Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases

Total Page:16

File Type:pdf, Size:1020Kb

Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases biomolecules Review Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases Irina A. Il’icheva y, Konstantin M. Polyakov y and Sergey N. Mikhailov * Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; [email protected] (I.A.I.); [email protected] (K.M.P.) * Correspondence: [email protected]; Tel.: +7-499-135-9733 Both authors contributed equally. y Received: 28 February 2020; Accepted: 1 April 2020; Published: 5 April 2020 Abstract: Nucleoside phosphorylases catalyze the reversible phosphorolysis of nucleosides to heterocyclic bases, giving α-d-ribose-1-phosphate or α-d-2-deoxyribose-1-phosphate. These enzymes are involved in salvage pathways of nucleoside biosynthesis. The level of these enzymes is often elevated in tumors, which can be used as a marker for cancer diagnosis. This review presents the analysis of conformations of nucleosides and their analogues in complexes with nucleoside phosphorylases of the first (NP-1) family, which includes hexameric and trimeric purine nucleoside phosphorylases (EC 2.4.2.1), hexameric and trimeric 50-deoxy-50-methylthioadenosine phosphorylases (EC 2.4.2.28), and uridine phosphorylases (EC 2.4.2.3). Nucleosides adopt similar conformations in complexes, with these conformations being significantly different from those of free nucleosides. In complexes, pentofuranose rings of all nucleosides are at the W region of the pseudorotation cycle that corresponds to the energy barrier to the N S interconversion. In most of the complexes, $ the orientation of the bases with respect to the ribose is in the high-syn region in the immediate vicinity of the barrier to syn anti transitions. Such conformations of nucleosides in complexes $ are unfavorable when compared to free nucleosides and they are stabilized by interactions with the enzyme. The sulfate (or phosphate) ion in the active site of the complexes influences the conformation of the furanose ring. The binding of nucleosides in strained conformations is a characteristic feature of the enzyme–substrate complex formation for this enzyme group. Keywords: nucleoside phosphorylases; X-ray structures of nucleoside phosphorylases; nucleoside conformations 1. Introduction 1.1. Nucleoside Phosphorylases as Key Enzymes in Nucleoside Metabolism Nucleoside phosphorylases (NPs) catalyze the phosphorolysis of the N-glycosidic bond in purine or pyrimidine β-d-ribo-(2’-deoxyribo)nucleosides and are found in almost all organisms. This class of enzymes includes purine nucleoside phosphorylases (PNPs; EC 2.4.2.1), 50-deoxy-50-methylthioadenosine phosphorylases (MTAPs; EC 2.4.2.28), uridine phosphorylases (UPs; EC 2.4.2.3), pyrimidine nucleoside phosphorylases (PyNPs; EC 2.4.2.2), and thymidine phosphorylases (TPs; EC 2.4.2.4). Scheme1 depicts the general scheme of phosphorolysis of nucleosides by NPs. The equilibrium of the reaction is shifted towards nucleosides, the shift being much more significant for PNPs as compared with UPs. Uridine phosphorylases catalyze phosphorolysis of both thymidine and uridine [1]. Purine nucleoside phosphorylases cleave the N-glycosidic bond in purine ribonucleosides and 2’-deoxynucleosides. Biomolecules 2020, 10, 552; doi:10.3390/biom10040552 www.mdpi.com/journal/biomolecules Biomolecules 2020, 10, 552 2 of 14 Biomolecules 2020, 10, x FOR PEER REVIEW 2 of 15 SchemeScheme 1. Phosphorolysis 1. Phosphorolysis of nucleosides of nucleosides catalyzed catalyzed by nucleosideby nucleoside phosphorylases phosphorylases (NPs). (NPs Urd—uridine,). Urd— UP—uridineuridine, UP phosphorylase,—uridine phosphorylase, PNP—purine PNP nucleoside—purine nucleoside phosphorylase, phosphorylase, Rib-1-P— Ribα-d-1-ribose-1-phosphate-P—α-D-ribose- , Pi—inorganic1-phosphate, phosphate Pi—inorganic ion. phosphate ion. ReactionsReactions that that are are catalyzed catalyzed by by nucleoside nucleoside phosphorylasesphosphorylases play play an an important important role role in maintaining in maintaining nucleosidenucleoside homeostasis homeostasis in the in the body, body, the the disruption disruption of of which which leads leads to to various various diseases. diseases. The e essentialssential role of theserole enzymes of these inenzymes metathesis in metathesis reactions reactions in the organisms in the organisms has stimulated has stimulated interest interest in their in exploration. their exploration. Numerous reviews on nucleoside phosphorylases are available. The structural Numerous reviews on nucleoside phosphorylases are available. The structural organization of these organization of these enzymes [1,2], the substrate specificity and methods for the synthesis of enzymes [1,2], the substrate specificity and methods for the synthesis of valuable nucleosides [3–6], valuable nucleosides [3–6], and metabolism in biological systems [7–10] have been considered. and metabolismThe biosynthesis in biological of nitro systemsgenous [bases7–10] and have nucleosides been considered. in most of organisms can proceed by two Thepathways biosynthesis. De novo of synthesis nitrogenous utilizes bases some and amino nucleosides acids and insmall most organic of organisms molecules can as proceedprecursors by. two pathways.This biochemical De novo synthesispathway uses utilizes numerous some aminoenzymes acids and andit has small a high organic requirement molecules for energy. as precursors. The This biochemicalsteps of the de pathway novo synthesis uses numerous are virtually enzymes the same and in all it organisms. has a high An requirement alternative salvage for energy. pathway, The steps of thewhich de novo repeatedly synthesis utilizes are virtually fragments the of sameRNA, inis energy all organisms. saving and An italternative varies in different salvage organisms. pathway, In which repeatedlyall organisms, utilizes reactions fragments catalyzed of RNA, by isnucleoside energy savingphosphorylases and it varies play the in dikeyfferent role in organisms. the salvage In all organisms,pathway reactions. The regulation catalyzed of bynucleoti nucleosidede metabolism phosphorylases and biosynthesis play the are key considered role in the in salvage relation pathway. to Escherichia coli and Salmonella enterica in [9] and in [10] for mammalian. The regulation of nucleotide metabolism and biosynthesis are considered in relation to Escherichia coli Purinergic signaling modulates fundamental pathophysiological processes, such as tissue and Salmonella enterica in [9] and in [10] for mammalian. homeostasis, wound healing, neurodegeneration, immunity, inflammation, and cancer [11]. Many Purinergiccancer processes signaling in humans modulates are accompanied fundamental by the pathophysiologicaldisturbance of pyrimidine processes, metabolism. such Colon as tissue homeostasis,carcinoma woundcells [12], healing,melanoma neurodegeneration,tumors [13], breast adenocarcinoma immunity, cells inflammation, [14], ascites hepatoma and cancer, and [11]. ManyEhrlich cancer ascites processes carcinoma in humans cells [15 are] have accompanied increased levels by theof uridine disturbance phosphorylase of pyrimidine activity. metabolism. Recent Colonexperiments carcinoma in cells mice [12 [16],] melanoma showed that tumors the disruption [13], breast of uridine adenocarcinoma homeostasis cells causes [14 cancer], ascites diseases. hepatoma, and EhrlichNucleoside ascites phosphorylase carcinoma inhibitors cells [15] provide have increased the poten levelstial to ofcorrect uridine metabolic phosphorylase defects in humans activity. [8 Recent]. experimentsThese in i micenhibitors [16] can showed also be that applied the disruption in the therapy of uridine of human homeostasis parasitic diseases. causes This cancer area diseases. of Nucleosideapplication phosphorylase is based on inhibitors the fact that provide most theof parasites potential are to correctnot able metabolic to synthesize defects purines in humans and [8]. pyrimidines de novo because their genomes lack genes encoding necessary enzymes. Hence, These inhibitors can also be applied in the therapy of human parasitic diseases. This area of significant differences between parasite and human nucleoside phosphorylases provide the basis for application is based on the fact that most of parasites are not able to synthesize purines and pyrimidines the selective inhibition of parasite enzymes. 5′-Methylthioimmucillin-H was developed as a specific de novoinhibitor because for Plasmodium their genomes falciparum lack genes PNP and encoding it was proposed necessary for enzymes. the treatment Hence, of malaria significant [17,18 di]. ffTheerences betweenhelminth parasite parasite and Schistosoma human nucleoside mansoni also phosphorylases cannot synthesize provide purines the de basis novo for [19 the]. Hence, selective the search inhibition of parasitefor inhibitors enzymes. that 5’-Methylthioimmucillin-H are specific for Schistosoma wasmansoni developed PNP is asa achallenging specific inhibitor problem. for AnotherPlasmodium falciparumimportantPNP problem and it is was the proposedsearch for inhibitors for the treatmentspecific for ofGiardia malaria lamblia [17 UP,18, ].because The helminth this helminth parasite Schistosomaparasite mansoniis unablealso to synthesize cannot synthesizepyrimidines purinesde novo [ de20]. novo [19]. Hence, the search for inhibitors that are specificX-Ray crystallography for Schistosoma is mansonione of thePNP most is commonly a challenging used techniques problem. for Another studying important the structure problem-
Recommended publications
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Metabolism of Nucleotides
    METABOLISM OF NUCLEOTIDES Tomáš Kuˇcera Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze 2013 NUKLEOTIDY rocy t e c l e e − − − h O O O N −O P O P O P O O O O O O H H H H OH OH heterocycle = nucleobase the name is historic pyrimidine purine nicotinamide, flavine PYRIMIDINE BASES AND NUCLEOSIDES PURINE BASES AND NUCLEOSIDES SOME LESS USUAL BASES AND NUCLEOSIDES 5-formylcytosine 6-methyladenine 4-methylcytosine FUNCTION OF NUCLEOTIDES precursors of DNA and RNA ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, dTTP components of enzyme cofactors NAD(P), FAD, FMN, CoA [(P)APS – (phospho)adenosylphosphosulphate] macroergic “energy quanta” carriers ATP, GTP activated intermediates in biosyntheses UDP-sugars, CDP-diacylglycerols, S-adenosylmethionine second messengers in signal transduction cAMP, cGMP allosteric regulators ATP, ADP, AMP GAINING NUCLEOTIDES pancreatic (deoxy)ribonucleases and intestinal polynucleotidases: NA ! nucleotides nucleotidase of epithelial cells of the intestine: nucleotides ! nucleosides in the intestinal epithelial cells, nucleosides are used intact hydrolyzed by nucleoside (phosphoryl)ases: nucleoside ! base + pentose(-1-phosphate) + [phosphate] — salvage for the cells own need — transport to the blood about 5 % of digested nucleotides into the blood as bases and nucleosides low dietary uptake ) need of biosynthesis PYRIMIDINE NUCLEOSIDES BIOSYNTHESIS 1 PYRIMIDINE NUCLEOSIDES BIOSYNTHESIS 2 UTP SYNTHESIS nucleosidmonophosphate- UMP + ATP kinase UDP + ADP nucleosiddiphosphate- UDP + ATP
    [Show full text]
  • DOI: 10.2478/V10129-011-0033-Y
    PLANT BREEDING AND SEED SCIENCE Volume 64 2011 DOI: 10.2478/v10129-011-0033-y Wolfgang Schweiger 1,* , Barbara Steiner 2, Apinun Limmongkon 2, Kurt Brunner 3, Marc Lemmens 2, Franz Berthiller 4, Hermann Bürstmayr 2, Gerhard Adam 1 1Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria; 2Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria; 3Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria; 4Center for Analytical Chemistry, Depart- ment of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria; * Author to whom correspondence should be addressed. e-mail: [email protected] ; CLONING AND HETEROLOGOUS EXPRESSION OF CANDIDATE DON-INACTIVATING UDP-GLUCOSYLTRANFERASES FROM RICE AND WHEAT IN YEAST ABSTRACT Fusarium graminearum and related species causing Fusarium head blight of cereals and ear rot of maize produce the trichothecene toxin and virulence factor deoxynivalenol (DON). Plants can detoxify DON to a variable extent into deoxynivalenol-3-O-glucoside (D3G). We have previously reported the DON inactivat- ing glucosyltransferase (UGT) AtUGT73C5 from Arabidopsis thaliana (Poppenberger et al , 2003). Our goal was to identify UGT genes from monocotyledonous crop plants with this enzymatic activity. The two selected rice candidate genes with the highest sequence similarity with AtUGT73C5 were expressed in a toxin sensitive yeast strain but failed to protect against DON. A full length cDNA clone corresponding to a transcript derived fragment (TDF108) from wheat, which was reported to be specifically expressed in wheat genotypes contain- ing the quantitative trait locus Qfhs.ndsu-3BS for Fusarium spreading resistance (Steiner et al , 2009) was reconstructed.
    [Show full text]
  • Ijms-20-05263-V2
    Delft University of Technology Leloir Glycosyltransferases in Applied Biocatalysis A Multidisciplinary Approach Mestrom, Luuk; Przypis, Marta; Kowalczykiewicz, Daria; Pollender, André; Kumpf, Antje; Marsden, Stefan R.; Szymańska, Katarzyna; Hanefeld, Ulf; Hagedoorn, Peter Leon; More Authors DOI 10.3390/ijms20215263 Publication date 2019 Document Version Final published version Published in International Journal of Molecular Sciences Citation (APA) Mestrom, L., Przypis, M., Kowalczykiewicz, D., Pollender, A., Kumpf, A., Marsden, S. R., Szymańska, K., Hanefeld, U., Hagedoorn, P. L., & More Authors (2019). Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. International Journal of Molecular Sciences, 20(21), [5263]. https://doi.org/10.3390/ijms20215263 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. International Journal of Molecular Sciences Review Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach Luuk Mestrom 1, Marta Przypis 2,3 , Daria Kowalczykiewicz 2,3, André Pollender 4 , Antje Kumpf 4,5, Stefan R. Marsden 1, Isabel Bento 6, Andrzej B.
    [Show full text]
  • A Previously Undescribed Pathway for Pyrimidine Catabolism
    A previously undescribed pathway for pyrimidine catabolism Kevin D. Loh*†, Prasad Gyaneshwar*‡, Eirene Markenscoff Papadimitriou*§, Rebecca Fong*, Kwang-Seo Kim*, Rebecca Parales¶, Zhongrui Zhouʈ, William Inwood*, and Sydney Kustu*,** *Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102; ¶Section of Microbiology, 1 Shields Avenue, University of California, Davis, CA 95616; and ʈCollege of Chemistry, 8 Lewis Hall, University of California, Berkeley, CA 94720-1460 Contributed by Sydney Kustu, January 19, 2006 The b1012 operon of Escherichia coli K-12, which is composed of tive N sources. Here we present evidence that the b1012 operon seven unidentified ORFs, is one of the most highly expressed codes for proteins that constitute a previously undescribed operons under control of nitrogen regulatory protein C. Examina- pathway for pyrimidine degradation and thereby confirm the tion of strains with lesions in this operon on Biolog Phenotype view of Simaga and Kos (8, 9) that E. coli K-12 does not use either MicroArray (PM3) plates and subsequent growth tests indicated of the known pathways. that they failed to use uridine or uracil as the sole nitrogen source and that the parental strain could use them at room temperature Results but not at 37°C. A strain carrying an ntrB(Con) mutation, which Behavior on Biolog Phenotype MicroArray Plates. We tested our elevates transcription of genes under nitrogen regulatory protein parental strain NCM3722 and strains with mini Tn5 insertions in C control, could also grow on thymidine as the sole nitrogen several genes of the b1012 operon on Biolog (Hayward, CA) source, whereas strains with lesions in the b1012 operon could not.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Molecular Basis for the Involvement of Thymidine Phosphorylase in Cancer Invasion
    1085-1091 2/5/06 14:03 Page 1085 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 17: 1085-1091, 2006 Molecular basis for the involvement of thymidine phosphorylase in cancer invasion TAKENARI GOTANDA1,2, MISAKO HARAGUCHI2, TOKUSHI TACHIWADA1,2, REIKO SHINKURA3, CHIHAYA KORIYAMA3, SUMINORI AKIBA3, MOTOSHI KAWAHARA1, KENRYU NISHIYAMA1, TOMOYUKI SUMIZAWA2, TATSUHIKO FURUKAWA2, HIROMITSU MIMATA4, YOSHIO NOMURA4, SHIN-ICHI AKIYAMA2 and MASAYUKI NAKAGAWA1 Departments of 1Urology, 2Molecular Oncology, Field of Oncology, Course of Advanced Therapeutics; 3Department of Epidemiology and Preventive Medicine, Field of Human and Environmental Sciences, Course of Health Research, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520; 4Department of Urology, School of Medicine, Oita University, Oita 879-5593, Japan Received November 28, 2005; Accepted January 17, 2006 Abstract. Thymidine phosphorylase (TP), also known as Introduction platelet-derived endothelial cell growth factor (PD-ECGF), has been implicated in bladder cancer angiogenesis and invasion. Cancer invasion is a complicated process involving the activity However, the molecular basis of its role in invasion remains of multiple genes. As cancer cells undergo invasion, they must unclear. We investigated the expression of TP and 10 invasion- first attach to the target tissue's basal matrix and then degrade related genes in bladder cancers from 72 randomly selected the basement membrane. Degradation of the extracellular patients by real-time two-step RT-PCR assay. We found that matrix, or components of the basement membrane, is carried the expression levels of TP, MMP-9, uPA, and MMP-2 were out mainly by proteases belonging to the matrix metallo- significantly higher in invasive tumors than those in proteinase family (MMPs) (1,2).
    [Show full text]
  • Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides
    biomolecules Article Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways Ilja V. Fateev , Maria A. Kostromina, Yuliya A. Abramchik, Barbara Z. Eletskaya , Olga O. Mikheeva, Dmitry D. Lukoshin, Evgeniy A. Zayats , Maria Ya. Berzina, Elena V. Dorofeeva, Alexander S. Paramonov , Alexey L. Kayushin, Irina D. Konstantinova * and Roman S. Esipov Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; [email protected] (I.V.F.); [email protected] (M.A.K.); [email protected] (Y.A.A.); [email protected] (B.Z.E.); [email protected] (O.O.M.); [email protected] (D.D.L.); [email protected] (E.A.Z.); [email protected] (M.Y.B.); [email protected] (E.V.D.); [email protected] (A.S.P.); [email protected] (A.L.K.); [email protected] (R.S.E.) * Correspondence: [email protected]; Tel.: +7-905-791-1719 ! Abstract: A comparative study of the possibilities of using ribokinase phosphopentomutase ! nucleoside phosphorylase cascades in the synthesis of modified nucleosides was carried out. Citation: Fateev, I.V.; Kostromina, Recombinant phosphopentomutase from Thermus thermophilus HB27 was obtained for the first time: M.A.; Abramchik, Y.A.; Eletskaya, a strain producing a soluble form of the enzyme was created, and a method for its isolation and B.Z.; Mikheeva, O.O.; Lukoshin, D.D.; chromatographic purification was developed. It was shown that cascade syntheses of modified nu- Zayats, E.A.; Berzina, M.Y..; cleosides can be carried out both by the mesophilic and thermophilic routes from D-pentoses: ribose, Dorofeeva, E.V.; Paramonov, A.S.; 2-deoxyribose, arabinose, xylose, and 2-deoxy-2-fluoroarabinose.
    [Show full text]
  • Leloir Glycosyltransferases in Applied Biocatalysis: a Multidisciplinary Approach
    International Journal of Molecular Sciences Review Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach Luuk Mestrom 1, Marta Przypis 2,3 , Daria Kowalczykiewicz 2,3, André Pollender 4 , Antje Kumpf 4,5, Stefan R. Marsden 1, Isabel Bento 6, Andrzej B. Jarz˛ebski 7, Katarzyna Szyma ´nska 8, Arkadiusz Chru´sciel 9, Dirk Tischler 4,5 , Rob Schoevaart 10, Ulf Hanefeld 1 and Peter-Leon Hagedoorn 1,* 1 Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; [email protected] (L.M.); [email protected] (S.R.M.); [email protected] (U.H.) 2 Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; [email protected] (M.P.); [email protected] (D.K.) 3 Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland 4 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; [email protected] (A.P.); [email protected] (A.K.); [email protected] (D.T.) 5 Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany 6 EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany; [email protected] 7 Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland; [email protected] 8 Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice Poland.; [email protected] 9 MEXEO Wiesław Hreczuch, ul.
    [Show full text]
  • Four Novel Thymidine Phosphorylase Gene Mutations in Mitochondrial Neurogastrointestinal Encephalomyopathy Syndrome (MNGIE) Patients
    European Journal of Human Genetics (2003) 11, 102 – 104 ª 2003 Nature Publishing Group All rights reserved 1018 – 4813/03 $25.00 www.nature.com/ejhg SHORT REPORT Four novel thymidine phosphorylase gene mutations in mitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE) patients YC¸ etin Kocaefe1, Sevim Erdem2, Meral O¨ zgu¨c¸*,1,3 and Ersin Tan2 1Department of Medical Biology, Faculty of Medicine, Hacettepe University Ankara, Turkey; 2Department of Neurology, Faculty of Medicine, Hacettepe University Ankara, Turkey; 3TU¨BITAK DNA/Cell Bank, Hacettepe University Ankara, Turkey Mitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE) is a rare autosomal recessive neurologic disorder characterised by multiple mitochondrial DNA deletions. In this study, five Turkish MNGIE patients are investigated for mtDNA deletions and TP gene mutations. The probands presented all the clinical criteria of the typical MNGIE phenotype; the muscle biopsy specimens also confirmed the diagnosis with ragged red fibres and cytochrome C oxidase (COX) negative fibres. The mitochondrial DNA analysis revealed no deletions in the probands’ skeletal muscle samples. We have identified four novel mutations in the TP gene while one of the patients also harboured a nucleotide change, which was previously reported as a mutation. European Journal of Human Genetics (2003) 11, 102 – 104. doi:10.1038/sj.ejhg.5200908 Keywords: Mitochondrial myopathy; MNGIE; mtDNA deletions; thymidine phosphorylase; gliostatin Introduction cyte TP activity to less than 5% of normal controls.1 In Mitochondrial diseases are a group of heterogeneous and this study we investigated five Turkish MNGIE patients complex disorders. The pathology may reside in the mito- for mutations in the TP gene. We have identified four chondrial DNA (mtDNA) or the nuclear genome.
    [Show full text]
  • Effect of Uridine on Response of 5-Azacytidine-Resistant Human Leukemic Cells to Inhibitors of De Novo Pyrimidine Synthesis1
    [CANCER RESEARCH 44, 5505-5510, December 1984] Effect of Uridine on Response of 5-Azacytidine-resistant Human Leukemic Cells to Inhibitors of de Novo Pyrimidine Synthesis1 S. Grant,2 K. Bhalla,3 and M. Gleyzer Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032 ABSTRACT activity is the most commonly encountered mode of resistance in animal systems (28). A uridine-cytidine kinase-deficient human promyelocytic leu- We have recently isolated a uridine-cytidine kinase-deficient, kemic subline (HL-60-5-aza-Cyd) has been isolated which is highly 5-aza-Cyd-resistant human promyelocytic leukemic sub- highly resistant to the antileukemic agent 5-azacytidine. Resist line (HL-60-5-aza-Cyd) (8) which is capable of surviving 5-aza- ant cells exposed to 10~5 M 5-azacytidine for 2 hr exhibit a Cyd concentrations (10~4 M) that exceed peak plasma levels in marked reduction in both the total ¡ntracellularaccumulation of humans (27). The purpose of the present studies was to assess 5-azacytidine (11.9 versus 156.0 pmol/106 cells) as well as its the metabolism of 5-aza-Cyd in these resistant cells and to incorporation into RNA (3.1 versus 43.4 pmol//ig o-ribose) com examine their response to a variety of clinically available inhibitors pared to the parent line. These biochemical changes are asso of de novo pyrimidine synthesis. Of the latter agents, PALA, an ciated with nearly a 100-fold decrease in sensitivity to the growth inhibitor of aspártele transcarbamylase (26), and pyrazofurin, an inhibitory effects of 5-azacytidine (concentration of drug associ ated with a 50% reduction in cell growth, 3.5 x 10~5 versus 5.0 inhibitor of orotidylate decarboxylase (5), are of particular inter x 10"7 M).
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]