Space Exploration: Manned and Unmanned Flight

Total Page:16

File Type:pdf, Size:1020Kb

Space Exploration: Manned and Unmanned Flight DOCUMENT RESUME ED 068 294 SE014 558 AUTHOR Coard, E. A. TITLE Space Exploration: Manned and Unmanned Flight. Aerospace Education III. INSTITUTION Air Univ., Maxwell AFB, Ala. Junior Reserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 196p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Lunar Research; National Organizations; *Programs; *Resource Materials; *Space Sciences; Supplementary Textbooks; Textbooks ABSTRACT This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of future challenges and impact on life situations. The Apollo program will culminate in a Skylab meant to gather information about space and the planets. The Skylab should lead to setting up a permanent space station. Later probes of planets, especially Venus, will provide information that might prove very useful in the study of the universe. (PS) FILMED FROM BEST AVAILABLE COPY t- , C.) 1 1 1 U S DEPARTMENT OF HEALTH EDUCATION & WELFARE OFFICE OF EOUCATION THIS DOCUMENT HAS BEEN REPRO DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG MANN(' IT POINTS OF VIM OR OPIN IONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDU CATION POSITION OR POLICY Aerospace Education III Space Exploration Manned and Unmanned Flight E. A. COARD Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC ,UR UNIVERSITY MAXWELL MR FORCE BASE, ALABAMA ii/ 1971 This publication has been reviewed and approved by responsible personnel of the Air University in accordance withcurrent di- relives on doctrine, policy, essentiality, propriety, and quality. This book will not be offered for sale.Itis for use only in the Air Force ROTC program. 3 Preface WHEN AMERICAN astronauts first landed on the moon, in July 1969, the United States had reached its first- priority goal in space exploration, and President Nixon set new goals for the program. In making a decision about what these goals should be, the President fol- lowed the recommendations of his special Space Task Group, which had drawn up a broad program for the future. This book takes a look at that programnow and as projected into the remainder of the 1970s. Until the end of 1972 our efforts will continue to center on the Apollo flights, but we shall no longer be learning how to operate the Apollo spacecraft and the Saturn boosters. Instead, our main interest will be focused on the exploration of the moon. The last Apollo flights are spaced at six-month or longer inter- vals to allow scientists to gain as much information as possible from the results of one landing before we make another. In 1973, after the Apollo flights have beencom- pleted, the Skylab will be placed in earth orbit, and astronauts will make three visits to the laboratory to conduct experiments. The Skylab flights will makeuse of the knowledge obtained in our probes ofspace and will give us valuable information about constructing a permanent space station. During the entire decade of the 1970swe shall con- tinue with our program for exploring the planets, and we are likely to make exciting new discoveries.In 4 1973 a Mariner spacecraft will be modified to take pictures of the surface of the cloud-shrouded planet Venus, which astronomers have never seen. Later the Viking, a combination orbiter and soft-lander, will inake a landing on Mars to obtain firsthand evidence about life on that planet. The program for exploring the planets will climax with the Grand Tours of the outer planets near the end of the decade. A like oppor- tunity for making such Grand Tours will not present itself for another 180 years. Taken as a whole, our program for exploring space during the 1970s promises to be even more exciting than our program for reaching the moon. Our present program, although undertaken with a reduced budget, can promise us more because we have the knowledge of the first decade of space exploration upon which to build. In making a survey of our national space program, this volume places emphasis upon exploration and the search for scientific knowledge. You have studied about the practical applications of space technology in the first year of the course. Applications are re- viewed briefly in the introductory chapter only to re- mind you that scientific knowledge obtained during space exploration can be put to many practical uses. In planning its long-range space program, however, our country cannot allow its goals to be tied too closely to practical applications. Our Nation must reach out boldly to explore space without attempting to predict exactly what kind of practical applications will result. When, in 1961, President Kennedy proposed the lunar landing as a national goal, he said that space is a new kind of ocean and we must learn to sail upon it. We have learned how to travel in space, and some of the prospects that await us in the future are even ivs 114 more promising than the lunar landing. Now that the frontiers have disappeared from the planet earth, we are finding a new frontier in space. This frontier will remain forever as a challenge to man's desire to explore the unknown. This book describes some of our adven- tures on the space frontier. Later books in this year's program will tell you more about the problems we face in advancing on the space frontier and the benefits to be gained. At the end of each chapter, you will find a list of references for further reading. These are merely sug- gestions. There are many other good references avail- able at present, and new books about space are con- stantly being published. You will need to consult the press and television for reports on the most recent launchings, and your teacher will supply you with the latest NASA publications about the space program. Grateful acknowledgment is made to NASA for the photographs used in this book. Except where other- wise indicated, all photographs and airbrush drawings used in this book have been provided by NASA. Contents PREFACE in Chapter 1SPACEEXPLORATION AND THE NATIONAL SPACE PROGRAM 1 Lunar Landing: A Goal Achieved. 2 Present Goals of the Space Program. 4 Practical Applications of Space Technology. 7 Management Know-How 8 Applications Satellites 9 Spinoffs 13 Chapter 2APOLLOFLIGHTS 17 Plans for the Lunar Landing 19 Method Selected 19 Three-Module Apollo Spacecraft. 20 Saturn Boosters 24 Flight Plan for the Lunar Landing. 25 Developing and Practicing Maneuvers. 29 Ground Complex 34 Testing the Apollo Spacecraft and Its Booster 38 Apollo 7 (Earth Orbit) 39 Apollo 8 (Lunar Orbit) 42 Apollo 9 (Earth Orbit) 43 Apollo 10 (Lunar Orbit) 48 Lunar Landings 52 Apollo 11 52 Apollo 12 61 Apollo 14 63 Fight For Survival: Apollo 13 66 Future Flights 70 Chapter 3EXPLORATIONOF THE MOON 73 Physical Features of the Moon 74 Key Questions About the Moon 81 Origin of the Moon 81 Formation of the Physical Features 83 Nature of the Moon's Interior 86 Preliminary Unmanned Exploration. 87 Ranger Probes 88 vii b 7 Surveyor Soft-Landers 91 Lunar Orbiters 95 Early Manned Exploration 98 Apollo-11 Exploration 100 Apollo-12 Exploration 106 Apollo-14 Exploration 110 Summary of Tentative Findings 114 Future Exploration of the Moon 116 Chapter 4--THE SPACE STATIONAND THE SPACE TRANSPORTATION SYSTEM 121 Early Ideas About a Space Station. 123 What Is a Space Station? 126 Skylab: Forerunner of the Space Station 127 Plans for the Space Station 131 Small Space Station 132 Transportation for the Space Station 134 Large Space Station 140 Chapter 5EXPLORATION OFTHE PLANETS 145 The Solar System 148 Key Questions About the Planets 150 Means for Answering the Questions 153 Men and Instrumentson Earth 153 Instruments in Space 155 The Neighboring Planets 158 Mars 160 Venus 166 The Other Planets 170 Future Planetary Flights 173 Mariner Probes 173 Pioneer Probes 174 Viking Orbit and Soft-Lander 174 Grand Tours 175 GLOSSARY 181 INDEX 187 viii .mow V Lommrft''"" I !..1.1LedI 5 I I I, I THIS CHAPTER explains that space exploration, thesearch for scientific knowledge, and practical applications ore the three mainpurposes of the notional space program. It tells why the United States set new goals for thespace program offer the lunar landing, and it explains the six goals ofour present program and tells how they relate to space exploration andthe search for scientific knowledge. Finally, the chapter describes the prod.calways in which some of the knowledge obtained from space exploration is being applied.After you have studied this chapter, you should be able to do the following: (1)explain four goals of the space program as they relate to space exploration and the search forscientific knowledge, (2) describe the three main purposes of thenational space program, and (3) tell three principal applications made of theknowledge obtained from space exploration. EXPLORATION is at the forefront of the nationalspace program and determines the direction of thatprogram. In the first decade of space exploration the United States made a long, bold stride intothe future to reach the moon, to landupon it, and to return astronauts safely to the earth. Before the end of the decadeour astronauts made four flights to the moon, and on two of these flightsthey landed on the moon to explore its surface. This exploration, unique in the history of the world, has given us a new perspectiveon the planet earth, the en- tire solar system, and the universe beyond.
Recommended publications
  • Report Resumes
    REPORT RESUMES ED 019 218 88 SE 004 494 A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6. LINCOLN PUBLIC SCHOOLS, NEBR. PUB DATE 67 EDRS PRICEMF.41.00 HC-S10.48 260P. DESCRIPTORS- *ELEMENTARY SCHOOL SCIENCE, *PHYSICAL SCIENCES, *TEACHING GUIDES, *SECONDARY SCHOOL SCIENCE, *SCIENCE ACTIVITIES, ASTRONOMY, BIOGRAPHIES, BIBLIOGRAPHIES, FILMS, FILMSTRIPS, FIELD TRIPS, SCIENCE HISTORY, VOCABULARY, THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT CATEGORIES ARE (1) DEVELOPMENT OF FLIGHT, (2) PIONEERS OF THE AIR (BIOGRAPHY),(3) ARTIFICIAL SATELLITES AND SPACE PROBES,(4) MANNED SPACE FLIGHT,(5) THE VASTNESS OF SPACE, AND (6) FUTURE SPACE VENTURES. SUGGESTIONS ARE MADE THROUGHOUT FOR USING THE MATERIAL AND THEMES FOR DEVELOPING INTEREST IN THE REGULAR LEARNING EXPERIENCES BY INVOLVING STUDENTS IN AEROSPACE ACTIVITIES. INCLUDED ARE LISTS OF SOURCES OF INFORMATION SUCH AS (1) BOOKS,(2) PAMPHLETS, (3) FILMS,(4) FILMSTRIPS,(5) MAGAZINE ARTICLES,(6) CHARTS, AND (7) MODELS. GRADE LEVEL APPROPRIATENESS OF THESE MATERIALSIS INDICATED. (DH) 4:14.1,-) 1783 1490 ,r- 6e tt*.___.Vhf 1842 1869 LINCOLN PUBLICSCHOOLS A RESOURCEBOOK OF AEROSPACEACTIVITIES U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION K-6) THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. 1919 O O Vj A PROJECT FUNDED UNDER TITLE HIELEMENTARY AND SECONDARY EDUCATION ACT A RESOURCE BOOK OF AEROSPACE ACTIVITIES (K-6) The work presentedor reported herein was performed pursuant to a Grant from the U.
    [Show full text]
  • The Space Impact of the Euro Crisis 50 Years After Mariner 2: Exploration at a Crossroads
    0827_SPN_DOM_00_019_00 (READ ONLY) 8/24/2012 11:39 AM Page 19 www.spacenews.com SPACENEWS 19 August27, 2012 TheSpaceImpact of the Euro Crisis < ROBBIN LAIRD and HARALD MALMGREN > he European sovereign debt crisis Europe will now be challenged in the ing to hide the reality of European bank of the savings of millions of European is not simply abump in historical form of rollbacks of the many inter- weaknesses. The main reason is that eu- citizens. Tprogress; it is the end of aperiod twined strands of integration, fraying rozone economies are far more bank- European leaders are also attempt- of historyand acritical point in Euro- what has been an intricate but incom- dependent than economies like those in ing to initiate amore comprehensive fis- pean and global transition in the 21st plete tapestry. It is questionable whether the United States or United Kingdom, cal union, with new decision-making century. Europe will be able to prevent stalling of where substantial nonbank financing al- mechanisms that transfer sovereignty in The confluence of several trend lines the integration process in the face of ternatives exist for the corporate sector. parallel with the new banking union. We — the unification of Germany,the end widening gaps among the interests of In the eurozone, banks are the fi- do not believe that any of the eurozone of the Soviet Union, the collapse of the each nation and even within each nation. nancial markets; in the U.S., banks are governments are ready for such apoliti- Berlin Wall, the expansion of NATO, Since the birth of the euro, the but one segment of amultifaceted fi- cal transition in which citizens in each the expansion of the European Union French and Germans were in the lead in nancial market.
    [Show full text]
  • NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
    Geophysical Research Abstracts Vol. 13, EGU2011-5107-2, 2011 EGU General Assembly 2011 © Author(s) 2011 NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Richard Elphic (1), Gregory Delory (1,2), Anthony Colaprete (1), Mihaly Horanyi (3), Paul Mahaffy (4), Butler Hine (1), Steven McClard (5), Joan Salute (6), Edwin Grayzeck (6), and Don Boroson (7) (1) NASA Ames Research Center, Moffett Field, CA USA ([email protected]), (2) Space Sciences Laboratory, University of California, Berkeley, CA USA, (3) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO USA, (4) NASA Goddard Space Flight Center, Greenbelt, MD USA, (5) LunarQuest Program Office, NASA Marshall Space Flight Center, Huntsville, AL USA, (6) Planetary Science Division, Science Mission Directorate, NASA, Washington, DC USA, (7) Lincoln Laboratory, Massachusetts Institute of Technology, Lexington MA USA Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent “Scientific Context for Exploration of the Moon” (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions.
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Assessment of Spectral Properties of Apollo 12 Landing Site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2
    Assessment of spectral properties of Apollo 12 landing site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2 1Student, Birkbeck Colllege, University of London 2Birkbeck Colllege, University of London Corresponding author: Yann Chemin1 Email address: [email protected] ABSTRACT The geology and mineralogy of the Apollo 12 landing site has been the subject of recent studies that this research attempts to complement from a remote sensing point of view using the Moon Mineralogy Mapper (M3) sensor data, onboard the Chandrayaan-1 lunar orbiter. It is a higher spatial-spectral resolution sensor than the Clementine UVVis sensor and gives the opportunity to study the lunar surface with a comparatively more detailed spectral resolution. We used ISIS and GRASS GIS to study the M3 data. The M3 signatures are showing a monotonic featureless increment, with very low reflectance, suggesting a mature regolith. The regolith maturity is splitting the landing site in a younger Northwest and older Southeast. The mineral identification using the lunar sample spectra from within the Relab database found some similarity to a basaltic rock/glass mix. The spectrum features of clinopyroxene have been found in the Copernican rays and at the landing site. Lateral mixing increases FeO content away from the central part of the ray. The presence of clinopyroxene in the pigeonite basalt in the stratigraphy of the landing site brings forth some complexity in differentiating the Copernican ray’s clinopyroxene from the local source, as the spectra are twins but for their vertical shift in reflectance, reducing away from the central part of the ray. Spatial variations in mineralogy were not found mostly because of the pixel size compared to the landing site area.
    [Show full text]
  • 50. Obletnica Pristanka Na Luni in Pomen Osvajanja Vesolja Za Geodezijo 50Th Anniversary of the Moon Landing and the Importance
    GEODETSKI VESTNIK | 63/4 | 50. OBLETNICA PRISTANKA 50TH ANNIVERSARY OF NA LUNI IN POMEN THE MOON LANDING AND OSVAJANJA VESOLJA ZA THE IMPORTANCE OF GEODEZIJO CONQUERING SPACE FOR GEODESY Sandi Berk STROKOVNE RAZPRAVE | PROFESSIONAL DISCUSSIONS RAZPRAVE STROKOVNE 1 UVOD Letos mineva petdeset let od prvega obiska človeka na edini Zemljini luni – Mesecu (v nadaljevanju kar: Luna). Ta »majhen korak za človeka, a velikanski skok za človeštvo« je bil storjen 20. julija 1969, ko sta Neil Armstrong in Edwin Aldrin v lunarnem modulu Eagle (tj. Orel) pristala poleg Malega zahodnega kraterja v Morju tišine (slika 1). Okrogla obletnica je priložnost, da se ozremo nazaj in osvežimo dogod- ke iz pionirskih časov osvajanja vesolja. Hkrati lahko osvetlimo pomen takratnih podvigov ter njihove učinke na tehnološki razvoj in tudi napredek geodezije. Slika 1: Armstrongova fotografija Aldrina ob nameščenem seizmografu; nad njim je reflektor za lasersko merjenje oddaljenosti od Zemlje, desno zgoraj pa je lunarni modul Eagle (vir: NASA, 2019). | 589 | | 63/4 | GEODETSKI VESTNIK Kje se sploh prične vesolje – kako visoko je treba poleteti? Mejo med Zemljino atmosfero in vesoljskim prostorom (angl. outer space) imenujemo Kármánova ločnica in je približno sto kilometrov nad površjem Zemlje. Nad to višino za letenje ne veljajo več zakoni aerodinamike, ampak je mogoče zgolj še letenje po zakonih balistike, torej na raketni pogon. Pomembna je tudi v pravnem smislu, saj se tu konča zračni prostor držav in začne veljati mednarodno vesoljsko pravo. Kot vemo, letijo potniška letala na višini približno deset kilometrov. Nedavni rekordni polet z jadralnim letalom je dosegel višino 23 kilometrov nad morjem, vendar s pomočjo stratosferskih zavetrnih valov, ki nastajajo zaradi izredno močnih zračnih tokov med visokimi gorskimi vrhovi Andov (Ebbesen Jensen, 2019).
    [Show full text]
  • Effect of Target Properties on the Impact Cratering Process
    WORKSHOP PROGRAM AND ABSTRACTS LPI Contribution No. 1360 BRIDGING THE GAP II: EFFECT OF TARGET PROPERTIES ON THE IMPACT CRATERING PROCESS September 22–26, 2007 Saint-Hubert, Canada SPONSORS Canadian Space Agency Lunar and Planetary Institute Barringer Crater Company NASA Planetary Geology and Geophysics Program CONVENERS Robert Herrick, University of Alaska Fairbanks Gordon Osinski, Canadian Space Agency Elisabetta Pierazzo, Planetary Science Institute SCIENTIFIC ORGANIZING COMMITTEE Mark Burchell, University of Kent Gareth Collins, Imperial College London Michael Dence, Canadian Academy of Science Kevin Housen, Boeing Corporation Jay Melosh, University of Arizona John Spray, University of New Brunswick Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1360 Compiled in 2007 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Agreement No. NCC5-679 issued through the Solar System Exploration Division of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2007) Title of abstract. In Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process, p. XX. LPI Contribution No. 1360, Lunar and Planetary Institute, Houston.
    [Show full text]
  • Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
    Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process
    [Show full text]