(Caryophyllaceae), a New Combination for the Flora of Île St. Paul (Southern Indian Ocean), with Some Historical Notes

Total Page:16

File Type:pdf, Size:1020Kb

(Caryophyllaceae), a New Combination for the Flora of Île St. Paul (Southern Indian Ocean), with Some Historical Notes adansonia 2018 ● 40 ● 3 Martín E. TIMANÁ art. 40 (3) — Published on 19 February 2018 www.adansonia.com DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Thierry Deroin RÉDACTEURS / EDITORS : Porter P. Lowry II ; Zachary S. Rogers ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) ; Anne Mabille MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : P. Baas (Nationaal Herbarium Nederland, Wageningen) F. Blasco (CNRS, Toulouse) M. W. Callmander (Conservatoire et Jardin botaniques de la Ville de Genève) J. A. Doyle (University of California, Davis) P. K. Endress (Institute of Systematic Botany, Zürich) P. Feldmann (Cirad, Montpellier) L. Gautier (Conservatoire et Jardins botaniques de la Ville de Genève) F. Ghahremaninejad (Kharazmi University, Téhéran) K. Iwatsuki (Museum of Nature and Human Activities, Hyogo) K. Kubitzki (Institut für Allgemeine Botanik, Hamburg) J.-Y. Lesouef (Conservatoire botanique de Brest) P. Morat (Muséum national d’Histoire naturelle, Paris) J. Munzinger (Institut de Recherche pour le Développement, Montpellier) S. E. Rakotoarisoa (Millenium Seed Bank, Royal Botanic Gardens Kew, Madagascar Conservation Centre, Antananarivo) É. A. Rakotobe (Centre d’Applications des Recherches pharmaceutiques, Antananarivo) P. H. Raven (Missouri Botanical Garden, St. Louis) G. Tohmé (Conseil national de la Recherche scientifique Liban, Beyrouth) J. G. West (Australian National Herbarium, Canberra) J. R. Wood (Oxford) COUVERTURE / COVER : Lectotype (BM 000513207) of Sagina diffusa (Hook.f.) Timaná, comb. nov. Reproduced by permission, ©The Natural History Museum, London, U.K. Adansonia est indexé dans / Adansonia is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Adansonia est distribué en version électronique par / Adansonia is distributed electronically by: – BioOne® (http://www.bioone.org) Adansonia est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris Adansonia is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Geodiversitas, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél. : 33 (0)1 40 79 48 05 / Fax : 33 (0)1 40 79 38 40 [email protected] / http://sciencepress.mnhn.fr © Publications scientifiques du Muséum national d’Histoire naturelle, Paris, 2018 ISSN (imprimé / print) : 1280-8571/ ISSN (électronique / electronic) : 1639-4798 Sagina diffusa (Hook.f.) Timaná, comb. nov. (Caryophyllaceae), a new combination for the flora of Île St. Paul (Southern Indian Ocean), with some historical notes Martín E. TIMANÁ Department of Humanities, Geography Section, and Applied Geography Research Center (CIGA-PUCP) Pontificia Universidad Católica del Perú, Lima (Perú) [email protected] http://orcid.org/0000-0003-1559-4449 Submitted on 23 October 2017 | Accepted on 30 January 2018 | Published on 19 February 2018 Timaná M. E. 2018. — Sagina diffusa (Hook.f.) Timaná, comb. nov. (Caryophyllaceae), a new combination for the KEY WORDS flora of Île St. Paul (Southern Indian Ocean), with some historical notes. Adansonia, sér. 3, 40 (3): 47-53. https://doi. Sagina, org/10.5252/adansonia2018v40a3. http://adansonia.com/40/3 Colobanthus, Caryophyllaceae, ABSTRACT Île St. Paul, Île Amsterdam, A new combination, Sagina diffusa (Hook.f.) Timaná, comb. nov., Caryophyllaceae, from the Île St. Southern Indian Ocean, Paul (Terres Australes et Antarctiques Françaises) is proposed to replace Colobanthus diffusus Hook.f. Terres australes et antarctiques françaises, Sagina diffusa, comb. nov. is characterized by an upright pedicel and appressed sepals during and after new combination. capsule development. A historical account of putative type specimens is presented. MOTS CLÉS Sagina, RÉSUMÉ Colobanthus, Sagina diffusa (Hook.f.) Timaná, comb. nov., Caryophyllaceae, une nouvelle combinaison pour la flore Caryophyllaceae, Île St. Paul, de l’Île St. Paul (sud de l’Océan Indien), avec quelques notes historiques. Île Amsterdam, Une nouvelle combinaison, Sagina diffusa (Hook.f.) Timaná, comb. nov., Caryophyllaceae, de l’Île sud de l’Océan Indien, St. Paul (Terres Australes et Antarctiques Françaises) est proposée pour remplacer Colobanthus diffusus Terres australes et antarctiques françaises, Hook.f. Sagina diffusa, comb. nov. se caractérise par un pédicelle érigé et des sépales apprimés pendant combinaison nouvelle. et après le développement de la capsule. Un historique des spécimens de types putatifs est présenté. ADANSONIA, sér. 3 • 2018 • 40 (3) © Publications scientifiques du Muséum national d’Histoire naturelle, Paris. www.adansonia.com 47 Timaná M. E. INTRODUCTION century by the crew of Magellan’s expedition on their way back to Europe. The first reported landing, however, was by In Flora Antarctica (Part 1), Sir Joseph D. Hooker (1844- the Dutch sailor Willem de Vlamingh in 1696 (Aubert de la 1847) described two species of Colobanthus Bartl. found on Rüe 1966; Lebouvier & Frenot 2007). Île Amsterdam should the southern Indian Ocean islands: C. kerguelensis Hook.f. and not be confused with “Amsterdam Island,” a name given by C. diffusus Hook.f. The first species is currently known in the Dutch explorer Abel Tasman in 1643 to the island currently Kerguelen archipelago, Prince Edward Islands, Crozet Island, known as Tongatapu, Kingdom of Tonga, in the South Pacific. and Heard Island. C. diffusus was erroneously reported for Tongatapu was visited by James Cook’s second expedition in Île Amsterdam, and thus, the identity of this species has long September 1773 (Beaglehole 1992); Johann R. Forster was remained enigmatic, for it has not been collected in recent the leading botanist of this expedition and thus, his main years and the type specimen has not been studied in detail collections are kept at the BM herbarium, citing “Amsterdam for nearly one hundred years. Here I report the true identity Island” as collecting locality. of this species as a member of the genus Sagina. A brief historical account of the two islands has been presented The genus Sagina L. (Caryophyllaceae) consists of approxi- by Aubert de la Rüe (1966); the flora and vegetation of these mately 15 to 30 species of annual and perennial herbs (Crow two islands have been studied by Hemsley (1884), Schenck 1978; Bittrich 1993; Lu & Rabeler 2001; Hernández-Ledesma (1905) and Aubert de la Rüe (1932), however, as Frodin (2001) et al. 2015), distributed mostly in northern temperate regions indicated, a modern flora of these islands is still lacking. of North America, Europe and Asia, although endemic spe- cies have been reported in Australia (Adams 1996), New Guinea (Larsen 1998) and the Kerguelen phytogeographic HISTORICAL ACCOUNT zone (Hooker 1844-1847). The genus Colobanthus includes nearly 20 species distributed across the southern temperate In the early history of exploration and scientific research, regions, from southern South America, temperate Australia, much confusion arose over the names of these two neighboring New Zealand and adjacent subantarctic islands, to the Ker- islands since the current names were reversed in most naval guelen phytogeographic zone (Moore 1970; Bittrich 1993; charts and botanical works, as in, for example, Hooker’s Flora Hernández-Ledesma et al. 2015). Phylogenetic studies have Antarctica (1844-1847; but see Hooker 1875). Therefore, demonstrated that Sagina and Colobanthus are closely related as Hemsley (1884) explained, the plant species recorded in (Harbaugh et al. 2010; Greenberg & Donoghue 2011). Hooker’s Flora Antarctica from Île Amsterdam were actually Morphologically, they differ from each other by the presence from Île St. Paul. This error also applies to the specimens of petals in Sagina (none in Colobanthus) and episepalous collected earlier by Sir George Leonard Staunton mentioned stamens in Sagina (alternisepalous in Colobanthus) among by Reichardt (1871). other characters (Table 1). The only extant type specimen of J. D. Hooker described Colobanthus diffusus in 1845 (Hooker Colobanthus diffususHook.f. (Staunton s.n. [BM 000513207]) 1845: 249) based on two gatherings, one collected by Sir shows floral characters corresponding to the genus Sagina, George L. Staunton and the second by Lieut. Alexander J. and thus the taxonomic transfer is necessary. Smith, both from the island currently named Île St Paul (and both specimens erroneously labeled as coming from Île Am- sterdam). Years later, Reichardt (1871) proposed another spe- THE GEOGRAPHIC SETTING: ÎLE SAINT PAUL cies, Sagina hochstetteri, based upon on two other specimens: a AND ÎLE AMSTERDAM duplicate of Staunton’s gathering and one collected by Ferdi- nand von Hochstetter, geologist and member of the Austrian Île Saint Paul (38°43’S, 77°31’E) and Île Amsterdam (37°50’S, Novara expedition. At this point, there were four specimens 77°30’E) are, along with Îles Kerguelen and Îles Crozet, part of involved, all from Île St. Paul. Yet, of all these, only one of the French Terres Australes et Antarctiques Françaises (TAAF). Staunton’s duplicates, currently held at the Natural History They are both among some of the most isolated islands in the Museum
Recommended publications
  • Evaluation of a Proposed Significant Natural Area at Mt Iron, Wanaka
    EVALUATION OF A PROPOSED SIGNIFICANT NATURAL AREA AT MT IRON, WANAKA R3762 EVALUATION OF A PROPOSED SIGNIFICANT NATURAL AREA AT MT IRON, WANAKA Coprosma shrubland on the southwest faces at the Allenby Farms site, Mt Iron. Contract Report No. 3762 March 2017 (Revised and updated) Project Team: Kelvin Lloyd - Report author: vegetation and flora Mandy Tocher - Report author: herpetofauna Brian Patrick - Report author: invertebrates Prepared for: Allenby Farms Ltd P.O. Box 196 Wanaka 9343 DUNEDIN OFFICE: 764 CUMBERLAND STREET, DUNEDIN 9016 Ph 03-477-2096, 03-477-2095 HEAD OFFICE: 99 SALA STREET, P.O. BOX 7137, TE NGAE, ROTORUA Ph 07-343-9017, 07-343-9018; email [email protected], www.wildlands.co.nz CONTENTS 1. INTRODUCTION 1 2. SITE CONTEXT 1 3. METHODS 1 4. ECOLOGICAL CONTEXT 4 5. INDIGENOUS VEGETATION AND HABITATS 5 5.1 Kānuka scrub and shrubland 5 5.2 Coprosma scrub and shrubland 6 5.3 Exotic grassland and herbfield 7 5.4 Swale turf 8 5.5 Cushionfield 8 6. FLORA 8 6.1 Species richness 8 6.2 Threatened and At Risk plant species 12 6.3 Pest plants 12 7. BIRDS 13 8. LIZARDS 14 8.1 Overview 14 8.2 “Remove from SNA” zone 14 8.3 Alternate SNA 18 9. INVERTEBRATES 18 9.1 Overview 18 9.2 Mixed Coprosma-dominant shrubland 18 9.3 Kānuka scrub and shrubland 19 9.4 Rock outcrop habitats 19 9.5 Open grassland and turf 19 10. PEST ANIMALS 20 11. ECOLOGICAL VALUES 20 11.1 District Plan (2009) - Section 6c Significance 20 11.2 Proposed District Plan - Section 6c Significance from Policy 33.2.1.9 22 11.3 Significance summary 23 12.
    [Show full text]
  • Terrestrial Invasions on Sub-Antarctic Marion and Prince Edward Islands
    Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 21 Original Research Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands Authors: Background: The sub-Antarctic Prince Edward Islands (PEIs), South Africa’s southernmost 1 Michelle Greve territories have high conservation value. Despite their isolation, several alien species have Rabia Mathakutha1 Christien Steyn1 established and become invasive on the PEIs. Steven L. Chown2 Objectives: Here we review the invasion ecology of the PEIs. Affiliations: Methods: We summarise what is known about the introduction of alien species, what 1Department of Plant and Soil Sciences, University of influences their ability to establish and spread, and review their impacts. Pretoria, South Africa Results: Approximately 48 alien species are currently established on the PEIs, of which 26 are 2School of Biological Sciences, known to be invasive. Introduction pathways for the PEIs are fairly well understood – species Monash University, Australia have mainly been introduced with ship cargo and building material. Less is known about establishment, spread and impact of aliens. It has been estimated that less than 5% of the PEIs Corresponding author: is covered by invasive plants, but invasive plants have attained circuminsular distributions on Michelle Greve, [email protected] both PEIs. Studies on impact have primarily focussed on the effects of vertebrate invaders, of which the house mouse, which is restricted to Marion Island, probably has the greatest impact Dates: on the biodiversity of the islands. Because of the risk of alien introductions, strict biosecurity Received: 01 Aug. 2016 regulations govern activities at the PEIs. These are particularly aimed at stemming the Accepted: 05 Dec.
    [Show full text]
  • Weed ID Guide
    GUIDE Cross Sector Weed ID guide 1 Contents Introduction How best to use this pocket guide 2 Weeds as alternative hosts to pests and diseases 3 Importance of weed species in each sector 3 Non-chemical weed control 3 Key features of weeds Key features of weeds to aid identification 4 Broad-leaved weed seedlings 4 Grass weed seedlings 6 Identification groups key Identification groups 1–26 8 Importance of each weed Table 1. Relative importance of each weed in each horticultural sector i Non-chemical weed control Table 2. Ease of non-chemical weed control iv Additional Information Acknowledgements viii 0.A 2 Introduction A pocket guide to aid the identification of the most widespread and economically important weeds encountered in the horticultural sector, this publication covers mostly broad-leaved weeds but also some grasses, moss and liverwort. How best to use this pocket guide This guide is primarily an aid to weed seedling identification to help growers choose the right cultural or herbicidal control method. To correctly identify a weed seedling, first read the section, ‘Key features of weeds’, as this will provide a structured plan of how to approach the identification process. Familiarisation with the various parts of the seedling and checking the key features is essential for correct identification. The weeds are grouped (1–26), by common features of the seedlings, so that this facilitates quicker identification. Each weed has been photographed at three stages of its development: cotyledon, first/second true leaf and mature plant, to allow it to be identified at all stages of growth.
    [Show full text]
  • Second Contribution to the Vascular Flora of the Sevastopol Area
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2015 Band/Volume: 22 Autor(en)/Author(s): Seregin Alexey P., Yevseyenkow Pavel E., Svirin Sergey A., Fateryga Alexander Artikel/Article: Second contribution to the vascular flora of the Sevastopol area (the Crimea) 33-82 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.zobodat.at Wulfenia 22 (2015): 33 – 82 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Second contribution to the vascular flora of the Sevastopol area (the Crimea) Alexey P. Seregin, Pavel E. Yevseyenkov, Sergey A. Svirin & Alexander V. Fateryga Summary: We report 323 new vascular plant species for the Sevastopol area, an administrative unit in the south-western Crimea. Records of 204 species are confirmed by herbarium specimens, 60 species have been reported recently in literature and 59 species have been either photographed or recorded in field in 2008 –2014. Seventeen species and nothospecies are new records for the Crimea: Bupleurum veronense, Lemna turionifera, Typha austro-orientalis, Tyrimnus leucographus, × Agrotrigia hajastanica, Arctium × ambiguum, A. × mixtum, Potamogeton × angustifolius, P. × salicifolius (natives and archaeophytes); Bupleurum baldense, Campsis radicans, Clematis orientalis, Corispermum hyssopifolium, Halimodendron halodendron, Sagina apetala, Solidago gigantea, Ulmus pumila (aliens). Recently discovered Calystegia soldanella which was considered to be extinct in the Crimea is the most important confirmation of historical records. The Sevastopol area is one of the most floristically diverse areas of Eastern Europe with 1859 currently known species. Keywords: Crimea, checklist, local flora, taxonomy, new records A checklist of vascular plants recorded in the Sevastopol area was published seven years ago (Seregin 2008).
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Earth, Fire and Water: Applying Novel Techniques to Eradicate the Invasive
    Island invasives: eradication and management Cooper J.; R.J. Cuthbert, N.J.M. Gremmen, P.G. Ryan, and J.D. Shaw. Earth, fire and water: applying novel techniques to eradicate the invasive plant, procumbent pearlwort Sagina procumbens, on Gough Island, a World Heritage Site in the South Atlantic Earth, fire and water: applying novel techniques to eradicate the invasive plant, procumbent pearlwort Sagina procumbens, on Gough Island, a World Heritage Site in the South Atlantic J. Cooper1,2,3, R. J. Cuthbert4, N. J. M. Gremmen5, P. G. Ryan6 and J. D. Shaw2 1Animal Demography Unit, Department of Zoology, University of Cape Town, Rondebosch 7701, South Africa. <[email protected]>. 2DST/NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. 3CORE Initiatives, 9 Weltevreden Avenue, Rondebosch 7700, South Africa. 4Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, United Kingdom. 5Data-Analyse Ecologie, Hesselsstraat 11, 7981 CD Diever, The Netherlands. 6Percy FitzPatrick Institute DST/NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa. Abstract The Eurasian plant procumbent pearlwort (Sagina procumbens) was first reported in 1998 on Gough Island, a cool-temperate island and World Heritage Site in the central South Atlantic. The first population was discovered adjacent to a meteorological station, which is its assumed point of arrival. Despite numerous eradication attempts, the species has spread along a few hundred metres of coastal cliff, but has not as yet been found in the island’s sub-Antarctic-like mountainous interior.
    [Show full text]
  • National Wetland Plant List: 2016 Wetland Ratings
    Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1–17. Published 28 April 2016. ISSN 2153 733X THE NATIONAL WETLAND PLANT LIST: 2016 WETLAND RATINGS ROBERT W. LICHVAR U.S. Army Engineer Research and Development Center Cold Regions Research and Engineering Laboratory 72 Lyme Road Hanover, New Hampshire 03755-1290 DARIN L. BANKS U.S. Environmental Protection Agency, Region 7 Watershed Support, Wetland and Stream Protection Section 11201 Renner Boulevard Lenexa, Kansas 66219 WILLIAM N. KIRCHNER U.S. Fish and Wildlife Service, Region 1 911 NE 11 th Avenue Portland, Oregon 97232 NORMAN C. MELVIN USDA Natural Resources Conservation Service Central National Technology Support Center 501 W. Felix Street, Bldg. 23 Fort Worth, Texas 76115-3404 ABSTRACT The U.S. Army Corps of Engineers (Corps) administers the National Wetland Plant List (NWPL) for the United States (U.S.) and its territories. Responsibility for the NWPL was transferred to the Corps from the U.S. Fish and Wildlife Service (FWS) in 2006. From 2006 to 2012 the Corps led an interagency effort to update the list in conjunction with the U.S. Environmental Protection Agency (EPA), the FWS, and the USDA Natural Resources Conservation Service (NRCS), culminating in the publication of the 2012 NWPL. In 2013 and 2014 geographic ranges and nomenclature were updated. This paper presents the fourth update of the list under Corps administration. During the current update, the indicator status of 1689 species was reviewed. A total of 306 ratings of 186 species were changed during the update.
    [Show full text]
  • Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
    DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours .............................................................................................................
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • From Cacti to Carnivores: Improved Phylotranscriptomic Sampling And
    Article Type: Special Issue Article RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Short Title: Walker et al.—Phylotranscriptomic analysis of Caryophyllales From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales Joseph F. Walker1,13, Ya Yang2, Tao Feng3, Alfonso Timoneda3, Jessica Mikenas4,5, Vera Hutchison4, Caroline Edwards4, Ning Wang1, Sonia Ahluwalia1, Julia Olivieri4,6, Nathanael Walker-Hale7, Lucas C. Majure8, Raúl Puente8, Gudrun Kadereit9,10, Maximilian Lauterbach9,10, Urs Eggli11, Hilda Flores-Olvera12, Helga Ochoterena12, Samuel F. Brockington3, Michael J. Moore,4 and Stephen A. Smith1,13 Manuscript received 13 October 2017; revision accepted 4 January 2018. 1 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048 USA 2 Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108 USA 3 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 4 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097 USA 5 Current address: USGS Canyonlands Research Station, Southwest Biological Science Center, 2290 S West Resource Blvd, Moab, UT 84532 USA 6 Institute of Computational and Mathematical Engineering (ICME), Stanford University, 475 Author Manuscript Via Ortega, Suite B060, Stanford, CA, 94305-4042 USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Wildland Urban Interface Approved Plant List
    WILDLAND URBAN INTERFACE APPROVED PLANT LIST This approved plant list has been developed to serve as a tool to determine the placement of vegetation within the Wildland Urban Interface areas. The approved plant list has been compiled from several similar lists which pertain to the San Francisco Bay Area and to the State of California. This approved plant list is not intended to be used outside of the San Mateo County area. The “required distance” for each plant is how far the given plant is required to be from a structure. If a plant within the approved plant list is not provided with a “required distance”, the plant has been designated as a fire-resistant plant and may be placed anywhere within the defensible space area. The designation as a fire-resistant plant does not exempt the plant from other Municipal Codes. For example, as per Hillsborough Municipal Code, all trees crowns, including those that have been designated as fire resistant, are required to be 10 feet in distance from any structure. Fire resistant plants have specific qualities that help slow down the spread of fire, they include but are not limited to: • Leaves tend to be supple, moist and easily crushed • Trees tend to be clean, not bushy, and have little deadwood • Shrubs are low-growing (2’) with minimal dead material • Taller shrubs are clean, not bushy or twiggy • Sap is water-like and typically does not have a strong odor • Most fire-resistant trees are broad leafed deciduous (lose their leaves), but some thick-leaf evergreens are also fire resistant.
    [Show full text]
  • Diversity and Origin of the Central Mexican Alpine Flora
    diversity Article Diversity and Origin of the Central Mexican Alpine Flora Victor W. Steinmann 1, Libertad Arredondo-Amezcua 2, Rodrigo Alejandro Hernández-Cárdenas 3 and Yocupitzia Ramírez-Amezcua 2,* 1 Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Del. Sta. Rosa Jáuregui, Querétaro 76230, Mexico; [email protected] or [email protected] 2 Private Practice, Pátzcuaro, Michoacán 61600, Mexico; [email protected] 3 Herbario Metropolitano, División de Ciencias Biológicas y de la Salud, Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco #186, Colonia Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; [email protected] * Correspondence: [email protected] Abstract: Alpine vegetation is scarce in central Mexico (≈150 km2) and occurs on the 11 highest peaks of the Trans-Mexican Volcanic Belt (TMVB). Timberline occurs at (3700) 3900 m, and at 4750 m vascular plants cease to exist. The alpine vascular flora comprises 237 species from 46 families and 130 genera. Asteraceae (44), Poaceae (42), and Caryophyllaceae (21) possess 45% of the species; none of the remaining families have more than 10 species. Four species are strict endemics, and eight others are near endemics. Thirteen species are restricted to alpine vegetation but also occur outside the study area. Seventy-seven species are endemic to Mexico, 35 of which are endemic to the TMVB. In terms of biogeography, the strongest affinities are with Central or South America. Fifteen species are also native to the Old World. Size of the alpine area seems to not be the determining factor for its floristic diversity. Instead, the time since and extent of the last volcanic activity, in addition to the distance from other alpine islands, appear to be important factors affecting diversity.
    [Show full text]