Biology –Taxonomy Project

Total Page:16

File Type:pdf, Size:1020Kb

Biology –Taxonomy Project Biology –Taxonomy Project Classification is an important part of any biology course. As you will discover as you work on this project, organisms can be classified with a variety of methods. A phylogenetic tree is a specialized classification scheme that is used to demonstrate possible evolutionary relationships between types of organisms. You will be designing and constructing a phylogenetic tree in book form or through any other presentation media of your choice that will demonstrate the classification and evolutionary relationships between the six kingdoms of organisms. The purposes of this project are: • To familiarize yourself with the characteristics of the six kingdoms. • To provide you with a quick reference of the kingdoms and phyla that you can use in future review. • To provide the background information for the introduction of the study of cladistics and the construction of cladogram. After completing this project, you will be able to: • Identify the six kingdoms used to classify all organisms on Earth. • Describe the main characteristics of each kingdom and provide examples of each. • Identify major phyla within each of the six kingdoms. • Describe the main characteristics of each phyla and provide examples of each. • Use these characteristics to build cladograms and dichotomous keys. This will take place later on, in our IB Biology program. Much of the required information can be found in your textbooks available in the biology room. There are several web sites that I have found useful for parts of this project. You are not limited to these sites but YOU MAY NOT USE WIKIPEDIA. All of your sources must be sited in a separate reference section. http://tolweb.org/tree/phylogeny.html -Tree of Life website http://danmarkltd.tripod.com/taxonomy/index.html -Taxonomy REQUIRED INFORMATION I. For each kingdom, you will need to provide the following information: • Description of the major characteristics of that kingdom. • Divergent Event- A significant change that led to the evolution of this kingdom and separation from previously existing kingdoms. • Cell Type- whether it is a prokaryotic or eukaryotic organism. • Body Plan- Unicellular, multicellular, or both types of body plans found in that kingdom? (If both, then examples should be noted.) • Metabolism- Autotrophs, heterotrophs, or both types found in that kingdom? (If both, then examples should be noted.) • Circulatory- Open or closed. Type of heart. • Respiratory- Gills, book lungs, lungs. • Reproduction- Sexual, asexual, or both types of reproduction found in that kingdom? (If both, then examples should be noted.) • Examples- List one example of an organism from that kingdom. These examples are not duplicates of the examples used in each phyla. • You must define any words that are new to you I - For Kingdom Prokaryotae: a. Eubacteria à key traits – how are they different from the Eubacteria? Why are they separate in their own domain? II - Archaebacteria à Key traits and a comparison with eubacteria. Why is there a domain dedicated to them? You must define any words that are new to you. III. For the Kingdom Protista, You will need to list 6 phyla key traits: 1. Ciliophora, 2. Zoomastingina 3. Euglenophyta, 4. Chlorophyta, 5. Phaeophyta, 6. Rhodophyta, • Examples- Give at least one example of an organism in that phylum. Include a picture or a drawing. IV. For the Kingdom Fungi, You will need to list 4 phyla key traits: 1. Basidomycota, 2. Ascomycota, 3. Deutromycota, 4. Zygomycota. Additionally, you must include the following information for each phylum: • Description of the major characteristics of the phylum. What makes each phylum unique? • Commercial Value- Identify at least one specific example from this phylum that either provides a cost or a benefit to humans (medicinal, agricultural, gastronomical) • Examples- Give at least one example of an organism in the phylum. Include a picture or a drawing. Please include an appropriate citation for artwork that is not your own creation. V. For the Kingdom Plantae, you will need to list these 4 phyla key traits: 1. Bryophyta, 2. Filicinophyta, 3. Angiospermophyta, 4. and Coniferophyta. Additionally, you must include the following information for each phylum: a. Description of the major characteristics of the phylum. What makes each phylum unique? b. Environment – Where are these plants typically found? c. Examples – Give at least one example of an organism in that phylum. Include a picture or a drawing. Please include an appropriate citation for artwork that is not your own creation. VI. For Kingdom Animalia, You will need to list these 6 Phyla key traits: 1. Porifera, 2. Cnidaria, 3. Platyhelminthes, , 4. Annelida, 5. Mollusca, 6. Arthropoda. Additionally, you must include the following information for each phylum: a. Description of the major characteristics of the phylum. What makes each phylum unique? b. Examples – Give at least one example of an organism in that phylum. Include a picture or a drawing. Please include an appropriate citation for artwork that is not your own creation. 5 classes of vertebrates- be sure to include information in the appropriate phyla on the following 5 classes of vertebrates (key traits): a. Fish, b. Amphibians, c. Reptiles, d. Birds e. Mammals. EXPECTED ORGANIZATION/Format You may choose any presentation media to do this project (prezi, powerpoint etc) as long as the guidelines in this document are followed. Please refer to the citation guidelines below: If you choose to use a book format, • Title Page – This will be the cover. • Table of Contents – You will list each kingdom and phylum in your book and a page number where each item is found on. You may include more than one kingdom and/or phylum on each page. Kingdoms and phyla will be in the order presented in the handout. • Sequentially numbered pages. • Resources – all sources that were used for your project • Citation of all the sources using the MLA format – see below for more details. How to cite your sources MLA Citation Here is a brief video from Memorial University Library… https://www.youtube.com/watch?v=Xf_hSUeQ088&index=1&list=PLJte6w3fUL6u49bZBmJGKugDLa PLJxmdk More citing sources information and examples are accessible on The OWL (Online Writing Lab) at Purdue University: http://owl.english.purdue.edu/owl/resource/747/01/ .
Recommended publications
  • Activity-Release-Form-KLCC
    Kingdom Life Community Church Activity Release Form For those 18 years of age or older, all parents, and all guardians: I consent for any of my children listed below to participate in any activity or trip sponsored by Kingdom Life Community Church. In case of medical need or injury, I authorize the church to arrange for medical or dental services for me and any of my children listed below. I agree that any such expense will be my obligation. I, individually, or in my capacities as parent or guardian of the below listed children, waive, release, and indemnify the church and all of its agents, directors, officers, employees and volunteers (collectively, “released parties”) from all demands, claims, liability, in law or in equity, that have arisen or may arise from any church activity or trip and that involve any damage, loss, or injury to me, my spouse, any of my children, my property, or the property of any of my children. In the same capacities, I promise not to sue any of the released parties for any such demands, claims, or liability. This waiver, release, indemnification, and promise not to sue do not apply to claims of criminal conduct or gross negligence. I understand that the church may take photographs of me and my family in the course of its activities, and I grant the church permission to publish such photographs in a manner the church deems appropriate. This activity release form is in effect for any activities that I, or any of my children, may participate in. This form is revocable, prospectively only, by a writing signed by me that bears the date that the revocation is delivered to the church.
    [Show full text]
  • Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
    Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Synthesis of Phylogeny and Taxonomy Into a Comprehensive Tree of Life
    Synthesis of phylogeny and taxonomy into a comprehensive tree of life Cody E. Hinchliffa,1, Stephen A. Smitha,1,2, James F. Allmanb, J. Gordon Burleighc, Ruchi Chaudharyc, Lyndon M. Coghilld, Keith A. Crandalle, Jiabin Dengc, Bryan T. Drewf, Romina Gazisg, Karl Gudeh, David S. Hibbettg, Laura A. Katzi, H. Dail Laughinghouse IVi, Emily Jane McTavishj, Peter E. Midfordd, Christopher L. Owenc, Richard H. Reed, Jonathan A. Reesk, Douglas E. Soltisc,l, Tiffani Williamsm, and Karen A. Cranstonk,2 aEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; bInterrobang Corporation, Wake Forest, NC 27587; cDepartment of Biology, University of Florida, Gainesville, FL 32611; dField Museum of Natural History, Chicago, IL 60605; eComputational Biology Institute, George Washington University, Ashburn, VA 20147; fDepartment of Biology, University of Nebraska-Kearney, Kearney, NE 68849; gDepartment of Biology, Clark University, Worcester, MA 01610; hSchool of Journalism, Michigan State University, East Lansing, MI 48824; iBiological Science, Clark Science Center, Smith College, Northampton, MA 01063; jDepartment of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045; kNational Evolutionary Synthesis Center, Duke University, Durham, NC 27705; lFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; and mComputer Science and Engineering, Texas A&M University, College Station, TX 77843 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved July 28, 2015 (received for review December 3, 2014) Reconstructing the phylogenetic relationships that unite all line- published phylogenies are available only as journal figures, rather ages (the tree of life) is a grand challenge. The paucity of homologous than in electronic formats that can be integrated into databases and character data across disparately related lineages currently renders synthesis methods (7–9).
    [Show full text]
  • Principles of Plant Taxonomy Bot
    PRINCIPLES OF PLANT TAXONOMY BOT 222 Dr. M. Ajmal Ali, PhD 1 What is Taxonomy / Systematics ? Animal group No. of species Amphibians 6,199 Birds 9,956 Fish 30,000 Mammals 5,416 Tundra Reptiles 8,240 Subtotal 59,811 Grassland Forest Insects 950,000 Molluscs 81,000 Q: Why we keep the stuffs of our home Crustaceans 40,000 at the fixed place or arrange into some Corals 2,175 kinds of system? Desert Others 130,200 Rain forest Total 1,203,375 • Every Human being is a Taxonomist Plants No. of species Mosses 15,000 Ferns and allies 13,025 Gymnosperms 980 Dicotyledons 199,350 Monocotyledons 59,300 Green Algae 3,715 Red Algae 5,956 Lichens 10,000 Mushrooms 16,000 Brown Algae 2,849 Subtotal 28,849 Total 1,589,361 • We have millions of different kind of plants, animals and microorganism. We need to scientifically identify, name and classify all the living organism. • Taxonomy / Systematics is the branch of science deals with classification of organism. 2 • Q. What is Plant Taxonomy / Plant systematics We study plants because: Plants convert Carbon dioxide gas into Every things we eat comes Plants produce oxygen. We breathe sugars through the process of directly or indirectly from oxygen. We cannot live without photosynthesis. plants. oxygen. Many chemicals produced by the Study of plants science helps to Study of plants science helps plants used as learn more about the natural Plants provide fibres for paper or fabric. to conserve endangered medicine. world plants. We have millions of different kind of plants, animals and microorganism.
    [Show full text]
  • The Taxonomy of Human Evolved Psychological Adaptations
    Evo Edu Outreach (2012) 5:312–320 DOI 10.1007/s12052-012-0428-8 EVOLUTION AND EDUCATION RESOURCES PsychTable.org: The Taxonomy of Human Evolved Psychological Adaptations Niruban Balachandran & Daniel J. Glass Published online: 8 July 2012 # Springer Science+Business Media, LLC 2012 Abstract We announce the launch of PsychTable.org,a Introduction collaborative web-based project devoted to classifying and evaluating evolved psychological adaptations The timing is right to establish a classification system for (EPAs), geared toward researchers, educators, students, human evolved psychological adaptations (EPAs). Several and the general public. The website works by aggregat- factors have coalesced to create a unique opportunity to de- ing citations which support or challenge the existence of velop a taxonomy that will facilitate the expansion of a culture each purported EPA, using a mathematical algorithm to of both synthesis and empirical rigor in the evolutionary assign an evidentiary strength score to each, and gener- behavioral sciences, including disciplines such as evolution- ating a table which represents the current but ever- ary cognitive neuroscience, behavioral ecology, “evo-devo,” changing state of the empirical evidence. Citations are primatology, evolutionary anthropology, human ethology, ge- added and assigned evaluative ratings by both general netics, and others. users and an international community of expert contrib- These aforementioned factors include: a large international utors; as such, the content of the site will represent the body of research describing hundreds of amassed EPAs; a consensus of the scientific community and new research global research community of evolutionary behavioral scien- opportunities. PsychTable has features for achieving empir- tists that recognizes the importance of both synthesis and ical meta-goals such as quality control, hypothesis testing, classification; the ascent of evolutionary psychology as a cross-disciplinary collaboration, and didactic utility.
    [Show full text]
  • Marine Microbiology at Scripps
    81832_Ocean 8/28/03 7:18 PM Page 67 Special Issue—Scripps Centennial Marine Microbiology at Scripps A. Aristides Yayanos Scripps Institution of Oceanography, University of California, • San Diego, California USA Marine microbiology is the study of the smallest isolated marine bioluminescent bacteria, isolated and organisms found in the oceans—bacteria and archaea, characterized sulfate-reducing bacteria, and showed many eukaryotes (among the protozoa, fungi, and denitrifying bacteria could both produce and consume plants), and viruses. Most microorganisms can be seen nitrous oxide, now known to be an important green- only with a microscope. Microbes pervade the oceans, house gas. Beijerinck also founded the field of virology its sediments, and some hydrothermal fluids and through his work on plant viruses (van Iterson et al., exhibit solitary life styles as well as complex relation- 1983). Mills (1989) describes the significance of the ships with animals, other microorganisms, and each work of Beijerink and Winogradsky to plankton other. The skeletal remains of microorganisms form the research and marine chemistry. largest component of sedimentary fossils whose study Around 1903, bacteriology in California was reveals Earth’s history. The enormous morphological, emerging in the areas of medicine and public health physiological, and taxonomic diversity of marine and accordingly was developing into an academic dis- microorganisms remains far from adequately cipline in medical schools (McClung and Meyer, 1974). described and studied. Because the sea receives terres- Whereas the branch of microbiology dealing with bac- trial microorganisms from rivers, sewage outfalls, and teria and viruses was just beginning, the branch con- other sources, marine microbiology also includes the cerning protozoa and algae was a relatively more estab- study of alien microorganisms.
    [Show full text]
  • Activity 3: Six Kingdoms Brochure
    Activity 3: Six Kingdoms Brochure Objective: You will demonstrate your knowledge of the six kingdoms of organisms by gathering information (from your class notes, the internet, and the biology textook) and creating a brochure on the six kingdoms in which scientists classify organisms. Your brochure will be organized as follows: 1. Making the Brochure- the brochure is made of one piece of paper. Fold the paper into thirds. 2. Cover- your cover should have a picture and an appropriate title. Your name should be written in the bottom right corner of the cover. 3. Inside the Brochure- inside your brochure, you should have one section for each of six kingdoms. Use the front and back of the paper. Since there will only be five open sections left in the brochure, you should place both the Eubacteria Kingdom and Archaebacteria Kingdom in the same section. You must include the following information for each of the six kingdoms: • Are the organisms unicellular (one cell) or multicellular (many cells) or both? • Do they have a nucleus in their cells? • Do they make their own food or get it from other organisms? • Other important characteristics • A picture or a diagram of sample organisms (one or a few) The Kingdom Fungi The Kingdom Fungi includes some of the most important organisms, both in terms of their ecological and economic roles. By decomposing dead material, they continue the cycle of nutrients through ecosystems. In addition, most plants could not grow without the fungi, or mycorrhizae, that live in their roots and supply essential nutrients. Other fungi provide numerous drugs (such as penicillin and other antibiotics), foods like mushrooms, truffles and morels, and the bubbles in bread (yeast), champagne, and beer.
    [Show full text]
  • Biology Chapter 19 Kingdom Protista Domain Eukarya Description Kingdom Protista Is the Most Diverse of All the Kingdoms
    Biology Chapter 19 Kingdom Protista Domain Eukarya Description Kingdom Protista is the most diverse of all the kingdoms. Protists are eukaryotes that are not animals, plants, or fungi. Some unicellular, some multicellular. Some autotrophs, some heterotrophs. Some with cell walls, some without. Didinium protist devouring a Paramecium protist that is longer than it is! Read about it on p. 573! Where Do They Live? • Because of their diversity, we find protists in almost every habitat where there is water or at least moisture! Common Examples • Ameba • Algae • Paramecia • Water molds • Slime molds • Kelp (Sea weed) Classified By: (DON’T WRITE THIS DOWN YET!!! • Mode of nutrition • Cell walls present or not • Unicellular or multicellular Protists can be placed in 3 groups: animal-like, plantlike, or funguslike. Didinium, is a specialist, only feeding on Paramecia. They roll into a ball and form cysts when there is are no Paramecia to eat. Paramecia, on the other hand are generalists in their feeding habits. Mode of Nutrition Depends on type of protist (see Groups) Main Groups How they Help man How they Hurt man Ecosystem Roles KEY CONCEPT Animal-like protists = PROTOZOA, are single- celled heterotrophs that can move. Oxytricha Reproduce How? • Animal like • Unicellular – by asexual reproduction – Paramecium – does conjugation to exchange genetic material Animal-like protists Classified by how they move. macronucleus contractile vacuole food vacuole oral groove micronucleus cilia • Protozoa with flagella are zooflagellates. – flagella help zooflagellates swim – more than 2000 zooflagellates • Some protists move with pseudopods = “false feet”. – change shape as they move –Ex. amoebas • Some protists move with pseudopods.
    [Show full text]
  • I Biology I Lecture Outline 9 Kingdom Protista
    I Biology I Lecture Outline 9 Kingdom Protista References (Textbook - pages 373-392, Lab Manual - pages 95-115) Major Characteristics Algae 1. Cbaracteristics 2. Classification 3. Division Cblorophyta 4. Division Chrysophyta 5. Division Phaeopbyta 6. Division Rhodopbyta Protozoans 1. Characteristics 2. Classification 3. Class FlageUata 4. Class Sarcodina 5. Class Ciliata 6. Class Sporozoa I Biology I Lecture Notes 9 Kingdom Protista References (Textbook - pages 373-392, Lab Manual- pages 95-115) Major Characteristics I. Protists possess eukaryotic cells with well defined nuclei and organelles 2. Most are unicellular, however there are multi-cellularforms 3. They are diverse in their structure 4. They vary in size from microscope algae to kelp that can be over 100feet in length 5. They are diverse (like bacteria) in the way they meet their nutritional needs A . Some are photosynthetic like land plants - are autotrophic B. Some ingest theirfood like animals - heterotrophic by ingestion C. Some absorb theirfood like bacteria andfungi - heterotrophic by absorption D. One species - Euglena - is mixotrophic meaning that it is capable ofboth autotrophic and heterotrophic life styles. 6. Reproduction in Protists A. is usually asexual by mitosis B. sexual reproduction involves meiosis and spore formation and usualJy occurs only when environmental conditions are hostile C. spores are resistant and can withstand adverse conditions 7. Some protozoans form cysts - a type ofresting stage 8. Photosynthetic protists (mostly algae) are part ofplankton. Plankton are those organisms suspended infresh and marine waters that serve asfood for -- heterotrophic animals and other protists 9. There are diverse opinions on how to classify members ofthe Kingdom Protista.
    [Show full text]
  • Marine Microbial Diversity
    Marine microbial diversity 27 K. S. Sobhana Marine Biodiversity Division, Central Marine Fisheries Research Institute, Kochi-682 018 Microbes were the only form of life for the first 2-3 billion and also based on iii) concentration of nutrients and required years of planetary and biological evolution. Life most likely growth substances (Oligotrophic, Mesotrophic, Eutrophic). began in the oceans and marine microorganisms are the However, interfaces tend to be hotspots of diversity and closest living descendants of the original forms of life. Early biological activity. Marine microbial habitats at interfaces marine microorganisms also helped create the conditions include the air-water, water-sediment, water-ice, and under which subsequent life developed. More than two billion host macroorganism-water interfaces. The sub-millimeter years ago, the generation of oxygen by photosynthetic marine scale of physical and chemical variability in these habitats microorganisms helped shape the chemical environment in poses a serious challenge to studying interface habitats in which plants, animals, and all other life forms have evolved. detail. The fact that variations can even occur within a few Macroscopic life and planetary habitability completely millimetres, suggests that microbial diversity encompasses depend upon the transformations mediated by complex more than the documented evidence available. Hence, microbial communities. These microscopic factories both biogeography is gaining importance as a field of study from aerobic and anaerobic are the essential catalysts for all of the microbial diversity point of interest. Due to the innately chemical reactions within the biogeochemical cycles. Their small size of the microorganisms, environmental complexity unique metabolisms allow marine microbes to carry out many plays a major role in determining diversity.
    [Show full text]