Computer Networks

Total Page:16

File Type:pdf, Size:1020Kb

Computer Networks Computer Networks A computer network is a collection of computing devices that are connected in order to communicate and share resources. We use networks to share resources such as printers, data storage or files and databases. E-mail, instant messaging, chat, and Web pages all rely on communication that occurs on a computer network. If two computers are to talk to each other, they need to have a connection with each other. Types of connections: Usually, the connection between computers in a network is made using physical wire or cables for example copper wire, fiber optic cable. However, some connections are wireless, using radio waves, or infrared signals to transfer data. Computer networks contain devices other than computers. Printers, for example can be connected to a network so that anyone on the network can print on them. Computer networks also contain devices for handling network traffic, such as routers or switches, etc. Picture of a switch Wireless Router We use the term node or host to refer to any device on a network. Data Transfer Rate: Data Transfer Rate is the speed in which the data is moved from one place on a network to another. The data transfer rate is sometimes referred to as bandwidth of a network. Protocols: A protocol is a set of rules describing how two entities interact. In networking, we use protocols to describe how transferred data is formatted and processed. Computing Models: Mainframe Oriented Systems 1950s Batch oriented - punch card systems 1. Literally punch holes in cards to feed in programs and data 2. Reports printed on paper 1960s Batch oriented - terminals 1. Use terminals for data entry 2. Reports still done using paper 1970s On-Line, transaction based 1. Some reporting now done using terminals 2. The user interface gains attention. Characteristics: 1. Central system (the mainframe) for storage of programs, and data. 2. Central system for the execution of programs. 3. "Dumb" terminals - Very limited processing capabilities. Just display characters on the screen and get user input. 1980s - The mighty LAN, the birth of client/server Personal computer revolution of the early 1980s. Cost per unit of processing power falling rapidly 1. 1981: PC 8088 Processor, 256K Memory. 2. 1984: PC/AT 80286 Processor, 512K Memory. 3. 1986: 80386 Processor, 1 MB Memory. 4. 1989: 80486 Processor, 4 MB Memory. 5. 2000: Intel's new 700 MHz Pentium, 2 GB Memory 6. 2013: Intel Core i7-3960X 16 GB Memory User interfaces on PCs - make use of better User Interface design techniques. Eventually, Graphical User Interfaces (GUI) The "File Server" Model A file server is a computer that stores and manages files for multiple users on a network. That way every user doesn’t need to have his or her own copy of the files 1. Central system to store programs and data (the file server). 2. Execution of programs done on clients rather than on file server. 3. Done over a local area network (LAN). 4. Clients tend to be homogeneous. The "Client/Server" Model 1. Central system stores data and part of the programs - The "Server" portion. 2. Client systems execute the user interface and business logic portions - The "Client" portion. 3. Clients send Requests or Transaction to server 4. Server executes transactions then sends results back to client. 5. Done over a local area network. 6. Clients establish a network session with server. Connection- oriented protocols are used. 1990s - Distributed Systems Many servers spread out over local or wide area networks (LAN or WAN). Clients and servers can be located anywhere in the world. Clients and servers are heterogeneous (dissimilar). Types of networks Computer networks can be classified in various ways. A local-area network (LAN) connects a relatively small number of machines in a relatively close geographical area. Various configurations, called topologies, have been used to administer LANs. Ring Topology A ring topology connects all nodes in a closed loop on which message travel in one direction. The nodes of a ring network pass along messages until their reach their destination. Star topology: A star topology centers around a node to which all others are connected and through which all messages are sent. A star network puts a huge burden on the central node; if it is not working, communication on the network is not possible. Bus Topology: All nodes are connected to a single communication line that carries messages in both directions. The nodes on the bus check any messages sent on the bus, but ignore any that are not addressed to them. A bus technology called Ethernet has become the industry standard for local-are network. Wide Area Network: A wide-area network (WAN) connects two or more local-area networks over a potentially large geographic distance. A wide-area network permits communication among smaller networks. Often a particular node on a LAN is set up to serve as a gateway. A gateway handles all communication going between that LAN and other networks. Communication between networks is called internetworking. The Internet is essentially the ultimate wide-area network, spanning the entire globe. The Internet is a vast collection of smaller networks that have all agreed to communicate using the same protocols and to pass along messages so that they can reach their final destination. Internet connections: Internet backbone is the physical network (usually relying on fiber optic cable) that carries Internet traffic between different networks and is measured in megabits per second. In The US, these networks are provided by telecommunications and computer companies. The backbone networks all operate using connections that have high data transfer rates ranging from 1.5 megabits per second to over 600 megabits per second. Internet Service Provider: An Internet service provider or ISP is a company that provides other companies or individuals with access to the Internet. ISPs connect directly to the Internet backbone or they connect to a larger ISP with a connection to the backbone. There are various technologies available that you can use to connect a home computer to the Internet. The techniques for a home connection have evolved from phone modem, to digital subscriber line (DSL) or a cable modem. Phone modem : converts computer data into an analog signal for transfer over a telephone line and then a modem at the destination converts it back again into data. One audio frequency is used to represent binary 0 and another to represent binary 1. To use a phone modem, you must first establish a telephone connection between your home computer and one that is permanently connected to the Internet. You pay your ISP for the right to call one of the several computers that they have set up for this purpose. Once the connection is made, you can transfer data via your phone line to your ISP computer, which sends it on its way through the Internet backbone to its destination. This way of transferring data is convenient, however it is limited to that of analog voice communication, usually 64 kilobits per second at most. Digital subscriber Line (DSL): An Internet connection made using a digital signal on a regular phone line. The digital signal is obtained using a different frequency than the voice communication. This way the phone line provides a much higher transfer rate. To offer DSL service, the phone company must set up special computer to handle the data traffic. With DSL, there is no need to dial-up to create a network connection, rather, the DSL line maintains an active line between the home computer and the ISP provider. However, to make use of DSL technology, your home must be within a certain distance from the central office; otherwise, the digital signal degrades while traveling between these two points. Cable Modem: In this approach, the data is transferred on the same line that your cable TV signals come in. The digital data travels just like another TV channel. Both DSL connections and cable modems fall under the category of broadband connections, which means a speed of 30 Mbps to 400 Mbps for dedicated business lines Download/Upload: When you download data, you are getting data from the Internet to your home. Viewing a website, listening to music from a site are all downloading activities. When you send data through the Internet, you are uploading information -sending email, submitting a web based form, or clicking to request access to a website, etc. Both DSL and cable modems, have different speeds for download and upload, devoting more speed to downloads (52 Mbit/s downstream and 16 Mbit/s upstream over copper wires) .
Recommended publications
  • Digital Subscriber Line (DSL) Technologies
    CHAPTER21 Chapter Goals • Identify and discuss different types of digital subscriber line (DSL) technologies. • Discuss the benefits of using xDSL technologies. • Explain how ASDL works. • Explain the basic concepts of signaling and modulation. • Discuss additional DSL technologies (SDSL, HDSL, HDSL-2, G.SHDSL, IDSL, and VDSL). Digital Subscriber Line Introduction Digital Subscriber Line (DSL) technology is a modem technology that uses existing twisted-pair telephone lines to transport high-bandwidth data, such as multimedia and video, to service subscribers. The term xDSL covers a number of similar yet competing forms of DSL technologies, including ADSL, SDSL, HDSL, HDSL-2, G.SHDL, IDSL, and VDSL. xDSL is drawing significant attention from implementers and service providers because it promises to deliver high-bandwidth data rates to dispersed locations with relatively small changes to the existing telco infrastructure. xDSL services are dedicated, point-to-point, public network access over twisted-pair copper wire on the local loop (last mile) between a network service provider’s (NSP) central office and the customer site, or on local loops created either intrabuilding or intracampus. Currently, most DSL deployments are ADSL, mainly delivered to residential customers. This chapter focus mainly on defining ADSL. Asymmetric Digital Subscriber Line Asymmetric Digital Subscriber Line (ADSL) technology is asymmetric. It allows more bandwidth downstream—from an NSP’s central office to the customer site—than upstream from the subscriber to the central office. This asymmetry, combined with always-on access (which eliminates call setup), makes ADSL ideal for Internet/intranet surfing, video-on-demand, and remote LAN access. Users of these applications typically download much more information than they send.
    [Show full text]
  • The Security and Management of Computer Network Database In
    The Security and Management of Computer Network Database in Coal Quality Detection Jianhua SHI1, a, Jinhong SUN2 1Guizhou Agency of Quality Supervision and Inspection of Coal Product,Liupanshui city 553001,China [email protected] Keywords: Computer Network Database; Database Security; Coal Quality Detection Abstract. This paper research the results of quality management information system at home and abroad, through the analysis of the domestic coal enterprises coal quality management links and management information system development present situation and existing problems, combining with related theory and system development method of management information system, and according to the coal mining enterprises of computer network security and management, analysis and design of database, and the implementation steps and the implementation of the coal quality management information system of the problem are given their own countermeasure and the suggestion, try to solve demand for management information system of coal enterprise management level, thus improve the coal quality management level and economic benefit of coal enterprise. Introduction With the improvement of China's coal mining mechanization degree and the increase of mining depth, coal quality is on the decline as a whole. At the same time, the user of coal product utilization way more and more widely, use more and more diversified, more and higher to the requirement of coal quality. In coal quality issue, therefore, countless contradictions increasingly acute, the gap of
    [Show full text]
  • Glossary of Terminology
    Glossary of Broadband Terminology This glossary was compiled by Ray Elseth of Broadband Development 3 (http://www.bbd3.com) and Thomas Asp of Virchow Krause (http://virchowkrause.com), and is a supplement to “Broadband Access: The Local Government Role” by Thomas Asp, Harvey L. Reiter, Jerry Schulz, and Ronald L. Vaden (IQ Report 36, no. 2 [Washington, D.C.: ICMA, 2004]). 802.11 A family of specifications covering wireless connectivity between devices normally located within 100’ to 300’ of each other. Often referred to as Wireless Local Area Network (WLAN). Most common implementation is 802.11b (see Wi- Fi), but 802.11a and 802.11g are also in active use. 802.15 A family of specifications covering wireless connectivity between devices normally located within 10’ to 30’ of each other. Often referred to as Wireless Personal Area Network (WPAN). Implemented as “Bluetooth.” 802.16 A family of specifications covering wireless connectivity between devices normally located within 1 to 30 miles of each other. Often referred to as Wireless Metropolitan Area Network (WMAN). Access Point (AP) A hardware device that acts as a connectivity hub to permit users of a wireless device to connect to a wired local area network. Provides a bridge between Ethernet wired LANs (local area networks) and the wireless network. Access points are the connectivity point between Ethernet wired networks and devices equipped with a wireless LAN adapter card. Antenna The equipment that allows the transmission or reception of radio frequency energy. Asynchronous Digital A technology that allows high-speed data to be sent over a Subscriber Line single pair of existing copper telephone lines, with data rates (ADSL) for receiving data differing from data rates for sending data.
    [Show full text]
  • QUESTION 20-1/2 Examination of Access Technologies for Broadband Communications
    International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies eport on broadband access technologies QUESTION 20-1/2 R International Telecommunication Union ITU-D THE STUDY GROUPS OF ITU-D The ITU-D Study Groups were set up in accordance with Resolutions 2 of the World Tele- communication Development Conference (WTDC) held in Buenos Aires, Argentina, in 1994. For the period 2002-2006, Study Group 1 is entrusted with the study of seven Questions in the field of telecommunication development strategies and policies. Study Group 2 is entrusted with the study of eleven Questions in the field of development and management of telecommunication services and networks. For this period, in order to respond as quickly as possible to the concerns of developing countries, instead of being approved during the WTDC, the output of each Question is published as and when it is ready. For further information: Please contact Ms Alessandra PILERI Telecommunication Development Bureau (BDT) ITU Place des Nations CH-1211 GENEVA 20 Switzerland Telephone: +41 22 730 6698 Fax: +41 22 730 5484 E-mail: [email protected] Free download: www.itu.int/ITU-D/study_groups/index.html Electronic Bookshop of ITU: www.itu.int/publications © ITU 2006 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies DISCLAIMER This report has been prepared by many volunteers from different Administrations and companies.
    [Show full text]
  • LAB MANUAL for Computer Network
    LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool.
    [Show full text]
  • Cable Versus Dsl
    53-10-60 DATA COMMUNICATIONS MANAGEMENT CABLE VERSUS DSL John R. Vacca INSIDE DSL; Cable Modems; ADSL; CDSL; G.Lite; HDSL; IDSL; RADSL; SDSL; VDSL; POTS; DSL and Cable Modem Rollouts; High-Speed Data Entry; Buying DSL Service; Installing DSL; Security Problems, Residential Users, Telecommuters, DSL System Components; DSL Network; DSL Hubs INTRODUCTION Internet access via cable modem has become available in many residen- tial areas over the past few years. Cable has the capacity to transmit data at speeds as fast as Digital Subscriber Line (DSL) when configured prop- erly and under optimal conditions. Due to the fact that cable lines are not available in the vast majority of commercial districts, cable does not com- pete with DSL in the enterprise market at all, in most cases. Cable was designed for residential use, and in some cases may be a cost-effective solution for residential high-bandwidth Internet access. Therefore, the challenge of cable versus DSL is primarily in the residential and telecom- muter markets. With that in mind, and before continuing with the theme of this article (cable vs. DSL), one can take a look at the technology issues first, and then some basic terminology. TECHNOLOGY ISSUES What is DSL? How does it work? What are the types of DSL? These are some of the questions this article will surely answer; as well as some of the pros and cons of the use of cable modems versus DSL. PAYOFF IDEA The article discusses the current state of cable DSL: What Is It? modem access versus DSL. It also examines how In essence, by using the existing tele- prevalent cable modem and DSL services are in major U.S.
    [Show full text]
  • Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
    Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services.
    [Show full text]
  • Applied Combinatorics 2017 Edition
    Keller Trotter Applied Combinatorics 2017 Edition 2017 Edition Mitchel T. Keller William T. Trotter Applied Combinatorics Applied Combinatorics Mitchel T. Keller Washington and Lee University Lexington, Virginia William T. Trotter Georgia Institute of Technology Atlanta, Georgia 2017 Edition Edition: 2017 Edition Website: http://rellek.net/appcomb/ © 2006–2017 Mitchel T. Keller, William T. Trotter This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna- tional License. To view a copy of this license, visit http://creativecommons.org/licenses/ by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Summary of Contents About the Authors ix Acknowledgements xi Preface xiii Preface to 2017 Edition xv Preface to 2016 Edition xvii Prologue 1 1 An Introduction to Combinatorics 3 2 Strings, Sets, and Binomial Coefficients 17 3 Induction 39 4 Combinatorial Basics 59 5 Graph Theory 69 6 Partially Ordered Sets 113 7 Inclusion-Exclusion 141 8 Generating Functions 157 9 Recurrence Equations 183 10 Probability 213 11 Applying Probability to Combinatorics 229 12 Graph Algorithms 239 vii SUMMARY OF CONTENTS 13 Network Flows 259 14 Combinatorial Applications of Network Flows 279 15 Pólya’s Enumeration Theorem 291 16 The Many Faces of Combinatorics 315 A Epilogue 331 B Background Material for Combinatorics 333 C List of Notation 361 Index 363 viii About the Authors About William T. Trotter William T. Trotter is a Professor in the School of Mathematics at Georgia Tech. He was first exposed to combinatorial mathematics through the 1971 Bowdoin Combi- natorics Conference which featured an array of superstars of that era, including Gian Carlo Rota, Paul Erdős, Marshall Hall, Herb Ryzer, Herb Wilf, William Tutte, Ron Gra- ham, Daniel Kleitman and Ray Fulkerson.
    [Show full text]
  • Steps Toward a National Research Telecommunications Network
    Steps Toward a National Research Telecommunications Network Gordon Bell Introduction Modern science depends on rapid communica- In response to provisions in Public Law tions and information exchange. Today, many major 99-383, which was passed 21 June 1986 by national and international networks exist using the 99th Congress, an inter-agency group some form of packet switching to interconnect under the auspices of the Federal Coordin- host computers. State and regional networks are ating Council for Science, Engineering, and proliferating. NSFNET, an "internet" designed initially Technology (FCCSET) for Computer Research to improve access to supercomputer centers, has and Applications was formed to study the in the space of two years, forged links among 17 following issues: the networking needs of state, regional, and federal agency networks. the nation's academic and federal research In the early 1980s, the lack of access to super- computer programs, including supercomputer computing power by the research community caused programs, over the next 15 years, addressing the formation of the NSF Office of Advanced Sci- requirements in terms of volume of data, entific Computing, which funded five centers for reliability of transmission, software supercomputers. Given the highly distributed loca- compatibility, graphics capabilities, and tion of users, the need for a national wide area transmission security; the benefits and network for computer access and for the inter- opportunities that an improved computer change of associated scientific information (such network would offer for electronic mail, as mail, files, databases) became clear. file transfer, and remote access and com- Further, it immediately became obvious that munications; and the networking options existing agency networks both lacked the inherent available for linking academic and research capacity and were overloaded.
    [Show full text]
  • Migration to 3G Wireless Broadband Internet and Real Options: the Case of an Operator in India
    ARTICLE IN PRESS Telecommunications Policy 30 (2006) 400–419 www.elsevierbusinessandmanagement.com/locate/telpol Migration to 3G wireless broadband internet and real options: The case of an operator in India Venkata Praveen TanguturiÃ, Fotios C. Harmantzis Telecommunications Management, School of Technology Management, Stevens Institute of Technology, Hoboken, NJ 07030, USA Abstract The paper focuses on third generation wireless technologies and on alternative technologies for wireless local area networks. The authors present the evolutionary migration path from second to third generation systems. Technological, economic and behavioral factors related to decision-making towards the migration are proposed. As an example, the paper studies the case of the national incumbent operator of India. It analyzes qualitatively the migration problem from the perspective of the operator, the equipment manufacturer and the users. For the quantitative analysis, real options are used to value the investment decisions. The analysis suggests that the initial (sunk) investment cost, the average revenue per user, the growth of the subscriber base and the volatility of the markets are the key factors in the investment process. r 2006 Elsevier Ltd. All rights reserved. Keywords: 3G; GSM; CDMA; Wireless; Broadband; India; UMTS; India; Wi-Fi; Real options 1. Introduction The evolution of the internet has led to the convergence of telecommunications networks and computers. Benefits associated with the World Wide Web (WWW) are of great importance nowadays: people are able to communicate via e-mail, perform data transfers, online shopping, online auctions, etc. Traditionally, internet services have been provided by internet service providers (ISPs) using modems, with data rates limited to 56.6 kbp.
    [Show full text]
  • Components of a Computer Network
    CS 536 Park Introduction What is a computer network? Components of a computer network: • hosts (PCs, laptops, handhelds) • routers & switches (IP router, Ethernet switch) • links (wired, wireless) • protocols (IP, TCP, CSMA/CD, CSMA/CA) • applications (network services) • humans and service agents Hosts, routers & links form the hardware side. Protocols & applications form the software side. Protocols can be viewed as the “glue” that binds every- thing else together. CS 536 Park A physical network: CS 536 Park Protocol example: low to high • NIC (network interface card): hardware → e.g., Ethernet card, WLAN card • device driver: part of OS • ARP, RARP: OS • IP: OS • TCP, UDP: OS • OSPF, BGP, HTTP: application • web browser, ssh: application −→ multi-layered glue What is the role of protocols? −→ facilitate communication or networking CS 536 Park Simplest instance of networking problem: Given two hosts A, B interconnected by some net- work N, facilitate communication of information between A & B. A N B Information abstraction • representation as objects (e.g., files) • bytes & bits → digital form • signals over physical media (e.g., electromagnetic waves) → analog form CS 536 Park Minimal functionality required of A, B • encoding of information • decoding of information −→ data representation & a form of translation Additional functionalities may be required depending on properties of network N • information corruption → 10−9 for fiber optic cable → 10−3 or higher for wireless • information loss: packet drop • information delay: like toll
    [Show full text]
  • Introduction to Bioinformatics (Elective) – SBB1609
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline.
    [Show full text]