces cerevisiae and characterization by genome sequencing and RNA-seq transcriptional expression profiling for improved tolerance to spent sulfite liquor and submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Biology complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Dr. Joanne Turnbull Chair Dr. Shawn Mansfield External Examiner Dr. Paul Joyce External to Program Dr. Reginald Storms Examiner Dr. Malcolm Whiteway Examiner Dr. Vincent Martin Thesis Supervisor Approved by Dr. S. Dayanandan Chair of Department or Graduate Program Director June 6/2013 Dr. B. Lewis Dean of Faculty ! ABSTRACT Meiotic recombination-based genome shuffling of Saccharomyces cerevisiae and characterization by genome sequencing and RNA-seq transcriptional expression profiling for improved tolerance to spent sulfite liquor Dominic Pinel Ph. D. Concordia University, June, 2013. Spent sulfite liquor (SSL) is a waste effluent from sulfite pulping that contains monomeric sugars that can be fermented to ethanol. However, the inhibitory substances found in this complex feedstock adversely affect yeasts used for the fermentation of the sugars in SSL.
    [Show full text]