I Bazi Achillea Türleri Üzerinde Farmakognozik

Total Page:16

File Type:pdf, Size:1020Kb

I Bazi Achillea Türleri Üzerinde Farmakognozik BAZI ACHILLEA TÜRLERİ ÜZERİNDE FARMAKOGNOZİK ARAŞTIRMALAR Handan Gökben SEVİNDİK Farmakognozi Anabilim Dalı Tez Danışmanı Prof. Dr. Zühal GÜVENALP Doktora Tezi-2015 I T.C. ATATÜRK ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BAZI ACHILLEA TÜRLERİ ÜZERİNDE FARMAKOGNOZİK ARAŞTIRMALAR Handan Gökben SEVİNDİK Farmakognozi Anabilim Dalı Doktora Tezi Tez Danışmanı Prof. Dr. Zühal GÜVENALP ERZURUM 2015 II III İÇİNDEKİLER İÇİNDEKİLER ............................................................................................................. IV TEŞEKKÜR .................................................................................................................. IX ÖZET .............................................................................................................................. X ABSTRACT ................................................................................................................... XI SİMGELER VE KISALTMALAR DİZİNİ ............................................................. XII TABLOLAR DİZİNİ ................................................................................................... XV ŞEKİLLER DİZİNİ ................................................................................................ XVIII 1. GİRİŞ ........................................................................................................................... 1 2. GENEL BİLGİLER .................................................................................................... 4 2.1. Botanik Bilgiler .......................................................................................................... 4 2.1.1. Achillea Cinsinin Bitki Sistematiğindeki Yeri ........................................................ 4 2.1.2. Asteraceae (Compositae) Familyası ....................................................................... 4 2.1.3. Achillea L. Cinsi ..................................................................................................... 5 2.1.4. Türkiye’de Yetişen Achillea Türleri için Tayin Anahtarı ....................................... 5 2.1.5. Achillea millefolium L. ......................................................................................... 12 2.1.6. Achillea biebersteinii Afan. .................................................................................. 15 2.2. Achillea Türleri Üzerinde Yapılmış Olan Fitokimyasal Çalışmalar ........................ 17 2.2.1. Monoterpenler ....................................................................................................... 17 2.2.2. Seskiterpenler ........................................................................................................ 20 2.2.3. Diterpenler ............................................................................................................ 58 2.2.4. Triterpenler ........................................................................................................... 59 2.2.5. Steroller ................................................................................................................. 61 2.2.6. Flavonoitler ........................................................................................................... 63 2.2.7. Kumarinler ve Türevleri ....................................................................................... 69 IV 2.2.8. Lignanlar ............................................................................................................... 70 2.2.9. Kinonlar ................................................................................................................ 72 2.2.10. Fenolik Asitler .................................................................................................... 72 2.2.11. Yağ Asitleri ......................................................................................................... 75 2.2.12. İyonon Glikozitleri .............................................................................................. 75 2.2.13. Aromatik Bileşikler ............................................................................................. 75 2.2.14. Dipeptitler ........................................................................................................... 76 2.2.15. Diğerleri .............................................................................................................. 76 2.2.16. Uçucu Yağlar ...................................................................................................... 77 2.3. Achillea Türlerinin Kullanılışı ve Achillea Türleri Üzerinde Yapılan Farmakolojik Çalışmalar ....................................................................................................................... 78 2.3.1. Antioksidan Kapasite ............................................................................................ 78 2.3.2. Antimikrobiyal Etki .............................................................................................. 82 2.3.3. Antiviral Etki ........................................................................................................ 87 2.3.4. Larvisidal Etki ....................................................................................................... 88 2.3.5. Kanser Hücreleri ve Hücre Çoğalması Üzerine Etki ............................................ 88 2.3.6. Antienflamatuvar Etki ........................................................................................... 90 2.3.7. Analjezik ve Antinosiseptif Etki ........................................................................... 91 2.3.8. Antiplatelet Etki .................................................................................................... 91 2.3.9. Antiülser Etki ........................................................................................................ 92 2.3.10. Antispazmodik Etki ............................................................................................ 92 2.3.11. Diyabet Üzerine Etki .......................................................................................... 93 2.3.12. Antikolinesteraz Etki .......................................................................................... 93 2.3.13. Yara İyileştirici Etki ............................................................................................ 93 2.3.14. Antiastmatik Etki ................................................................................................ 94 V 2.3.15. Diüretik Etki ....................................................................................................... 94 2.3.16. Östrojenik Etki .................................................................................................... 94 2.3.17. Hepatoprotektif Etki ........................................................................................... 94 2.3.18. İmmünosupresif Etki........................................................................................... 95 3. MATERYAL VE METOD ...................................................................................... 96 3.1. Bitki Materyali ......................................................................................................... 96 3.2. Kimyasal Maddeler ve Gereçler .............................................................................. 96 3.2.1. Kimyasal Maddeler ............................................................................................... 96 3.2.1.1. Fitokimyasal Çalışmalar .................................................................................... 96 3.2.1.2. Toplam Fenolik Bileşik Miktar Tayini .............................................................. 98 3.2.1.3. Toplam Flavonoit Miktar Tayini ....................................................................... 98 3.2.1.4. Antioksidan Kapasite Çalışmaları ..................................................................... 98 3.2.1.5. AChE ve BuChE İnhibitör Etki Çalışmaları ...................................................... 98 3.2.1.6. Mutajenik ve Antimutajenik Etki Çalışmaları .................................................. 99 3.2.2. Aletler ve Cihazlar ................................................................................................ 99 3.3. Kromatografik Yöntemler ...................................................................................... 100 3.3.1. İnce Tabaka Kromatografisi (İTK) ..................................................................... 100 3.3.2. Preparatif İnce Tabaka Kromatografisi (Prep-İTK): .......................................... 100 3.3.3. Açık Kolon Kromatografisi ................................................................................ 101 3.4. Ekstraksiyon ve İzolasyon Çalışmaları .................................................................. 103 3.4.1. A. millefolium subsp. millefolium Üzerinde Yapılan Ekstraksiyon Çalışmaları . 103 3.4.2. A. millefolium subsp. millefolium Üzerinde Yapılan İzolasyon Çalışmaları ...... 106 3.4.2.1. Etil Asetat Ekstresi Üzerinde Yapılan İzolasyon Çalışmaları ......................... 106 3.4.2.2. n-Butanol Ekstresi Üzerinde Yapılan İzolasyon Çalışmaları .......................... 109 3.4.3. A. biebersteinii Üzerinde Yapılan Ekstraksiyon Çalışmaları ............................. 112 VI 3.4.4. A. biebersteinii Üzerinde Yapılan İzolasyon Çalışmaları ................................... 114 3.4.4.1. Etil Asetat Ekstresi Üzerinde Yapılan İzolasyon Çalışmaları ......................... 114 3.4.4.2. n-Butanol Ekstresi Üzerinde Yapılan İzolasyon Çalışmaları .........................
Recommended publications
  • Suitability of Root and Rhizome Anatomy for Taxonomic
    Scientia Pharmaceutica Article Suitability of Root and Rhizome Anatomy for Taxonomic Classification and Reconstruction of Phylogenetic Relationships in the Tribes Cardueae and Cichorieae (Asteraceae) Elisabeth Ginko 1,*, Christoph Dobeš 1,2,* and Johannes Saukel 1,* 1 Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria 2 Department of Forest Genetics, Research Centre for Forests, Seckendorff-Gudent-Weg 8, Vienna A-1131, Austria * Correspondence: [email protected] (E.G.); [email protected] (C.D.); [email protected] (J.S.); Tel.: +43-1-878-38-1265 (C.D.); +43-1-4277-55273 (J.S.) Academic Editor: Reinhard Länger Received: 18 August 2015; Accepted: 27 May 2016; Published: 27 May 2016 Abstract: The value of root and rhizome anatomy for the taxonomic characterisation of 59 species classified into 34 genera and 12 subtribes from the Asteraceae tribes Cardueae and Cichorieae was assessed. In addition, the evolutionary history of anatomical characters was reconstructed using a nuclear ribosomal DNA sequence-based phylogeny of the Cichorieae. Taxa were selected with a focus on pharmaceutically relevant species. A binary decision tree was constructed and discriminant function analyses were performed to extract taxonomically relevant anatomical characters and to infer the separability of infratribal taxa, respectively. The binary decision tree distinguished 33 species and two subspecies, but only five of the genera (sampled for at least two species) by a unique combination of hierarchically arranged characters. Accessions were discriminated—except for one sample worthy of discussion—according to their subtribal affiliation in the discriminant function analyses (DFA). However, constantly expressed subtribe-specific characters were almost missing and even in combination, did not discriminate the subtribes.
    [Show full text]
  • Imprints of Independent Allopolyploid Formations On
    Chen et al. BMC Genomics (2021) 22:264 https://doi.org/10.1186/s12864-021-07566-6 RESEARCH ARTICLE Open Access Imprints of independent allopolyploid formations on patterns of gene expression in two sibling yarrow species (Achillea, Asteraceae) Duo Chen1†, Peng-Cheng Yan2† and Yan-Ping Guo1* Abstract Background: Polyploid species often originate recurrently. While this is well known, there is little information on the extent to which distinct allotetraploid species formed from the same parent species differ in gene expression. The tetraploid yarrow species Achillea alpina and A. wilsoniana arose independently from allopolyploidization between diploid A. acuminata and A. asiatica. The genetics and geography of these origins are clear from previous studies, providing a solid basis for comparing gene expression patterns of sibling allopolyploid species that arose independently. Results: We conducted comparative RNA-sequencing analyses on the two Achillea tetraploid species and their diploid progenitors to evaluate: 1) species-specific gene expression and coexpression across the four species; 2) patterns of inheritance of parental gene expression; 3) parental contributions to gene expression in the allotetraploid species, and homeolog expression bias. Diploid A. asiatica showed a higher contribution than diploid A. acuminata to the transcriptomes of both tetraploids and also greater homeolog bias in these transcriptomes, possibly reflecting a maternal effect. Comparing expressed genes in the two allotetraploids, we found expression of ca. 30% genes were species-specific in each, which were most enriched for GO terms pertaining to “defense response”. Despite species-specific and differentially expressed genes between the two allotetraploids, they display similar transcriptome changes in comparison to their diploid progenitors.
    [Show full text]
  • In-Vitro Cardiovascular Protective Activity of a New Achillinoside from Achillea Alpina
    Revista Brasileira de Farmacognosia 29 (2019) 445–448 ww w.elsevier.com/locate/bjp Original Article In-vitro cardiovascular protective activity of a new achillinoside from Achillea alpina ∗ Fei Zhou , Song Li , Jian Yang , Jiawang Ding , Chao He , Lin Teng Institute of Cardiovascular Diseases, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, PR China a a b s t r a c t r t i c l e i n f o Article history: Achillinoside was isolated from methanol extract of Achillea alpina L., Asteraceae. The structure of the com- Received 28 August 2018 pound was characterized based on various spectrum data, including IR, HR-ESI-MS, 1D and 2D NMR. The Accepted 25 February 2019 cardiovascular protective effect of achillinoside was tested on H2O2-induced H9c2 cells. In our research, Available online 27 March 2019 achillinoside could increase the cell viability dose-dependently in H2O2-induced H9c2 cells. In addition, the levels of caspase-3/9 cells were significantly decreased in H2O2 and achillinoside incubated H9c2 Keywords: cells. Achillinoside © 2019 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open Apoptosis inhibition access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Spectroscopic analysis H9c2 cells Introduction because H9c2 cell keeps the main characteristics of primary car- diomyocytes in vivo (Silva et al., 2010; Watkins et al., 2011). Herein The genus Achillea, Asteraceae, consists of 85 species around we describe the isolation and structure elucidation of the com- the world, and mainly distributed in eastern and southern Asia.
    [Show full text]
  • Apomixis Is Not Prevalent in Subnival to Nival Plants of the European Alps
    Annals of Botany 108: 381–390, 2011 doi:10.1093/aob/mcr142, available online at www.aob.oxfordjournals.org Apomixis is not prevalent in subnival to nival plants of the European Alps Elvira Ho¨randl1,*, Christoph Dobesˇ2, Jan Suda3,4, Petr Vı´t3,4, Toma´sˇ Urfus3,4, Eva M. Temsch1, Anne-Caroline Cosendai1, Johanna Wagner5 and Ursula Ladinig5 1Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, A-1030 Vienna, Austria, 2Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria, 3Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic, 4Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Pru˚honice, Czech Republic and 5Institute of Botany, University of Innsbruck, A-6020 Innsbruck, Austria * For correspondence. E-mail [email protected] Received: 2 December 2010 Returned for revision: 14 January 2011 Accepted: 28 April 2011 Published electronically: 1 July 2011 † Background and Aims High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. Therefore, apomixis is expected to provide selective advantages in high-alpine biota. Indeed, apomictic species occur frequently in the subalpine to alpine grassland zone of the European Alps, but the mode of reproduction of the subnival to nival flora was largely unknown. † Methods The mode of reproduction in 14 species belonging to seven families was investigated via flow cyto- metric seed screen.
    [Show full text]
  • Vegetation Data Access and Taxonomic Harmonization Version 0.5.97
    Vegetation data access and taxonomic harmonization version 0.5.97 Florian Jansen December 11, 2012 Abstract An example session to show functionality and usage of R library vegdata. After installation of vegdata you can invoke this PDF with > vignette('vegdata') 1 Preliminary notes Some vegdata functions expect an installation, or more precisely the main directory structure, of the vegeta- tion database program Turboveg for Windows (see 'http://www.synbiosys.alterra.nl/turboveg/' and Hennekens & Schamin´ee (2001). If the package can not find a Turboveg installation it will use the directory within the package installation path. If you want to use function taxval for taxonomic harmonization you will need to have GermanSL or an equally structured reference list. If you do not specify any, the most recent version of GermanSL will be used and if it can not be found within the specified path, it will be downloaded from http://geobot.botanik.uni-greifswald.de/reflist. Turboveg uses dBase database format for storage. The package tries to deal with the limitations of that format but it is essential, that you use "Database -> Reindex" in Turboveg every time you delete something in your Turboveg database. Otherwise it will not be deleted immediately in the dBase file, instead it is only marked for deletion, i.e. it is still there when you access this file with R and will not be recognized as deleted until you reindex your Turboveg database. 2 Provided functionality 2.1 Database access At the moment vegdata provides direct access to two different vegetation database formats: Turboveg is a desktop program, written in VisualBasic.
    [Show full text]
  • Plant List for VC54, North Lincolnshire
    Plant List for Vice-county 54, North Lincolnshire 3 Vc61 SE TA 2 Vc63 1 SE TA SK NORTH LINCOLNSHIRE TF 9 8 Vc54 Vc56 7 6 5 Vc53 4 3 SK TF 6 7 8 9 1 2 3 4 5 6 Paul Kirby, 31/01/2017 Plant list for Vice-county 54, North Lincolnshire CONTENTS Introduction Page 1 - 50 Main Table 51 - 64 Summary Tables Red Listed taxa recorded between 2000 & 2017 51 Table 2 Threatened: Critically Endangered & Endangered 52 Table 3 Threatened: Vulnerable 53 Table 4 Near Threatened Nationally Rare & Scarce taxa recorded between 2000 & 2017 54 Table 5 Rare 55 - 56 Table 6 Scarce Vc54 Rare & Scarce taxa recorded between 2000 & 2017 57 - 59 Table 7 Rare 60 - 61 Table 8 Scarce Natives & Archaeophytes extinct & thought to be extinct in Vc54 62 - 64 Table 9 Extinct Plant list for Vice-county 54, North Lincolnshire The main table details all the Vascular Plant & Stonewort taxa with records on the MapMate botanical database for Vc54 at the end of January 2017. The table comprises: Column 1 Taxon and Authority 2 Common Name 3 Total number of records for the taxon on the database at 31/01/2017 4 Year of first record 5 Year of latest record 6 Number of hectads with records before 1/01/2000 7 Number of hectads with records between 1/01/2000 & 31/01/2017 8 Number of tetrads with records between 1/01/2000 & 31/01/2017 9 Comment & Conservation status of the taxon in Vc54 10 Conservation status of the taxon in the UK A hectad is a 10km.
    [Show full text]
  • Central European Vegetation
    Plant Formations in the Central European BioProvince Peter Martin Rhind Central European Beech Woodlands Beech (Fagus sylvatica) woods form the natural climax over much of Central Europe where the soils are relatively dry and can extend well into the uplands in the more southern zones. In the north, however, around Sweden it is confined to the lowlands. Beech woodlands are often open with a poorly developed shrub layer, Characteristic ground layer species may include various helleborines such as Cephalanthera damasonium, C. longifolia and C. rubra and sedges such as Carex alba, whilst in others, grasses like Sesleria caerlea or Melica uniflora may predominate, but in some of the more acidic examples, Luzula luzuloides is likely to dominate. There are also a number of endemic ground layer species. For example, in Carpathian beech woods endemics such as Dentaria glandulosa (Brassicaceae), Symphytum cordata (Boraginaceae) and the fern Polystichum braunii (Dryopteridaceae) may be encountered. Fine examples of primeaval beech woods can be found in the limestone Alps of lower Austria including the famous ‘Rothwald’ on the southeastern slopes of Dürrentein near Lunz. These range in altitude from about 940-1480 m. Here the canopy is dominated by Fagus sylvatica together with Acer pseudoplatanus, Picea abies, Ulmus glabra, and on the more acidic soils by Abies alba. Typical shrubs include Daphne mezereum, Lonicera alpigena and Rubus hirtus. At ground level the herb layer is very rich supporting possibly up to a 100 species of vascular plants. Examples include Adenostyles alliariae, Asplenium viridis, Campanula scheuchzeri, Cardamine trifolia, Cicerbita alpina, Denteria enneaphyllos, Euphorbia amygdaloides, Galium austriacum, Homogyne alpina, Lycopodium annotinum, Mycelis muralis, Paris quadrifolia, Phyteuma spicata, Prenanthes purpurea, Senecio fuchsii, Valeriana tripteris, Veratrum album and the central European endemic Helliborus niger (Ranunculaceae).
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Sustainable Sourcing : Markets for Certified Chinese
    SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS In collaboration with SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS Abstract for trade information services ID=43163 2016 SITC-292.4 SUS International Trade Centre (ITC) Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants. Geneva: ITC, 2016. xvi, 141 pages (Technical paper) Doc. No. SC-2016-5.E This study on the market potential of sustainably wild-collected botanical ingredients originating from the People’s Republic of China with fair and organic certifications provides an overview of current export trade in both wild-collected and cultivated botanical, algal and fungal ingredients from China, market segments such as the fair trade and organic sectors, and the market trends for certified ingredients. It also investigates which international standards would be the most appropriate and applicable to the special case of China in consideration of its biodiversity conservation efforts in traditional wild collection communities and regions, and includes bibliographical references (pp. 139–140). Descriptors: Medicinal Plants, Spices, Certification, Organic Products, Fair Trade, China, Market Research English For further information on this technical paper, contact Mr. Alexander Kasterine ([email protected]) The International Trade Centre (ITC) is the joint agency of the World Trade Organization and the United Nations. ITC, Palais des Nations, 1211 Geneva 10, Switzerland (www.intracen.org) Suggested citation: International Trade Centre (2016). Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants, International Trade Centre, Geneva, Switzerland. This publication has been produced with the financial assistance of the European Union.
    [Show full text]
  • A New 1, 10-Secoguaianolide from the Aerial Parts of Artemisia Anomala
    Chinese Journal of Natural Chinese Journal of Natural Medicines 2012, 10(5): 0358−0362 Medicines doi: 10.3724/SP.J.1009.2012.00358 A new 1, 10-secoguaianolide from the aerial parts of Artemisia anomala ZAN Ke1, CHEN Xiao-Qing2, TU Peng-Fei1* 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; 2School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China Available online Sep. 2012 [ABSTRACT] AIM: To study chemical constituents of the aerial parts of Artemisia anomala (Asteraceae). METHODS: The constituents were isolated with silica gel, ODS column chromatography and semi-preparative HPLC, and their structures were elucidated on the basis of physical characteristics and spectral data. RESULTS: Eight compounds were obtained, and their structures were identified as 3β-ethoxytanapartholide (1), (4S*, 5S*)-dihydro-5-[(1R*, 2S*)-2-hydroxy-2-methyl-5-oxo-3-cyclopenten-1-yl]-3-methylene-4-(3-oxobutyl)- 2(3H)-furanone (2), ligucyperonol (3), cyperusol C (4), santamarin (5), 1α, 2α, 3α, 4α, 10α -pentahydroxyguaia-11(13)-ene-12, 6α-olide (6), balanophonin (7), methyl 3-(2’-hydroxy-4’-methoxyphenyl) propanoate (8). CONCLUSION: Compound 1 was a new artifact, 4 and 8 were isolated from the genus Artemisia for the first time, and compounds 2–3, 5–7 were isolated from this plant for the first time. [KEY WORDS] Artemisia anomala; Chemical constituents; 1, 10-secoguaianolides; structure elucidation [CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2012)05-0358-05 1 Introduction 2 Experimental Artemisia anomala S. Moore (Chinese name ‘Nan-Liu- 2.1 Apparatus and reagents Ji-Nu’), a perennial herbaceous plant belonging to the As- Optical rotations were recorded on a Perkin-Elmer 243B teraceae family, has been commonly used in traditional Chi- digital polarimeter.
    [Show full text]
  • Mining the Essential Oils of the Anthemideae
    African Journal of Biotechnology Vol. 3 (12), pp. 706-720, December 2004 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2004 Academic Journals Review Mining the essential oils of the Anthemideae Jaime A. Teixeira da Silva Faculty of Agriculture, Kagawa University, Miki-cho, Ikenobe, 2393, Kagawa-ken, 761-0795, Japan. E-mail: [email protected]; Telfax: +81 (0)87 898 8909. Accepted 21 November, 2004 Numerous members of the Anthemideae are important cut-flower and ornamental crops, as well as medicinal and aromatic plants, many of which produce essential oils used in folk and modern medicine, the cosmetic and pharmaceutical industries. These oils and compounds contained within them are used in the pharmaceutical, flavour and fragrance industries. Moreover, as people search for alternative and herbal forms of medicine and relaxation (such as aromatherapy), and provided that there are no suitable synthetic substitutes for many of the compounds or difficulty in profiling and mimicking complex compound mixtures in the volatile oils, the original plant extracts will continue to be used long into the future. This review highlights the importance of secondary metabolites and essential oils from principal members of this tribe, their global social, medicinal and economic relevance and potential. Key words: Apoptosis, artemisinin, chamomile, essential oil, feverfew, pyrethrin, tansy. THE ANTHEMIDAE Chrysanthemum (Compositae or Asteraceae family, Mottenohoka) containing antioxidant properties and are a subfamily Asteroideae, order Asterales, subclass popular food in Yamagata, Japan. Asteridae, tribe Anthemideae), sometimes collectively termed the Achillea-complex or the Chrysanthemum- complex (tribes Astereae-Anthemideae) consists of 12 subtribes, 108 genera and at least another 1741 species SECONDARY METABOLITES AND ESSENTIAL OILS (Khallouki et al., 2000).
    [Show full text]
  • Communications
    COMMUNICATION S FACULTY OF SCIENCES DE LA FACULTE DES SCIENCES UNIVERSITY OF ANKARA DE L’UNIVERSITE D’ANKARA Series C: Biology VOLUME: 29 Number: 1 YEAR: 2020 Faculy of Sciences, Ankara University 06100 Beşevler, Ankara-Turkey ISSN: 1303-6025 E-ISSN: 2651-3749 COMMUNICATION S FACULTY OF SCIENCES DE LA FACULTE DES SCIENCES UNIVERSITY OF ANKARA DE L’UNIVERSITE D’ANKARA Series C: Biolog y Volume 29 Number : 1 Year: 2020 Owner (Sahibi) Selim Osman SELAM, Dean of Faculty of Sciences Editor-in-Chief (Yazı İşleri Müdürü) Nuri OZALP Managing Editor Nur Münevver PINAR Area Editors Ilgaz AKATA (Botany) Nursel AŞAN BAYDEMİR (Zoology) İlker BUYUK (Biotechnology) Talip ÇETER (Plant Anatomy and Embryology) Ilknur DAĞ (Microbiology, Histology) Türker DUMAN (Moleculer Biology) Borga ERGONUL (Hydrobiology) Sevgi ERTUĞRUL KARATAY (Biotechnology) Esra KOÇ (Plant Physiology) G. Nilhan TUĞ (Ecology) A. Emre YAPRAK ( Botany) Mehmet Kürşat Şahin (Zoology) Şeyda Fikirdeşici Ergen (Hydrobiology) Alexey YANCHUKOV (Populations Genetics, Molecular Ecology and Evolution Biology) Language Editor: Sümer ARAS Technical Editor: Aydan ACAR ŞAHIN Editors Nuray AKBULUT (Hacettepe University, Turkey) Hasan AKGUL (Akdeniz University, Turkey) Şenol ALAN (Bülent Ecevit University, Turkey) Dirk Carl ALBACH (Carl Von Ossietzky University, Germany) Ahmet ALTINDAG (Ankara University, Turkey) Rami ARAFEH (Palestine Polytechnic University, Palestine) Belma BINLI ASLIM (Gazi University, Turkey) Tahir ATICI (Gazi University,Turkey) Dinçer AYAZ (Ege University, Turkey) Zeki AYTAÇ (Gazi University,Turkey) Jan BREINE (Research Institute for Nature and Forest, Belgium) Kemal BUYUKGUZEL (Bulent Ecevit University, Turkey) Suna CEBESOY (Ankara University, Turkey) A. Kadri ÇETIN (Fırat University, Turkey) Nuran ÇIÇEK (Hacettepe University, Turkey) Elif SARIKAYA DEMIRKAN (Uludag University, Turkey) Mohammed H.
    [Show full text]