Field Guide to Insects Photographed and Written by Rocco Saya

Total Page:16

File Type:pdf, Size:1020Kb

Field Guide to Insects Photographed and Written by Rocco Saya Field Guide to Insects at Rice Creek Field Station State University of New York at Oswego Photographed and Written by Rocco Saya Contents Introduction 1 Bombyliopsis 29 Dance 30 Coleoptera 7 Tiger Bee 31 Tiger Striped Crane 32 Beetles Fruit 33 Click 8 Hover 34 Cucumber 9 Green Bottle 35 May 10 Midge 36 Ground 11 Horse 37 Longhorn 12 Soldier 38 Japanese 13 Mosquito 39 Red Lily 14 Snipe 40 Lightning Bug 15 Asian Lady 16 Ephemeroptera 41 Oriental 17 (Mayfies) Dircaea liturata 18 Soldier 19 Maccaffertium 42 Leaf 20 Stenacron 43 Borers Locust 21 Hemiptera 45 Pole 22 (True Bugs) Weevils Weevil 23 Jagged Ambush Bug 46 Citrus Flatid Planthopper 47 Dermaptera 25 Alfalfa Plant Bug 48 (Earwigs) Buffalo Treehopper 49 Stink Bug 50 Earwig 26 Meadow Plant Bug 51 Hoplistoscelis 52 Diptera 27 Water Strider 53 (Flies) Leaf Hopper 54 Cicada 55 Robber 28 Buffalo Treehopper Family Treehopper (Membracidae) Size .24 to .31 in Identifcation Bright green in color with a somewhat triangle shape. Wings are transparent. Color and shape serve as an excellent camoufage in the bush. Most Active Day The Buffalo Treehopper has what looks like the horns and tail of a bison! They feed on grasses, weeds, and other non-woody plants after hatching in late spring. As adults, some favorite food sources are: goldenrod, willow, clover, and elm. With its wings it can move from plant to plant quickly. These treehoppers are harmful to younger orchard trees, especially apple trees. Males attract females with a song but can’t be heard by humans. Did you know? Buffalo treehoppers can be found in all of United States, northern Mexico, southern Canada, and are considered invasive in Europe. 49 Hymenopterans Suborders Apocrita (Wasps, bees, and ants) Symphyta (Sawfies) General Characteristics • Over 150,000 living species. • Complete metamorphosis (holometabolism.) • Very small to large. • Usually two pairs of wings. • Mouthparts adapted for chewing (well developed mandibles.) • Bees also have a lengthy proboscis (“tongue”) used to drink liquids such as nectar. • Large compound eyes and typically they also have three simple eyes (ocelli.) • Perhaps the most benefcial order to humans because of pollination, makers of honey, and parasites of destructive insects. 57.
Recommended publications
  • Bulletin No. 206-Treehopper Injury in Utah Orchards
    Utah State University DigitalCommons@USU UAES Bulletins Agricultural Experiment Station 6-1928 Bulletin No. 206 - Treehopper Injury in Utah Orchards Charles J. Sorenson Follow this and additional works at: https://digitalcommons.usu.edu/uaes_bulletins Part of the Agricultural Science Commons Recommended Citation Sorenson, Charles J., "Bulletin No. 206 - Treehopper Injury in Utah Orchards" (1928). UAES Bulletins. Paper 178. https://digitalcommons.usu.edu/uaes_bulletins/178 This Full Issue is brought to you for free and open access by the Agricultural Experiment Station at DigitalCommons@USU. It has been accepted for inclusion in UAES Bulletins by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bulletin 2 06 June, 1928 Treehopper Injury in Utah Orchards By CHARLES J. SORENSON 3 Dorsal and side views of the following species of treehoppers: 1. Ceresa bubalus (Fabr.) ( Buffalo treehopper) 2. Stictocephala inermis (Fabr.) 3. Stictocephala gillettei Godg. (x 10 ) UTAH AGRICULTURAL EXPERIMENT STATION LOGAN. UTAH UTAH AGRICULTURAL EXPERIMENT STATION , BOARD OF TRUSTEES . ANTHONY W. IVINS, President __ _____ ____________________ __ ___________________ Salt Lake City C. G. ADNEY, Vice-President ____ ___ ________________________________ ________________________ Corinne ROY B ULLEN ________ __________________________ _______ _____ _____ ________ ___ ____ ______ ____ Salt Lake City LORENZO N . STOHL ______ ___ ____ ___ ______________________ __ ___ ______ _____ __________ Salt Lake City MRS. LEE CHARLES MILLER ___ ______ ___ _________ ___ _____ ______ ___ ____ ________ Salt Lake City WE S TON V ERN ON, Sr. ________________________ ___ ____ ____ _____ ___ ____ ______ __ __ _______ ________ Loga n FRANK B. STEPHENS _____ ___ __ ____ ____________ ____ ______________ __ ___________ __.___ Salt Lake City MRS.
    [Show full text]
  • Integrated Pest Management for Home Gardens: Insect Identification and Control
    Insect Pests July 2003 IP-13 Integrated Pest Management for Home Gardens: Insect Identification and Control Richard Ebesu Department of Plant and Environmental Protection Sciences ntensive, high-production agricultural systems have IPM components and practices Itraditionally used synthetic pesticides as the primary Integrated pest management strategies consist of site tool to eliminate pests and sustain the least amount of preparation, monitoring the crop and pest population, economic damage to the crop. Dependence on these pes­ problem analysis, and selection of appropriate control ticides has led to development of pest resistance to pes­ methods. Home gardeners can themselves participate in ticides and increased risk to humans, other living or­ IPM strategies and insect control methods with a little ganisms, and the environment. knowledge and practice. Integrated pest management (IPM) is a sustainable approach to managing pests that combines biological, Preparation cultural, physical, and chemical tools in a way that mini­ What control strategies can you use before you plant? mizes economic, health, and environmental risks. You need to be aware of potential problems and give The objective of IPM is to eliminate or reduce po­ your plants the best chance to grow in a healthy envi­ tentially harmful pesticide use by using a combination ronment. of control methods that will reduce the pest to an ac­ ceptable level. The control methods should be socially Soil preparation acceptable, environmentally safe, and economically Improve the physical properties of the soil including practical. Many commercial agricultural systems use texture and drainage to reduce waterlogging. Improve IPM methods to manage pest problems, and home gar­ soil fertility and soil organic matter by working well deners can use similar methods to control pest problems rotted compost into the soil.
    [Show full text]
  • Body-Enlarging Effect of Royal Jelly in a Non-Holometabolous Insect Species, Gryllus Bimaculatus
    © 2016. Published by The Company of Biologists Ltd | Biology Open (2016) 5, 770-776 doi:10.1242/bio.019190 RESEARCH ARTICLE Body-enlarging effect of royal jelly in a non-holometabolous insect species, Gryllus bimaculatus Atsushi Miyashita, Hayato Kizaki, Kazuhisa Sekimizu and Chikara Kaito* ABSTRACT (Conlon and Raff, 1999; Otto, 2007). These studies have provided Honeybee royal jelly is reported to have body-enlarging effects in significant insight into the principles of size regulation of living holometabolous insects such as the honeybee, fly and silkmoth, but organisms, although recent concerns over genetically modified its effect in non-holometabolous insect species has not yet been organisms have led researchers to evaluate other types of strategies examined. The present study confirmed the body-enlarging effect in to enlarge animals for industrial purposes. silkmoths fed an artificial diet instead of mulberry leaves used in the As a non-genetic size manipulation, oral ingestion of royal jelly previous literature. Administration of honeybee royal jelly to silkmoth by larvae of the honeybee, Apis mellifera, a holometabolous from early larval stage increased the size of female pupae and hymenopteran insect, induces queen differentiation, leading to adult moths, but not larvae (at the late larval stage) or male pupae. enlarged bodies. Royal jelly contains 12-15% protein, 10-16% We further examined the body-enlarging effect of royal jelly in a sugar, 3-6% lipids (percentages are wet-weight basis), vitamins, non-holometabolous species, the two-spotted cricket Gryllus salts, and free amino acids (Buttstedt et al., 2014). Royal jelly bimaculatus, which belongs to the evolutionarily primitive group contains proteins, named major royal jelly proteins (MRJPs), which Polyneoptera.
    [Show full text]
  • The Oak Treehopper.Pdf
    ENTOMOLOGY CIRCULAR No.57 FLORIDA DEPARTMENT OF AGRICULTURE FEBRUARY 1967 DIVISION OF PLANT INDUSTRY THE OAK TREEHOPPER, PLATYCOTISVITTATA (FABRICIUS) 1 (HOMOPTERA: MEMBRACIDAE) F. w. MEAD I NTROOUCTlON: THE OAK TREEHOPPER IS FAIRLY COMMON ON DECIDUOUS AND EVERGREEN OAKS, QUERCUS SPP., WHERE IT IS SOMETIMES SUFFICIENTLY ABUNDANT TO CAUSE CONCERN TO OWNERS OF VALUABLE SHADE TREES. IN FLORIDA WE HAVE REPORTS OF PROFESSIONAL SPRAYMEN BEING HIRED TO CONTROL THIS PEST. HOWEVER, DAMAGE BY A COLONY OF THIS SPECIES OF TREEHOPPER IS MINOR AND ESSENTIALLY CONFINED TO SMALL OVIPOSITION SCARS IN TWIGS. THiS CONTRASTS WITH THE CLOSELY RELATED THORN BUG, !JMBONIA CRASSICORNIS (A. &: S.) , WHICH CAN, WHEN ABUNDANT, CAUSE CONSIDERABLE DIEBACK OR EVE~ DEATH OF SMALL TREES. ""- ~ """""0' 0. ~ """, '."" ~ 6-},. , FIG. FiG. 2. NYMPH. 7X LEFT. f1.rnIDA ~ DISTRIBUTION OF 7 PLATYCOTJS VITTATA. ... -A'" FIG. 3. ADULT .E. VITTATA VAR. fSAGITTAn'. 7x DISTRIBUTION: FUNKHOUSER (1951) GIVES THE DISTRIBUTION AS BRAZIL, MEXICO, AND UN!TED STATES. THiS SPECIES ALSO HAS BEEN REPORTED FROM VANCOUVER ISLAND, CANADA. THE RECORDED DISTRIBUTION IN THE UNITED STATES IS PRIMARILY IN THE STATES THAT FORM A BROAD U-SHAPED CURVE FROM PENNSYLVANIA AND NEW JERSEY SOUTH THROUGH THE CAROLINAS AND GEORGIA TO FLORIDA, THEN WEST TO MISSISSIPPi. TEXAS, ARIZONA, CALIFORNIA, AND NORTH TO OREGON (AND VANCOUVER) WHERE THE COASTAL CLIMATE IS MODERATE. INTERIOR RECORDS INCLUDE OHIO, ILLiNOiS. TENNESSEE, AND WESTERN NORTH CAROLINA, BUT IN GENERAL, THERE IS A SCARCITY OF RECORDS FROM THE GREAT HEARTLAND AREAS OF THE UNITED STATES. THE 40TH PARALLEL SERVES AS AN APPROXiMATE NORTHERN RANGE LIMIT WITH FEW EXCEPTiONS. THE FLORIDA DISTRIBUTION IS INDICATED IN FiG.
    [Show full text]
  • Bushhopper Stalk-Eyed Fly Coconut Crab Periodical Cicada
    PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Bushhopper Stalk-Eyed Fly Phymateus viridipes Diasemopsis fasciata Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique A nymph of the bushhopper from Mozambique Like antlers on a deer’s head, the long can afford to be slow and conspicuous thanks eyestalks on this fly’s head are used in maleto- to the toxins in its body. These insects feed male combat, allowing the individual with on plants rich in poisonous metabolites, the largest stalks to win access to females including some that can cause heart failure, so most predators avoid them. Coconut Crab Periodical Cicada Birgus latro Magicicada septendecim Guadalcanal, Solomon Islands Annandale, Virginia The coconut crab is not just another land Periodical cicadas spend seventeen years crab; it is the largest living terrestrial underground, feeding on the roots of plants. invertebrate, reaching a weight of nine After that time they all emerge at the same pounds and a leg span of over three feet. time, causing consternation in people and Their lifespan is equally impressive, and the a feeding frenzy in birds. A newly emerged largest individuals are believed to be forty to (eclosed) periodical cicada is almost snow sixty years old. white, but within a couple of hours its body darkens and the exoskeleton becomes hard. BIG BUGS • Dec. 31, 2015 - April 17, 2016 Virginia Living Museum • 524 J. Clyde Morris Blvd. • Newport News, VA 23601 • 757-595-1900 • thevlm.org PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Dung Beetles Lappet Moth Kheper aegyptiorum Chrysopsyche lutulenta Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique Dung beetles are very important members of At the beginning of the dry season in Savanna communities.
    [Show full text]
  • Ant–Treehopper Associations Deter Pollinators and Reduce Reproduction in a Tropical Shrub
    Indirect effects of mutualism: ant– treehopper associations deter pollinators and reduce reproduction in a tropical shrub Javier Ibarra-Isassi & Paulo S. Oliveira Oecologia ISSN 0029-8549 Volume 186 Number 3 Oecologia (2018) 186:691-701 DOI 10.1007/s00442-017-4045-7 1 23 Oecologia (2018) 186:691–701 https://doi.org/10.1007/s00442-017-4045-7 PLANT-MICROBE-ANIMAL INTERACTIONS - ORIGINAL RESEARCH Indirect efects of mutualism: ant–treehopper associations deter pollinators and reduce reproduction in a tropical shrub Javier Ibarra‑Isassi1,2 · Paulo S. Oliveira1 Received: 22 September 2017 / Accepted: 10 December 2017 / Published online: 15 December 2017 © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Animal-pollinated plants can be susceptible to changes in pollinator availability. Honeydew-producing treehoppers fre- quently occur on inforescences, potentially enhancing ant-mediated negative efects on pollination services. However, the efect of ant-attended, honeydew-producing insects on plant reproduction remains uncertain. We recorded the abundance of treehoppers and ants on Byrsonima intermedia (Malpighiaceae), and monitored foral visitors in a Brazilian cerrado savanna. We manipulated the presence of ants and ant–treehopper associations on inforescences to assess their efect on pollination and fruit formation. We used dried ants pinned to inforescences to evaluate the efect of ant presence and ant identity on potential pollinators. Results show that the presence of treehoppers increases ant abundance on fowers and disrupts pollination by oil-collecting bees, decreasing the frequency and duration of foral visits and reducing fruit and seed set. Treehopper herbivory has no direct efect on fruit or seed production, which are independent of treehopper density.
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Treehoppers Several Species Order Hemiptera, Family Membracidae; Treehoppers Native Pests
    Pests of Trees and Shrubs Treehoppers Several species Order Hemiptera, Family Membracidae; treehoppers Native pests Host plants: Treehoppers are found on many tree species and are most commonly on young trees and perennial weeds. Oviposition damage caused by treehopper adult females. (241) Description: Treehoppers are small insects, usually less Photo: John Davidson than one-half inch long. They are called “treehoppers” because upon being approached they jump or hop away with a loud snap. They have a pronotum that is enlarged and developed into horns, knobs and other strange shapes. Males and females of the same species, however, can sometimes have very different pronotal shapes or colors. Life history: Adult females deposit eggs singly or in masses, either inserted directly into living tissue or on the surface of the plant. Females of some species cover their eggs with a frothy substance that hardens when dry. The eggs of most species remain in the plant through the winter and hatch in spring. Some adult females guard their eggs and remain with their young throughout their Treehopper adult. (242) development. Nymphs molt five times prior to reaching Photo: John Davidson the adult stage. Treehoppers usually have one or more generations per year. Overwintering: Eggs on host plants. Damage symptoms: Primary injury is caused by the females cutting into the bark to lay their eggs. Nymphs and adults also feed on plant tissue and suck cell fluids with their sharp, needle-like mouth parts. Monitoring: Monitor by hand sweeping young trees and shrubs with a net. Monitor for adults from early July to the end of October, or until the first frost.
    [Show full text]
  • Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus Muelleri (Coleoptera: Lucanidae)
    insects Article Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus muelleri (Coleoptera: Lucanidae) 1,2, 1,2, 1,2, Miaomiao Wang y, Xingjia Xiang y and Xia Wan * 1 School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; [email protected] (M.W.); [email protected] (X.X.) 2 Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China * Correspondence: [email protected] These authors contributed equally to this article. y Received: 19 September 2020; Accepted: 17 October 2020; Published: 21 October 2020 Simple Summary: Phalacrognathus muelleri is naturally distributed in Queensland (Australia) and New Guinea, and this species can be successfully bred under artificial conditions. In this study, we compared gut bacterial community structure among different life stages. There were dramatic shifts in gut bacterial community structure between larvae and adults, which was probably shaped by their diet. The significant differences between early instar and final instars larvae suggested that certain life stages are associated with a defined gut bacterial community. Our results contribute to a better understanding of the potential role of gut microbiota in a host’s growth and development, and the data will benefit stag beetle conservation in artificial feeding conditions. Abstract: Although stag beetles are popular saprophytic insects, there are few studies about their gut bacterial community. This study focused on the gut bacterial community structure of the rainbow stag beetle (i.e., Phalacrognathus muelleri) in its larvae (three instars) and adult stages, using high throughput sequencing (Illumina Miseq). Our aim was to compare the gut bacterial community structure among different life stages.
    [Show full text]
  • Body Plan Innovation in Treehoppers Through the Evolution of an Extra Wing-Like Appendage
    LETTER doi:10.1038/nature09977 Body plan innovation in treehoppers through the evolution of an extra wing-like appendage Benjamin Prud’homme1, Caroline Minervino1,Me´lanie Hocine1, Jessica D. Cande1,A¨ıcha Aouane1,He´lo¨ıse D. Dufour2, Victoria A. Kassner2 & Nicolas Gompel1 Body plans, which characterize the anatomical organization of attached to T1 by jointed articulations, it follows that it is a T1 dorsal animal groups of high taxonomic rank1, often evolve by the reduc- appendage, a situation completely unexpected in extant insects. The tion or loss of appendages (limbs in vertebrates and legs and wings treehoppers’ helmet is therefore distinct from the thoracic expan- in insects, for example). In contrast, the addition of new features is sions that evolved in other insect lineages, for instance in horn beetles16 extremely rare and is thought to be heavily constrained, although or in various other hemipterans (Supplementary Fig. 2a–c), which are the nature of the constraints remains elusive2–4. Here we show that cuticular projections and not articulated appendages. The conclusion the treehopper (Membracidae) ‘helmet’ is actually an appendage, a that the helmet isa bonafide appendage does not exclude the hypothesis wing serial homologue on the first thoracic segment. This innova- that, from an evolutionary perspective, the helmet initially arose from tion in the insect body plan is an unprecedented situation in cuticular expansions. In this gradualist picture, the prothoracic out- 250 Myr of insect evolution. We provide evidence suggesting that growths observed in some hemipterans might represent evolutionary the helmet arose by escaping the ancestral repression of wing forerunners of the treehoppers’ helmet.
    [Show full text]
  • Signatures of DNA Methylation Across Insects Suggest Reduced DNA Methylation Levels in Holometabola
    GBE Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola Panagiotis Provataris1, Karen Meusemann1,2,3, Oliver Niehuis1,2,SonjaGrath4,*, and Bernhard Misof1,* 1Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany 2Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany 3Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia Downloaded from https://academic.oup.com/gbe/article-abstract/10/4/1185/4943971 by guest on 13 December 2019 4Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universitat€ Mu¨ nchen, Planegg, Germany *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: March 17, 2018 Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA meth- ylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects.
    [Show full text]
  • The Global Impact of Insects
    The global impact of insects Prof. dr ir. A. van Huis Farewell address upon retiring as Professor of Tropical Entomology at Wageningen University on 20 November 2014 The global impact of insects Prof. dr ir. A. van Huis Farewell address upon retiring as Professor of Tropical Entomology at Wageningen University on 20 November 2014 isbn 978-94-6257-188-4 The global impact of insects Esteemed Rector Magnificus Dear colleagues, family and friends, ladies and gentlemen Insects have fascinated me throughout my career. Not just the insects themselves but especially their interaction with humans. It is on this interaction that I would like to focus. I will explain why insects are so successful, how they relate to climate change, and which ecological services they provide. Then I will move to insects as pests and give some examples, which leads me to the development and implementation of integrated pest management programmes and the role of institutions in them. As you probably expected, I will also dwell on the benefits of insects as food and feed, and end with some acknowledgements. 1. Introduction: Insects, the most successful animal group on earth Insects are the most abundant (1019) and most diverse group of animal organisms on earth. The number of insect species has been estimated to be between 2.5 and 3.7 million (Hamilton et al., 2010). The first recorded insect, Rhyniognatha hirsti, lived 400 million years ago (Engel & Grimaldi, 2004). Fossil “roachoids” from 320 MYA to 150 MYA were primitive relatives of cockroaches. Angiosperms started to evolve 130 MYA, as did holometabolan plant feeding insects such as the Lepidoptera (100,000 species) and the phytophagan beetles (150,000 species).
    [Show full text]