Digitalcommons@URI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polyploidy and the Evolutionary History of Cotton
POLYPLOIDY AND THE EVOLUTIONARY HISTORY OF COTTON Jonathan F. Wendel1 and Richard C. Cronn2 1Department of Botany, Iowa State University, Ames, Iowa 50011, USA 2Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, Oregon 97331, USA I. Introduction II. Taxonomic, Cytogenetic, and Phylogenetic Framework A. Origin and Diversification of the Gossypieae, the Cotton Tribe B. Emergence and Diversification of the Genus Gossypium C. Chromosomal Evolution and the Origin of the Polyploids D. Phylogenetic Relationships and the Temporal Scale of Divergence III. Speciation Mechanisms A. A Fondness for Trans-oceanic Voyages B. A Propensity for Interspecific Gene Exchange IV. Origin of the Allopolyploids A. Time of Formation B. Parentage of the Allopolyploids V. Polyploid Evolution A. Repeated Cycles of Genome Duplication B. Chromosomal Stabilization C. Increased Recombination in Polyploid Gossypium D. A Diverse Array of Genic and Genomic Interactions E. Differential Evolution of Cohabiting Genomes VI. Ecological Consequences of Polyploidization VII. Polyploidy and Fiber VIII. Concluding Remarks References The cotton genus (Gossypium ) includes approximately 50 species distributed in arid to semi-arid regions of the tropic and subtropics. Included are four species that have independently been domesticated for their fiber, two each in Africa–Asia and the Americas. Gossypium species exhibit extraordinary morphological variation, ranging from herbaceous perennials to small trees with a diverse array of reproductive and vegetative -
A Global Assembly of Cotton Ests
Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Resource A global assembly of cotton ESTs Joshua A. Udall,1 Jordan M. Swanson,1 Karl Haller,2 Ryan A. Rapp,1 Michael E. Sparks,1 Jamie Hatfield,2 Yeisoo Yu,3 Yingru Wu,4 Caitriona Dowd,4 Aladdin B. Arpat,5 Brad A. Sickler,5 Thea A. Wilkins,5 Jin Ying Guo,6 Xiao Ya Chen,6 Jodi Scheffler,7 Earl Taliercio,7 Ricky Turley,7 Helen McFadden,4 Paxton Payton,8 Natalya Klueva,9 Randell Allen,9 Deshui Zhang,10 Candace Haigler,10 Curtis Wilkerson,11 Jinfeng Suo,12 Stefan R. Schulze,13 Margaret L. Pierce,14 Margaret Essenberg,14 HyeRan Kim,3 Danny J. Llewellyn,4 Elizabeth S. Dennis,4 David Kudrna,3 Rod Wing,3 Andrew H. Paterson,13 Cari Soderlund,2 and Jonathan F. Wendel1,15 1Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA; 2Arizona Genomics Computational Laboratory, BIO5 Institute, 3Arizona Genomics Institute, Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA; 4CSIRO Plant Industry, Canberra City ACT 2601, Australia; 5Department of Plant Sciences, University of California–Davis, Davis, California 95616, USA; 6Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, 200032, China; 7United States Department of Agriculture–Agricultural Research Service, Stoneville, Mississippi 38776, USA; 8United States Department of Agriculture–Agricultural Research Service, Lubbock, Texas 79415, USA; 9Department of Biology, Texas Tech University, -
Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan*
® International Journal of Plant Developmental Biology ©2010 Global Science Books Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan* Key Laboratory of Biotechnology & Bio-Resources Utilization, Dalian Nationalities University, Dalian City, Liaoning 116600, China Correspondence : * [email protected] ABSTRACT The flowers of the Malvaceae with varying levels of herkogamy via style curvature have long intrigued evolutionary botanists. This review covers the flower opening process, approach herkogamy, style curvature and character evolution based on molecular phylogenetic trees, adaptive significances of style curvature and the mating system in some portions of the genera in this family. Hermaphroditic flowers of some species have showy petals and pollen and nectar rewards to pollinators. Approach herkogamy, in which stigmas are located on the top of a monadelphous stamen, has evolved as a mechanism to reduce the frequency of intra-floral self-pollination or the interference between male-female organs. Protandrous or monochogamous flowers in the fields open at about 5-7 days and 1-2 days respectively, and pollination is conducted by insects and birds. Interestingly, un-pollinated styles in some species curve when pollination fails. According to our observations and published or internet data, this curvature occurs in 23 species distributed in eight genera of four tribes (Malvavisceae, Ureneae, Hibisceae, Malveae) and appears to have evolved at least eight times. A shift to use style curvature is associated with a shift to annual or perennial herbs, and an unpredictable pollinator environment is likely an important trigger for this evolution. The adaptive significances of style curvature in the Malvaceae include delayed selfing, promotion of outcrossing or reduction in intrafloral male-female interference, sometimes two or three of which simultaneously occur in style curvature of one species (e.g., Kosteletzkya virginica). -
U5b5c4e4 OA.Pdf
Downloaded from genome.cshlp.org on September 9, 2019 - Published by Cold Spring Harbor Laboratory Press Letter Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium Jennifer S. Hawkins,1 HyeRan Kim,2 John D. Nason,1 Rod A. Wing,2 and Jonathan F. Wendel1,3 1Iowa State University, Department of Ecology, Evolution and Organismal Biology, Ames, Iowa 50011, USA; 2University of Arizona, Department of Plant Sciences, Arizona Genomics Institute, Tucson, Arizona 85721, USA The DNA content of eukaryotic nuclei (C-value) varies ∼200,000-fold, but there is only a ∼20-fold variation in the number of protein-coding genes. Hence, most C-value variation is ascribed to the repetitive fraction, although little is known about the evolutionary dynamics of the specific components that lead to genome size variation. To understand the modes and mechanisms that underlie variation in genome composition, we generated sequence data from whole genome shotgun (WGS) libraries for three representative diploid (n = 13) members of Gossypium that vary in genome size from 880 to 2460 Mb (1C) and from a phylogenetic outgroup, Gossypioides kirkii, with an estimated genome size of 588 Mb. Copy number estimates including all dispersed repetitive sequences indicate that 40%–65% of each genome is composed of transposable elements. Inspection of individual sequence types revealed differential, lineage-specific expansion of various families of transposable elements among the different plant lineages. Copia-like retrotransposable element sequences have differentially accumulated in the Gossypium species with the smallest genome, G. raimondii, while gypsy-like sequences have proliferated in the lineages with larger genomes. -
Comparative Analysis of Gossypium and Vitis Genomes Indicates Genome Duplication Specific to the Gossypium Lineage
Genomics 97 (2011) 313–320 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Comparative analysis of Gossypium and Vitis genomes indicates genome duplication specific to the Gossypium lineage Lifeng Lin a, Haibao Tang a, Rosana O. Compton a, Cornelia Lemke a, Lisa K. Rainville a, Xiyin Wang a,b, Junkang Rong a,1, Mukesh Kumar Rana a,c, Andrew H. Paterson a,⁎ a Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA b Center for Genomics and Biocomputing, College of Sciences, Hebei Polytechnic University, Tangshan, Hebei, 063000, China c NRC on DNA Fingerprinting, NBPGR, Pusa Campus, New Delhi, 110012, India article info abstract Article history: Genetic mapping studies have suggested that diploid cotton (Gossypium) might be an ancient polyploid. Received 17 November 2010 However, further evidence is lacking due to the complexity of the genome and the lack of sequence resources. Accepted 15 February 2011 Here, we used the grape (Vitis vinifera) genome as an out-group in two different approaches to further explore Available online 22 February 2011 evidence regarding ancient genome duplication (WGD) event(s) in the diploid Gossypium lineage and its (their) effects: a genome-level alignment analysis and a local-level sequence component analysis. Both Keywords: Gossypium studies suggest that at least one round of genome duplication occurred in the Gossypium lineage. Also, gene Lineage specific genome-wide duplication densities in corresponding regions from Gossypium raimondii, V. vinifera, Arabidopsis thaliana and Carica Vitis vinifera papaya genomes are similar, despite the huge difference in their genome sizes and the different number of Whole genome alignment WGDs each genome has experienced. -
De Novo Genome Sequence Assemblies of Gossypium Raimondii and Gossypium Turneri
GENOME REPORT De Novo Genome Sequence Assemblies of Gossypium raimondii and Gossypium turneri Joshua A. Udall,*,1 Evan Long,† Chris Hanson,† Daojun Yuan,‡ Thiruvarangan Ramaraj,§ Justin L. Conover,‡ Lei Gong,** Mark A. Arick,†† Corrinne E. Grover,‡ Daniel G. Peterson,†† and Jonathan F. Wendel‡ *USDA/Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, †Plant and Wildlife Science Dept. Brigham Young University, Provo, UT 84042, ‡Ecology, Evolution, and Organismal Biology Dept., Iowa § State University, Ames, IA 50010, School of Computing, DePaul University, Chicago, IL 60604, **Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China, and ††Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi 39762 ORCID IDs: 0000-0003-0978-4764 (J.A.U.); 0000-0001-6007-5571 (D.Y.); 0000-0002-7333-1041 (T.R.); 0000-0002-3558-6000 (J.L.C.); 0000-0001-6429-267X (L.G.); 0000-0003-3878-5459 (C.E.G.); 0000-0002-0274-5968 (D.G.P.); 0000-0003-2258-5081 (J.F.W.) ABSTRACT Cotton is an agriculturally important crop. Because of its importance, a genome sequence of a KEYWORDS diploid cotton species (Gossypium raimondii, D-genome) was first assembled using Sanger sequencing Gossypium data in 2012. Improvements to DNA sequencing technology have improved accuracy and correctness of raimondii assembled genome sequences. Here we report a new de novo genome assembly of G. raimondii and its Gossypium close relative G. turneri. The two genomes were assembled to a chromosome level using PacBio long-read turneri technology, HiC, and Bionano optical mapping. This report corrects some minor assembly errors found cotton in the Sanger assembly of G. -
Host Choice in Rotylenchulus Species
Available online at www.ijpab.com Rathore Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6878 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) Research Article Host Choice in Rotylenchulus Species Y. S. Rathore* Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur-208 024 (U.P.) India *Corresponding Author E-mail: [email protected] Received: 12.09.2018 | Revised: 9.10.2018 | Accepted: 16.10.2018 ABSTRACT The reniformis nematodes of the genus Rotylenchulus (Haplolaimidae: Nematoda) are sedentary semi-endoparasites of numerous crops. There are ten species out of which R. reniformis and R. parvus are important, and three species (R. amanictus, R. clavicadatus, R. leptus) are monophagous: two on monocots and one on Rosids. In general, Rotylenchulus species are capable of feeding from very primitive Magnoliids to plants of advanced category. Preference was distinctly observed towards the plants in Rosids (42.779%) followed by monocots (23.949%) and Asterids (21.755%). The SAI values were also higher for these groups of plants. The study on lineages further revealed intimate affinity to febids (25.594%), followed by commelinids (18.647%), malvids (16.088%), lamiids (11.883%), and campanulids (9.141%). Poales contribution within commelinids was 65.353%. Maximum affinity of Rotylenchulus species was observed by their association with plants from families Poaceae (7), followed by Fabaceae (6), Malvaceae (6), Asteraceae (4), Oleaceae (4), Soanaceae (4) and so on. Key words: Agiosperms, Gymnosperms, APG IV system, Reniform nemtodes, Monocots, Rosids, Asterids INTRODUCTION number of crops, whereas the other eight Plant parasitic nematodes pose a great species are of limited importance. -
An Annotated Checklist of the Coastal Forests of Kenya, East Africa
A peer-reviewed open-access journal PhytoKeys 147: 1–191 (2020) Checklist of coastal forests of Kenya 1 doi: 10.3897/phytokeys.147.49602 CHECKLIST http://phytokeys.pensoft.net Launched to accelerate biodiversity research An annotated checklist of the coastal forests of Kenya, East Africa Veronicah Mutele Ngumbau1,2,3,4, Quentin Luke4, Mwadime Nyange4, Vincent Okelo Wanga1,2,3, Benjamin Muema Watuma1,2,3, Yuvenalis Morara Mbuni1,2,3,4, Jacinta Ndunge Munyao1,2,3, Millicent Akinyi Oulo1,2,3, Elijah Mbandi Mkala1,2,3, Solomon Kipkoech1,2,3, Malombe Itambo4, Guang-Wan Hu1,2, Qing-Feng Wang1,2 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Gar- den, Chinese Academy of Sciences, Wuhan 430074, Hubei, China 2 Sino-Africa Joint Research Center (SA- JOREC), Chinese Academy of Sciences, Wuhan 430074, Hubei, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 East African Herbarium, National Museums of Kenya, P. O. Box 45166 00100, Nairobi, Kenya Corresponding author: Guang-Wan Hu ([email protected]) Academic editor: P. Herendeen | Received 23 December 2019 | Accepted 17 March 2020 | Published 12 May 2020 Citation: Ngumbau VM, Luke Q, Nyange M, Wanga VO, Watuma BM, Mbuni YuM, Munyao JN, Oulo MA, Mkala EM, Kipkoech S, Itambo M, Hu G-W, Wang Q-F (2020) An annotated checklist of the coastal forests of Kenya, East Africa. PhytoKeys 147: 1–191. https://doi.org/10.3897/phytokeys.147.49602 Abstract The inadequacy of information impedes society’s competence to find out the cause or degree of a prob- lem or even to avoid further losses in an ecosystem. -
Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids
Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids Qin Xu1, Guanjun Xiong1, Pengbo Li1,2, Fei He3, Yi Huang4, Kunbo Wang5, Zhaohu Li1, Jinping Hua1* 1 College of Agronomy & Biotechnology, China Agricultural University, Beijing, China, 2 Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng, China, 3 College of Biological Sciences, China Agricultural University, Beijing, China, 4 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China, 5 Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, China Abstract Background: Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings: The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having .98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. -
Cenh3 Evolution in Diploids and Polyploids of Three Angiosperm Genera Rick E
Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 12-2014 CenH3 Evolution in Diploids and Polyploids of Three Angiosperm Genera Rick E. Masonbrink Iowa State University Joseph P. Gallagher Iowa State University, [email protected] Josef J. Jareczek Iowa State University, [email protected] Simon Renny-Byfield Iowa State University Corrinne E. Grover Iowa State University, [email protected] SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: http://lib.dr.iastate.edu/eeob_ag_pubs Part of the Ecology and Evolutionary Biology Commons, Genetics Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ eeob_ag_pubs/69. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. CenH3 Evolution in Diploids and Polyploids of Three Angiosperm Genera Abstract Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. -
Supporting Information
Supporting Information Beilstein et al. 10.1073/pnas.0909766107 SI Materials and Methods at the deepest node of the tree and 20.8 Mya for the most- Evaluation of Potential Fossil Calibrations. We searched the pa- derived node calibration (Table S3). leobotanical literature and identified 32 fossils assigned to All other fossils were used as minimum age constraints in r8s. Brassicales (Table S1). Only six (Akania americana, Akania pa- We calibrated two different nodes with the Akania fossils; the tagonica, Akania sp., Capparidoxylon holleisii, Dressiantha bi- Akania americana/A. patagonica fossils are from a more recent carpellata, Thlaspi primaevum) could be placed confidently in deposit than Akania sp. (Table S1), and thus we used the Brassicales. A fossil was considered acceptable for use as an age younger date for these fossils to constrain the divergence of constraint only if its record included a clear citation with pho- Akania bidwillii and Bretschneidera sinensis. Akania sp. was used tographic evidence or accurate reproduction, fossil collection to constrain the node defined by A. bidwilli and Tropaeolum number, and morphological characters that support the pro- majus, which is deeper in the tree than the split constrained by A. posed placement. americana/A. patagonica. This strategy allowed us to use all Akania fossils as calibrations in the ndhF and combined analyses. Ultrametric Tree and Divergence Date Estimation. To calculate di- We lacked PHYA data for B. sinensis, precluding the use of vergence dates for Brassicales, we first inferred trees from plastid A. americana/A. patagonica as a calibration in PHYA analyses. ndhF and the nuclear locus phytochrome A (PHYA)datasepa- Morphological analysis of Capparidoxylon holleisii using Inside rately and then from combined ndhFandPHYA data (Table S2). -
The Genome Sequence of Gossypioides Kirkii Illustrates a Descending Dysploidy in Plants
Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology 11-2019 The Genome Sequence of Gossypioides kirkii Illustrates a Descending Dysploidy in Plants Joshua A. Udall U.S. Department of Agriculture Evan Long Cornell University Thiruvarangan Ramaraj National Center of Genome Resources Justin L. Conover Iowa State University, [email protected] Daojun Yuan Iowa State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Agronomy and Crop Sciences Commons, Ecology and Evolutionary Biology Commons, Genomics Commons, and the Plant Breeding and Genetics Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/382. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Genome Sequence of Gossypioides kirkii Illustrates a Descending Dysploidy in Plants Abstract One of the extraordinary aspects of plant genome evolution is variation in chromosome number, particularly that among closely related species. This is exemplified by the cotton genus (Gossypium) and its relatives, where most species and genera have a base chromosome number of 13. The two exceptions are sister genera that have n = 12 (the Hawaiian Kokia and the East African and Madagascan Gossypioides).