Applied Combinatorics 2017 Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Security and Management of Computer Network Database In
The Security and Management of Computer Network Database in Coal Quality Detection Jianhua SHI1, a, Jinhong SUN2 1Guizhou Agency of Quality Supervision and Inspection of Coal Product,Liupanshui city 553001,China [email protected] Keywords: Computer Network Database; Database Security; Coal Quality Detection Abstract. This paper research the results of quality management information system at home and abroad, through the analysis of the domestic coal enterprises coal quality management links and management information system development present situation and existing problems, combining with related theory and system development method of management information system, and according to the coal mining enterprises of computer network security and management, analysis and design of database, and the implementation steps and the implementation of the coal quality management information system of the problem are given their own countermeasure and the suggestion, try to solve demand for management information system of coal enterprise management level, thus improve the coal quality management level and economic benefit of coal enterprise. Introduction With the improvement of China's coal mining mechanization degree and the increase of mining depth, coal quality is on the decline as a whole. At the same time, the user of coal product utilization way more and more widely, use more and more diversified, more and higher to the requirement of coal quality. In coal quality issue, therefore, countless contradictions increasingly acute, the gap of -
LAB MANUAL for Computer Network
LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. -
Steps Toward a National Research Telecommunications Network
Steps Toward a National Research Telecommunications Network Gordon Bell Introduction Modern science depends on rapid communica- In response to provisions in Public Law tions and information exchange. Today, many major 99-383, which was passed 21 June 1986 by national and international networks exist using the 99th Congress, an inter-agency group some form of packet switching to interconnect under the auspices of the Federal Coordin- host computers. State and regional networks are ating Council for Science, Engineering, and proliferating. NSFNET, an "internet" designed initially Technology (FCCSET) for Computer Research to improve access to supercomputer centers, has and Applications was formed to study the in the space of two years, forged links among 17 following issues: the networking needs of state, regional, and federal agency networks. the nation's academic and federal research In the early 1980s, the lack of access to super- computer programs, including supercomputer computing power by the research community caused programs, over the next 15 years, addressing the formation of the NSF Office of Advanced Sci- requirements in terms of volume of data, entific Computing, which funded five centers for reliability of transmission, software supercomputers. Given the highly distributed loca- compatibility, graphics capabilities, and tion of users, the need for a national wide area transmission security; the benefits and network for computer access and for the inter- opportunities that an improved computer change of associated scientific information (such network would offer for electronic mail, as mail, files, databases) became clear. file transfer, and remote access and com- Further, it immediately became obvious that munications; and the networking options existing agency networks both lacked the inherent available for linking academic and research capacity and were overloaded. -
Components of a Computer Network
CS 536 Park Introduction What is a computer network? Components of a computer network: • hosts (PCs, laptops, handhelds) • routers & switches (IP router, Ethernet switch) • links (wired, wireless) • protocols (IP, TCP, CSMA/CD, CSMA/CA) • applications (network services) • humans and service agents Hosts, routers & links form the hardware side. Protocols & applications form the software side. Protocols can be viewed as the “glue” that binds every- thing else together. CS 536 Park A physical network: CS 536 Park Protocol example: low to high • NIC (network interface card): hardware → e.g., Ethernet card, WLAN card • device driver: part of OS • ARP, RARP: OS • IP: OS • TCP, UDP: OS • OSPF, BGP, HTTP: application • web browser, ssh: application −→ multi-layered glue What is the role of protocols? −→ facilitate communication or networking CS 536 Park Simplest instance of networking problem: Given two hosts A, B interconnected by some net- work N, facilitate communication of information between A & B. A N B Information abstraction • representation as objects (e.g., files) • bytes & bits → digital form • signals over physical media (e.g., electromagnetic waves) → analog form CS 536 Park Minimal functionality required of A, B • encoding of information • decoding of information −→ data representation & a form of translation Additional functionalities may be required depending on properties of network N • information corruption → 10−9 for fiber optic cable → 10−3 or higher for wireless • information loss: packet drop • information delay: like toll -
Introduction to Bioinformatics (Elective) – SBB1609
SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline. -
Application of Bioinformatics Methods to Recognition of Network Threats
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Paper Application of bioinformatics methods to recognition of network threats Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk Abstract— Bioinformatics is a large group of methods used in of strings cacdbd and cawxb, character c is mismatched biology, mostly for analysis of gene sequences. The algorithms with w, both d’s and the x are opposite spaces, and all developed for this task have recently found a new application other characters are in matches. in network threat detection. This paper is an introduction to this area of research, presenting a survey of bioinformatics Definition 2 (from [2]) : A global multiple alignment of methods applied to this task, outlining the individual tasks k > 2 strings S = S1,S2,...,Sk is a natural generalization and methods used to solve them. It is argued that the early of alignment for two strings. Chosen spaces are inserted conclusion that such methods are ineffective against polymor- into (or at either end of) each of the k strings so that the re- phic attacks is in fact too pessimistic. sulting strings have the same length, defined to be l. Then Keywords— network threat analysis, sequence alignment, edit the strings are arrayed in k rows of l columns each, so distance, bioinformatics. that each character and space of each string is in a unique column. Alignment is necessary, since evolutionary processes intro- 1. Introduction duce mutations in the DNA and biologists do not know, whether nth symbol in one sequence indeed corresponds to When biologists discover a new gene, its function is not al- the nth symbol of the other sequence – a shift is probable. -
INTRODUCTION E-Commerce Is a Technology-Mediated Exchange
INTRODUCTION E-commerce is a technology-mediated exchange between parties (individuals or organizations) as well as the electronically based intra-or inter- organizational activities that facilitate such exchanges. It is the business option in which the transactions take place via telecommunications networks. It changes the way you shop, learn, interact and transact business; this wave of emerging technology affects every facet of your lifestyle, home as well as your workplace. E-commerce is directly or indirectly applicable in all areas of our life be it banking, entertainment, on line orders processing cycle or SCM (Supply Chain Management). Due to its wide variety of applications e-commerce has gained a lot of popularity over the decade. It has drawn the attention of researchers regarding the new technologies and resolving the security issues regarding the electronic transactions. Fig 1.1 Different Application areas of E-Commerce E-commerce has been defined broadly as the business transactions of business over the achieving greater efficiencies within their organization using information technology, the last half of this decade is seeing a new wave of increased efficiencies by extending the information technology to the Web, both to the trading partners, as well as to end consumers. While efficiencies lead to increased profitability, the Web offers other advantages, such as a greater reach, short-term relationships, one-to-one marketing, re-intermediation, disintermediation etc. which are either difficult, or impossible to do in the traditional physical economy. Obviously, electronic commerce will first pass through the phase of “electronification” of current trading practices, and only later evolve into something radically different from its physical counterpart. -
Application of Bioinformatics Methods to Recognition of Network Threats
Paper Application of bioinformatics methods to recognition of network threats Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk Abstract— Bioinformatics is a large group of methods used in of strings cacdbd and cawxb, character c is mismatched biology, mostly for analysis of gene sequences. The algorithms with w, both d’s and the x are opposite spaces, and all developed for this task have recently found a new application other characters are in matches. in network threat detection. This paper is an introduction to this area of research, presenting a survey of bioinformatics Definition 2 (from [2]) : A global multiple alignment of methods applied to this task, outlining the individual tasks k > 2 strings S = S1,S2,...,Sk is a natural generalization and methods used to solve them. It is argued that the early of alignment for two strings. Chosen spaces are inserted conclusion that such methods are ineffective against polymor- into (or at either end of) each of the k strings so that the re- phic attacks is in fact too pessimistic. sulting strings have the same length, defined to be l. Then Keywords— network threat analysis, sequence alignment, edit the strings are arrayed in k rows of l columns each, so distance, bioinformatics. that each character and space of each string is in a unique column. Alignment is necessary, since evolutionary processes intro- 1. Introduction duce mutations in the DNA and biologists do not know, whether nth symbol in one sequence indeed corresponds to When biologists discover a new gene, its function is not al- the nth symbol of the other sequence – a shift is probable. -
Short Cross-Disciplinary Cycles in Co-Authorship Graphs
How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs Chris Fields 528 Zinnia Court Sonoma, CA 95476 USA fi[email protected] October 17, 2014 Abstract Cycles that cross two or more boundaries between disciplines in the co-authorship graph for all of science are used to set upper limits on the number of co-authored pa- pers required to cross 15 disciplines or subdisciplines ranging from macroeconomics to neurology. The upper limits obtained range from one (discrete mathematics, macroe- conomics and nuclear physics) to six (neuroscience). The 15 disciplines or subdis- ciplines examined form a “small world” with an average separation of only 2.0 co- authorship links. It is conjectured that the high-productivity, high average degree centers of all scientific disciplines form a small world, and therefore that the diameter of the co-authorship graph of all of science is only slightly larger than the average diameter of the co-authorship graphs of its subdisciplines. Keywords: Cross-displinary brokers; Field mobility; Graph centrality; Graph diameter; Nobel laureates; Preferential attachment; Small-world networks 1 Introduction Numerous studies have now confirmed the finding of Newman (2001, 2004) that the co- authorship graphs of many scientific disciplines can be characterized as “small worlds” comprising many dense clusters of researchers separated by relatively short (mean length 1 l ≤ 10) minimum paths (reviewed by Mali, Kronegger, Doreian and Ferligoj, 2012). Despite over two decades of efforts to make the world of science as a whole more interconnected by encouraging inter-, multi- or trans-disciplinary collaborations, however, the research enterprise remains organized into disciplines (Jacobs and Frickel, 2009). -
An Overview of the Netware Operating System
An Overview of the NetWare Operating System Drew Major Greg Minshall Kyle Powell Novell, Inc. Abstract The NetWare operating system is designed specifically to provide service to clients over a computer network. This design has resulted in a system that differs in several respects from more general-purpose operating systems. In addition to highlighting the design decisions that have led to these differences, this paper provides an overview of the NetWare operating system, with a detailed description of its kernel and its software-based approach to fault tolerance. 1. Introduction The NetWare operating system (NetWare OS) was originally designed in 1982-83 and has had a number of major changes over the intervening ten years, including converting the system from a Motorola 68000-based system to one based on the Intel 80x86 architecture. The most recent re-write of the NetWare OS, which occurred four years ago, resulted in an “open” system, in the sense of one in which independently developed programs could run. Major enhancements have occurred over the past two years, including the addition of an X.500-like directory system for the identification, location, and authentication of users and services. The philosophy has been to start as with as simple a design as possible and try to make it simpler as we gain experience and understand the problems better. The NetWare OS provides a reasonably complete runtime environment for programs ranging from multiprotocol routers to file servers to database servers to utility programs, and so forth. Because of the design tradeoffs made in the NetWare OS and the constraints those tradeoffs impose on the structure of programs developed to run on top of it, the NetWare OS is not suited to all applications. -
Mathematical Foundations of Computer Networking the Addison-Wesley Professional Computing Series
Mathematical Foundations of Computer Networking The Addison-Wesley Professional Computing Series Visit informit.com/series/professionalcomputing for a complete list of available publications. The Addison-Wesley Professional Computing Series was created in 1990 to provide serious programmers and networking professionals with well-written and practical reference books. There are few places to turn for accurate and authoritative books on current and cutting-edge technology. We hope that our books will help you understand the state of the art in programming languages, operating systems, and networks. Consulting Editor Brian W. Kernighan Make sure to connect with us! informit.com/socialconnect Mathematical Foundations of Computer Networking Srinivasan Keshav Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City Many of the designations used by manufacturers and sellers to distin- Editor-in-Chief guish their products are claimed as trademarks. Where those designa- Mark L. Taub tions appear in this book, and the publisher was aware of a trademark Senior Acquisitions Editor claim, the designations have been printed with initial capital letters or in Trina MacDonald all capitals. Managing Editor The author and publisher have taken care in the preparation of this book, John Fuller but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden- Full-Service Production tal or consequential damages in connection with or arising out of the use Manager of the information or programs contained herein. Julie B. Nahil The publisher offers excellent discounts on this book when ordered in Copy Editor quantity for bulk purchases or special sales, which may include electronic Evelyn Pyle versions and/or custom covers and content particular to your business, Indexer training goals, marketing focus, and branding interests. -
View This Volume's Front and Back Matter
http://dx.doi.org/10.1090/psapm/026 PROCEEDINGS OF SYMPOSIA IN APPLIED MATHEMATICS VOLUME 1 NON-LINEAR PROBLEMS IN MECHANICS OF CONTINUA Edited by E. Reissner (Brown University, August 1947) VOLUME 2 ELECTROMAGNETIC THEORY Edited by A. H. Taub (Massachusetts Institute of Technology, July 1948) VOLUME 3 ELASTICITY Edited by R. V. Churchill (University of Michigan, June 1949) VOLUME 4 FLUID DYNAMICS Edited by M. H. Martin (University of Maryland, June 1951) VOLUME 5 WAVE MOTION AND VIBRATION THEORY Edited by A. E. Heins (Carnegie Institute of Technology, June 1952) VOLUME 6 NUMERICAL ANALYSIS Edited by /. H. Curtiss (Santa Monica City College, August 1953) VOLUME 7 APPLIED PROBABILITY Edited by L. A. MacColl (Polytechnic Institute of Brooklyn, April 1955) VOLUME 8 CALCULUS OF VARIATIONS AND ITS APPLICATIONS Edited by L. M. Graves (University of Chicago, April 1956) VOLUME 9 ORBIT THEORY Edited by G. Birkhoff and R. E. Longer (New York University, April 1957) VOLUME 10 COMBINATORIAL ANALYSIS Edited by R. Bellman and M. Hall, Jr. (Columbia University, April 1958) VOLUME 11 NUCLEAR REACTOR THEORY Edited by G. Birkhoff and E. P. Wigner (New York City, April 1959) VOLUME 12 STRUCTURE OF LANGUAGE AND ITS MATHEMATICAL ASPECTS Edited by R. Jakobson (New York City, April 1960) VOLUME 13 HYDRODYNAMIC INSTABILITY Edited by R. Bellman, G. Birkhoff, C. C. Lin (New York City, April 1960) VOLUME 14 MATHEMATICAL PROBLEMS IN THE BIOLOGICAL SCIENCES Edited by R. Bellman (New York City, April 1961) VOLUME 15 EXPERIMENTAL ARITHMETIC, HIGH SPEED COMPUTING, AND MATHEMATICS Edited by N. C. Metropolis, A. H. Taub, /. Todd, C.