Cable Versus Dsl

Total Page:16

File Type:pdf, Size:1020Kb

Cable Versus Dsl 53-10-60 DATA COMMUNICATIONS MANAGEMENT CABLE VERSUS DSL John R. Vacca INSIDE DSL; Cable Modems; ADSL; CDSL; G.Lite; HDSL; IDSL; RADSL; SDSL; VDSL; POTS; DSL and Cable Modem Rollouts; High-Speed Data Entry; Buying DSL Service; Installing DSL; Security Problems, Residential Users, Telecommuters, DSL System Components; DSL Network; DSL Hubs INTRODUCTION Internet access via cable modem has become available in many residen- tial areas over the past few years. Cable has the capacity to transmit data at speeds as fast as Digital Subscriber Line (DSL) when configured prop- erly and under optimal conditions. Due to the fact that cable lines are not available in the vast majority of commercial districts, cable does not com- pete with DSL in the enterprise market at all, in most cases. Cable was designed for residential use, and in some cases may be a cost-effective solution for residential high-bandwidth Internet access. Therefore, the challenge of cable versus DSL is primarily in the residential and telecom- muter markets. With that in mind, and before continuing with the theme of this article (cable vs. DSL), one can take a look at the technology issues first, and then some basic terminology. TECHNOLOGY ISSUES What is DSL? How does it work? What are the types of DSL? These are some of the questions this article will surely answer; as well as some of the pros and cons of the use of cable modems versus DSL. PAYOFF IDEA The article discusses the current state of cable DSL: What Is It? modem access versus DSL. It also examines how In essence, by using the existing tele- prevalent cable modem and DSL services are in major U.S. markets. A comparison of the two phone cabling infrastructure, DSL is technologies with regard to speed, cost, etc., are a technology backed by telephone presented. The article also covers the planning enterprises that provides high-band- implications or considerations for the enterprise width services to the home and en- network manager (e.g., to support telecommut- terprise. Because DSL utilizes a ing employees, etc.). Finally, the article discusses future directions for cable modems and DSL. Auerbach Publications © 2000 CRC Press LLC DATA COMMUNICATIONS MANAGEMENT greater range of frequencies than ordinary dial-up services (allowing for a super-fast connection), this high bandwidth is possible. For most pro- viders, this technology is still in the early stages of rollout. How Does It Work? The general idea behind DSL technology is relatively easy to grasp, al- though it is rather sophisticated. As previously mentioned, DSL utilizes a large range of frequencies, which means a higher bandwidth and a fast connection. For example, consider this: only a small fraction of one’s telephone line capacity (bandwidth) is being used (that being only the low frequencies) when making an ordinary telephone call. By transport- ing data in the higher frequencies, DSL takes advantage of this idle band- width. This results in making it possible to talk on the phone and be on the Internet simultaneously. DSL Types As shown in Exhibit 1, there are several competing forms of DSL, each adapted to specific needs in the marketplace. Some forms of DSL are widely used standards, some are proprietary, and some are simply theo- retical models. They can best be categorized within the modulation methods used to encode data. Exhibit 1 shows different types of DSL technologies. These technologies are sometimes collectively referred to as xDSL. As explained in Exhibit 1, Asymmetric Digital Subscriber Line (or ADSL) is the most popular form of DSL technology. The fact that the up- stream and downstream bandwidth is asymmetric, or uneven, is the key to ADSL. In practice, the higher-speed path will be the bandwidth from the ISP to the user (downstream). This is mainly due to the desire to ac- commodate the typical Internet usage pattern, where the majority of data is being sent to the user (Web pages, graphics, programs, and video) with minimal upload capacity required (keystrokes and mouse clicks). Speeds typically range from 144 Kbps to 1.1 Mbps downstream, and range from 144 Kbps to 1.5 Mbps upstream. Exhibit 1 also shows that there are other forms of DSL as well: ADSL Lite; Consumer Digital Subscriber Line (CDSL is a proprietary technology trademarked by Rockwell International), G.Lite, HDSL, IDSL, RADSL, SD- SL, and VDSL. Many of these forms are just starting to become available through the telephone enterprises, and some of them have just complet- ed the testing/development stages. DSL versus Cable Modems Cable modems, although capable of high potential access speeds, also have drawbacks. Primarily, the signal is shared between the subscribers Auerbach Publications © 2000 CRC Press LLC CABLE VERSUS DSL EXHIBIT 1 — The Many Flavors of DSL Type Description ADSL Asymmetric digital subscriber line. The most common standard, it theoretically offers 1.5 Mbps to 8 Mbps downstream and 16 Mbps to 640 Kbps upstream speeds. HDSL, HDSL2 These two high data rate DSLs are symmetric services capable of 1.5 Mbps and 2.048 Mbps speeds, respectively. HDSL requires two or three wire pairs; HDSL2, just one pair. IDSL ISDN DSL. Similar to ISDN, it allows you to use existing ISDN equipment. But the maximum speed in both directions is 144 Kbps. RADSL An asymmetric service, rate adaptive DSL promises to provide between 600 Kbps to 8 Mbps downstream and 128 Kbps to 1 Mbps upstream speeds, while offering simultaneous voice service. RADSL can dynamically adjust to line conditions. SDSL Symmetric DSL, a popular alternative to ADSL, is offered by NorthPoint and various ISPs. The service promises two-way 768 Kbps access. G.Lite G.Lite is user installable and provides speeds of 1.544 Mbps downstream (UADSL/ and 512K bps upstream. Backed by many hardware vendors and the DSL-Lite) Universal ADSL Working Group. VDSL The fastest and newest DSL on the block, very high speed DSL is an asymmetric service, offering speeds of 12.9 Mbps to 52.8 Mbps. in a specific area, and the technology is broadcast oriented. Less band- width is available to each subscriber as the number of subscribers in- creases in that area. Moreover, cable access offers the user no choice regarding providers, and is only available in a limited area. It is available only through the cable enterprise, which has little experience with Inter- net services. CURRENT STATE OF CABLE MODEM ACCESS VERSUS DSL So what is holding up DSL and cable modem access? If one has been told that the lack of widely accepted standards is the main factor delaying ca- ble modem and xDSL access, think again. Lack of standards is, at most, a minor factor in the delay of widespread access. Because solid standards have not been established, xDSL and cable mo- dem access are being held up. So, one needs to put things in perspective although it is certainly true that the lack of standards is having some effect. Cable modem and xDSL services are dedicated subscriber services. One uses a cable modem or xDSL box to connect to one place — the ser- vice provider. One does not carry it around like a modem. Where you expect to move the device from place to place or to a different service provider (as with a 56 K or 33.6 K modem), standards only affect the end user in cases. A cable modem or xDSL box is like a television cable box (which is never moved — one buys or leases it with the service and it stays with the service) — not like a modem. By allowing vendor compe- tition, it is true that standards will lower hardware costs a bit. This, in turn, will lower equipment costs, but not by much. The important thing Auerbach Publications © 2000 CRC Press LLC DATA COMMUNICATIONS MANAGEMENT is that if the provider can offer service at a price one likes, that is what matters most. The fact that the provider will be able to buy the box, now being leased for $10 a month, for $100 less next year is simply not that much of an issue. Anyway, it is probably a small fraction of the overall cost of providing the service. The history of cable modem access by Cablevision on western Long Island over the last several years tends to support this. The original beta access used a specific brand of cable modem (which was provided with the service). When the beta program ended, the original equipment was discarded in favor of a newer, higher performance product made by Lan- City. This did not affect end users much — they just returned the original modems and installed the new ones. The current service provides a 10 Mbps Ethernet connection for under $70 per month (this includes the lease of the cable modem unit, connection, and ISP service) for residen- tial customers. This is three to five times faster than a full T1. The LanCity cable modem follows the only real standard that matters so far — it con- nects to the user’s PC using standard 10 Mbps Ethernet, like most other xDSL units and cable modems. One has to look elsewhere than the lack of widely accepted standards if one wants to know why xDSL and cable modem service is slow in be- coming pervasive. Maybe one should wonder if the cable enterprises are simply afraid of moving into a new technology they do not understand; and if the telcos are not that eager to access a DSL service in direct com- petition to their data T1 and T3 services (and with a lower price tag); and whether anybody has enough backbone capacity to support the large numbers of high-speed customers the new service would attract.
Recommended publications
  • Digital Subscriber Line (DSL) Technologies
    CHAPTER21 Chapter Goals • Identify and discuss different types of digital subscriber line (DSL) technologies. • Discuss the benefits of using xDSL technologies. • Explain how ASDL works. • Explain the basic concepts of signaling and modulation. • Discuss additional DSL technologies (SDSL, HDSL, HDSL-2, G.SHDSL, IDSL, and VDSL). Digital Subscriber Line Introduction Digital Subscriber Line (DSL) technology is a modem technology that uses existing twisted-pair telephone lines to transport high-bandwidth data, such as multimedia and video, to service subscribers. The term xDSL covers a number of similar yet competing forms of DSL technologies, including ADSL, SDSL, HDSL, HDSL-2, G.SHDL, IDSL, and VDSL. xDSL is drawing significant attention from implementers and service providers because it promises to deliver high-bandwidth data rates to dispersed locations with relatively small changes to the existing telco infrastructure. xDSL services are dedicated, point-to-point, public network access over twisted-pair copper wire on the local loop (last mile) between a network service provider’s (NSP) central office and the customer site, or on local loops created either intrabuilding or intracampus. Currently, most DSL deployments are ADSL, mainly delivered to residential customers. This chapter focus mainly on defining ADSL. Asymmetric Digital Subscriber Line Asymmetric Digital Subscriber Line (ADSL) technology is asymmetric. It allows more bandwidth downstream—from an NSP’s central office to the customer site—than upstream from the subscriber to the central office. This asymmetry, combined with always-on access (which eliminates call setup), makes ADSL ideal for Internet/intranet surfing, video-on-demand, and remote LAN access. Users of these applications typically download much more information than they send.
    [Show full text]
  • Cable Modem/Router with Wireless-N
    DOCSIS 3.0 Model 5352 Cable Modem/Router with Wireless-N The Zoom 5352 Cable Modem/Router with Wireless-N supports cable modem speeds up to 343 Mbps. With its high speed and IPv4 and IPv6 networking support, this is a product designed and built for use today and for years to come. The embedded router with Wireless-N support continues the high-performance with 300 Mbps 2 X 2 MIMO for the range, wireless speeds and networking support needed for multimedia, Internet video and high-performance networking in a home or office. DOCSIS 3.0 cable performance allows bonding of up to eight channels on downloads and four channels on uploads when used with the latest cable systems. DOCSIS 2.0 and 1.1 support provides compatibility with older cable systems. Cable modem performance has been tested and approved by CableLabs, the industry's non-profit test and certification authority. Additonal testing and approvals have been obtained from Cox, Comcast, Time Warner Cable and other leading cable service providers. Features of the Model 5352 include: n DOCSIS 3.0 performance with CableLabs certification n Up to 8 Downstream channels and 4 Upstream channels, for speeds as high as 343 Mbps on downloads and 123 Mbps on uploads with full band capture front end n Provides shared high-speed Internet over cable to: - WiFi compatible wireless 802.11n, g, and b devices - Devices with an Ethernet port, including computers and game stations n Easy setup and management with Universal Plug and Play (UPnP), WPS wireless security setup, and browser-based management n
    [Show full text]
  • Glossary of Terminology
    Glossary of Broadband Terminology This glossary was compiled by Ray Elseth of Broadband Development 3 (http://www.bbd3.com) and Thomas Asp of Virchow Krause (http://virchowkrause.com), and is a supplement to “Broadband Access: The Local Government Role” by Thomas Asp, Harvey L. Reiter, Jerry Schulz, and Ronald L. Vaden (IQ Report 36, no. 2 [Washington, D.C.: ICMA, 2004]). 802.11 A family of specifications covering wireless connectivity between devices normally located within 100’ to 300’ of each other. Often referred to as Wireless Local Area Network (WLAN). Most common implementation is 802.11b (see Wi- Fi), but 802.11a and 802.11g are also in active use. 802.15 A family of specifications covering wireless connectivity between devices normally located within 10’ to 30’ of each other. Often referred to as Wireless Personal Area Network (WPAN). Implemented as “Bluetooth.” 802.16 A family of specifications covering wireless connectivity between devices normally located within 1 to 30 miles of each other. Often referred to as Wireless Metropolitan Area Network (WMAN). Access Point (AP) A hardware device that acts as a connectivity hub to permit users of a wireless device to connect to a wired local area network. Provides a bridge between Ethernet wired LANs (local area networks) and the wireless network. Access points are the connectivity point between Ethernet wired networks and devices equipped with a wireless LAN adapter card. Antenna The equipment that allows the transmission or reception of radio frequency energy. Asynchronous Digital A technology that allows high-speed data to be sent over a Subscriber Line single pair of existing copper telephone lines, with data rates (ADSL) for receiving data differing from data rates for sending data.
    [Show full text]
  • QUESTION 20-1/2 Examination of Access Technologies for Broadband Communications
    International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies eport on broadband access technologies QUESTION 20-1/2 R International Telecommunication Union ITU-D THE STUDY GROUPS OF ITU-D The ITU-D Study Groups were set up in accordance with Resolutions 2 of the World Tele- communication Development Conference (WTDC) held in Buenos Aires, Argentina, in 1994. For the period 2002-2006, Study Group 1 is entrusted with the study of seven Questions in the field of telecommunication development strategies and policies. Study Group 2 is entrusted with the study of eleven Questions in the field of development and management of telecommunication services and networks. For this period, in order to respond as quickly as possible to the concerns of developing countries, instead of being approved during the WTDC, the output of each Question is published as and when it is ready. For further information: Please contact Ms Alessandra PILERI Telecommunication Development Bureau (BDT) ITU Place des Nations CH-1211 GENEVA 20 Switzerland Telephone: +41 22 730 6698 Fax: +41 22 730 5484 E-mail: [email protected] Free download: www.itu.int/ITU-D/study_groups/index.html Electronic Bookshop of ITU: www.itu.int/publications © ITU 2006 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies DISCLAIMER This report has been prepared by many volunteers from different Administrations and companies.
    [Show full text]
  • Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
    Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services.
    [Show full text]
  • How Cable Modems Work by Curt Franklin for Millions of People, Television Brings News, Entertainment and Educational Programs Into Their Homes
    How Cable Modems Work by Curt Franklin For millions of people, television brings news, entertainment and educational programs into their homes. Many people get their TV signal from cable television (CATV) because cable TV provides a clearer picture and more channels. See How Cable TV Works for details. Many people who have cable TV can now get a high-speed connection to the Internet from their cable provider. Cable modems compete with technologies like asymmetrical digital subscriber lines (ADSL). If you have ever wondered what the differences between DSL and cable modems are, or if you have ever wondered how a computer network can share a cable with dozens of television channels, then read on. In this article, we'll look at how a cable modem works and see how 100 cable television channels and any Web site out there can flow over a single coaxial cable into your home. Photo courtesy Motorola, Inc. Motorola SB5100E SURFboard Extra Space Cable Modem You might think that a television channel would take up quite a bit of electrical "space," or bandwidth, on a cable. In reality, each television signal is given a 6-megahertz (MHz, millions of cycles per second) channel on the cable. The coaxial cable used to carry cable television can carry hundreds of megahertz of signals -- all the channels you could want to watch and more. (For more information, see How Television Works.) In a cable TV system, signals from the various channels are each given a 6-MHz slice of the cable's available bandwidth and then sent down the cable to your house.
    [Show full text]
  • User Manual MG7315
    User Manual 8x4 Cable Modem plus N450 Wireless Router MG7315 NOTICE This document contains proprietary information protected by copyright, and this Manual and all the accompanying hardware, software, and documentation are copyrighted. No part of this document may be photocopied or reproduced by mechanical, electronic, or other means in any form. The manufacturer does not warrant that the hardware will work properly in all environments and applications, and makes no warranty or representation, either expressed or implied, with respect to the quality, performance, merchantability, or fitness for a particular purpose of the software or documentation. The manufacturer reserves the right to make changes to the hardware, software, and documentation without obligation to notify any person or organization of the revision or change. All brand and product names are the trademarks of their respective owners. © Copyright 2016 MTRLC LLC All rights reserved. SAFETY This equipment is designed with the utmost care for the safety of those who install and use it. However, special attention must be paid to the dangers of electric shock and static electricity when working with electrical equipment. All guidelines of this and of the computer manufacture must therefore be allowed at all times to ensure the safe use of the equipment. CAUTION: • Do not put the cable modem/router in water. • Do not use the cable modem/router outdoors. • Keep the cable modem/router in an environment that is between 0°C and 40°C (between 32°F and 104°F). • Do not place any object on top of the cable modem/router since this may cause overheating.
    [Show full text]
  • Migration to 3G Wireless Broadband Internet and Real Options: the Case of an Operator in India
    ARTICLE IN PRESS Telecommunications Policy 30 (2006) 400–419 www.elsevierbusinessandmanagement.com/locate/telpol Migration to 3G wireless broadband internet and real options: The case of an operator in India Venkata Praveen TanguturiÃ, Fotios C. Harmantzis Telecommunications Management, School of Technology Management, Stevens Institute of Technology, Hoboken, NJ 07030, USA Abstract The paper focuses on third generation wireless technologies and on alternative technologies for wireless local area networks. The authors present the evolutionary migration path from second to third generation systems. Technological, economic and behavioral factors related to decision-making towards the migration are proposed. As an example, the paper studies the case of the national incumbent operator of India. It analyzes qualitatively the migration problem from the perspective of the operator, the equipment manufacturer and the users. For the quantitative analysis, real options are used to value the investment decisions. The analysis suggests that the initial (sunk) investment cost, the average revenue per user, the growth of the subscriber base and the volatility of the markets are the key factors in the investment process. r 2006 Elsevier Ltd. All rights reserved. Keywords: 3G; GSM; CDMA; Wireless; Broadband; India; UMTS; India; Wi-Fi; Real options 1. Introduction The evolution of the internet has led to the convergence of telecommunications networks and computers. Benefits associated with the World Wide Web (WWW) are of great importance nowadays: people are able to communicate via e-mail, perform data transfers, online shopping, online auctions, etc. Traditionally, internet services have been provided by internet service providers (ISPs) using modems, with data rates limited to 56.6 kbp.
    [Show full text]
  • Circuit-Switching
    Welcome to CSC358! Introduction to Computer Networks Amir H. Chinaei, Winter 2016 Today Course Outline . What this course is about Logistics . Course organization, information sheet . Assignments, grading scheme, etc. Introduction to . Principles of computer networks Introduction 1-2 What is this course about? Theory vs practice . CSC358 : Theory . CSC309 and CSC458 : Practice Need to have solid math background . in particular, probability theory Overview . principles of computer networks, layered architecture . connectionless and connection-oriented transports . reliable data transfer, congestion control . routing algorithms, multi-access protocols, . delay models, addressing, and some special topics Introduction 1-3 Overview: internet protocol stack application: supporting network applications . FTP, SMTP, HTTP application transport: process-process data transfer transport . TCP, UDP network network: routing of datagrams from source to destination link . IP, routing protocols link: data transfer between physical neighboring network elements . Ethernet, 802.111 (WiFi), PPP physical: bits “on the wire” Introduction 1-4 Logistics (1/3) Prerequisite knowledge . Probability theory is a must . Mathematical modeling . Data structures & algorithms Course components . Lectures: concepts . Tutorials: problem solving . Assignments: mastering your knowledge . Readings: preparing you for above . Optional assignments: things in practice, bonus Introduction 1-5 Logistics (2/3) Text book . Computer Networking A Top-Down Approach Featuring the Internet 5th Edition, J. F. Kurose and K. W. Ross Lecture slides . Many slides are (adapted) from the above source . © All material copyright . All rights reserved for the authors Introduction 1-6 Logistics (3/3) For important information on . Lecture and tutorial time/location . Contact information of course staff (instructor and TAs) . Office hour and location . Assignments specification and solution .
    [Show full text]
  • From Packet Switching to the Cloud
    Professor Nigel Linge FROM PACKET SWITCHING TO THE CLOUD Telecommunication engineers have always drawn a picture of a cloud to represent a network. Today, however, the cloud has taken on a new meaning, where IT becomes a utility, accessed and used in exactly the same on-demand way as we connect to the National Grid for electricity. Yet, only 50 years ago, this vision of universal access to an all- encompassing and powerful network would have been seen as nothing more than fanciful science fiction. he first electronic, digital, network - a figure that represented a concept of packet switching in which stored-program computer 230% increase on the previous year. data is assembled into a short se- was built in 1948 and This clear and growing demand for quence of data bits (a packet) which heralded the dawning of data services resulted in the GPO com- includes an address to tell the network a new age. missioning in July 1970 an experi- where the data is to be sent, error de- T mental, manual call-set-up, data net- tection to allow the receiver to confirm DATA COMMUNICATIONS 1 work that used modems operating at that the contents of the packet are cor- These early computers were large, 48,000bit/s (48kbit/s). rect and a source address to facilitate cumbersome and expensive machines However, computer communica- a reply. and inevitably a need arose for a com- tions is different to voice communi- Since each packet is self-contained, munication system that would allow cations not only in its form but also any number of them can be transmit- shared remote access to them.
    [Show full text]
  • High-Speed Internet Access
    Consumer Guide Getting Broadband What is broadband? Broadband or high-speed Internet access allows users to access the Internet and Internet-related services at significantly higher speeds than those available through "dial-up" services. Broadband speeds vary significantly depending on the technology and level of service ordered. Broadband services for residential consumers typically provide faster downstream speeds (from the Internet to your computer) than upstream speeds (from your computer to the Internet). How does it work? Broadband allows users to access information via the Internet using one of several high-speed transmission technologies. Transmission is digital, meaning that text, images, and sound are all transmitted as "bits" of data. The transmission technologies that make broadband possible move these bits much more quickly than traditional telephone or wireless connections, including traditional dial-up Internet access connections. What are its advantages? • Broadband is an important tool for expanding educational and economic opportunities for consumers in remote locations. • Broadband allows you to take advantage of services not available or not convenient to use with a dial-up Internet connection, such as Voice over Internet Protocol (VoIP), an alternative to traditional voice telephone service. • Broadband makes "telemedicine" possible: patients in rural areas can confer online with medical specialists in more urban areas and share information and test results very quickly. • Broadband helps you efficiently access and use many reference and cultural resources via the Internet. • You also need broadband to best take advantage of many distance learning opportunities, like online college or university courses, and continuing or senior education programs. • Broadband allows you to shop online more quickly and efficiently.
    [Show full text]
  • Xdsl: the Solution for Today’S Bandwidth Demands?
    New Telecom Quarterly xDSL: The Solution for Today’s Bandwidth Demands? David Smith hen asked about the challenges primary focus will be on Asymmetrical facing the information-intensive Digital Subscriber Line (ADSL). W society we live in, Bill Gates said, “Bandwidth bottleneck. No question, that’s xDSL Technologies 1 the biggest obstacle.” The Internet users cry POTS lines had previously been deemed more, more, more. Small businesses want unsuitable for broadband communications, digital access. Large firms are demanding yet these ordinary twisted copper pairs, more and faster access, and service provid- when equipped with xDSL modems, can ers are searching for ways to meet these Mr. David Smith is Vice transmit movies, television signals, graphics, President of Consulting, needs without having to replace the existing and high-speed data. xDSL is being pro- Alliances, and Education network infrastructure. posed in several versions that vary in both at Technology Futures, Inc. His background is in Digital subscriber line (xDSL) is one bandwidth and reach, as illustrated in Table such emerging technology under evaluation the management, design, 1. The most popular version, ADSL, offers a and implementation of that, while not a panacea to bandwidth 200-fold increase in throughput over today’s information-based problems, can provide a very timely and fastest analog modems. Some versions are operations in both the public and private beneficial short- to medium-term solution. asymmetrical with differing data rates xDSL provides an alternative to the existing sectors. He has held running in each direction, i.e., in the down- positions in management POTS or ISDN line between the subscriber stream and upstream directions.
    [Show full text]