Known High Quality Or Rare Plant Communities and Wetland Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Known High Quality Or Rare Plant Communities and Wetland Ecosystems Appendix A Upper Middle Mainstem Columbia River Subbasin Plan Known High Quality or Rare Plant Communities and Wetland Ecosystems Table 1 Known high quality or rare plant communitites and wetland ecosystems of the UMM Subbasin, WA. SCIENTIFIC NAME COMMON NAME Abies amabilis - Tsuga mertensiana cover Pacific silver fir - mountain hemlock type forest Abies amabilis / Achlys triphylla forest Pacific silver fir / vanillaleaf Abies amabilis cover type Pacific silver fir forest Abies grandis / Acer circinatum forest Grand fir / vine maple Abies lasiocarpa / Calamagrostis rubescens Subalpine fir / pinegrass forest Abies lasiocarpa / Ledum glandulosum forest Subalpine fir / glandular labrador-tea Abies lasiocarpa / Rhododendron albiflorum Subalpine fir / cascade azalea woodland Abies lasiocarpa /Vaccinium scoparium Subalpine fir / grouseberry forest Abies lasiocarpa cover type Subalpine fir forest Abies procera cover type Noble fir forest Acer circinatum cover type Vine maple shrubland Alnus viridis ssp. Sinuata shrubland Sitka alder (provisional) SCIENTIFIC NAME COMMON NAME Artemisia arbuscula / Festuca idahoensis Low sagebrush /Idaho fescue dwarf-shrub herbaceous vegetation Artemisia rigida / Poa secunda dwarf-shrub Stiff sagebrush / Sandberg's bluegrass herbaceous vegetation Artemisia rigida cover type Stiff sagebrush shrubland Artemisia tridentata / Festuca idahoensis Big sagebrush / Idaho fescue shrub herbaceous vegetation Artemisia tridentata cover type Big sagebrush shrubland Artemisia tridentata ssp. Wyomingensis / Wyoming big sagebrush / bluebunch pseudoroegneria spicata shrub herbaceous wheatgrass vegetation Artemisia tridentata ssp. Wyomingensis / Wyoming big sagebrush / needle-and- stipa comata shrubland thread Artemisia tripartita / Festuca campestris Threetip sagebrush / rough fescue shrub herbaceous vegetation Artemisia tripartita / Festuca idahoensis Threetip sagebrush / Idaho fescue shrub herbaceous vegetation Artemisia tripartita / Pseudoroegneria spicata Threetip sagebrush / bluebunch shrub herbaceous vegetation wheatgrass Artemisia tripartita / Stipa comata shrub Threetip sagebrush / needle-and-thread herbaceous vegetation Betula occidentalis / Cornus sericea Water birch / red-osier dogwood shrubland Betula occidentalis cover type Water birch forest Carex cover type Sedge spp. Grassland Carex scopulorum herbaceous vegetation Holm's rocky mountain sedge Carex utriculata herbaceous vegetation Northwest territory sedge Crataegus douglasii / Rosa woodsii Black hawthorn / Wood's rose shrubland SCIENTIFIC NAME COMMON NAME Danthonia intermedia herbaceous vegetation Timber oatgrass Distichlis spicata herbaceous vegetation Saltgrass Dryas octopetala dwarf-shrub herbaceous Eight petal mountain-avens vegetation Eleocharis palustris intermittently flooded Creeping spikerush herbaceous vegetation Elymus lanceolatus - Stipa comata Streamside wildrye - needle-and-thread herbaceous vegetation Eriogonum thymoides / Poa secunda dwarf- Thyme buckwheat / Sandberg's shrub herbaceous vegetation bluegrass Festuca idahoensis - Eriogonum Idaho fescue - parsnip-flower heracleoides herbaceous vegetation buckwheat Grayia spinosa / Poa secunda shrubland Spiny hopsage / sandberg's bluegrass Inland saline wetland cb Inland saline wetland cb Larix lyallii association Subalpine larch community Larix occidentalis cover type Western larch forest Leymus cinereus - Distichlis spicata Great basin wildrye - saltgrass herbaceous vegetation Philadelphus lewisii intermittently flooded Mock orange shrubland Picea engelmannii - Abies lasiocarpa cover Engelmann spruce - subalpine fir forest type SCIENTIFIC NAME COMMON NAME Picea engelmannii / Equisetum arvense Engelmann spruce / field horsetail forest Picea engelmannii cover type Engelmann spruce forest Pinus albicaulis - Abies lasiocarpa cover type White-bark pine - subalpine fir forest Pinus albicaulis cover type White-bark pine forest Pinus contorta cover type Lodgepole pine forest Pinus monticola cover type Western white pine forest Pinus ponderosa - Pseudotsuga menziesii / Ponderosa pine - douglas-fir / Pseudoroegneria spicata ssp. Inermis bluebunch wheatgrass woodland Pinus ponderosa - Pseudotsuga menziesii / Ponderosa pine - douglas-fir / Purshia tridentata woodland bitterbrush Pinus ponderosa - Pseudotsuga menziesii Ponderosa pine - douglas-fir forest cover type Pinus ponderosa / Calamagrostis rubescens Ponderosa pine / pinegrass forest Pinus ponderosa / Purshia tridentata Ponderosa pine / bitterbrush woodland Pinus ponderosa / Symphoricarpos albus Ponderosa pine - common snowberry temporarily flooded woodland Pinus ponderosa cover type Ponderosa pine forest Populus tremuloides / Symphoricarpos albus Quaking aspen / common snowberry forest Populus tremuloides cover type Quaking aspen forest SCIENTIFIC NAME COMMON NAME Pseudoroegneria spicata - Festuca Bluebunch wheatgrass - Idaho fescue Idahoensis Canyon Herbaceous Vegetation canyon Pseudoroegneria spicata - Poa secunda Bluebunch wheatgrass - Sandberg's herbaceous vegetation bluegrass Pseudoroegneria spicata cover type Bluebunch wheatgrass grassland Pseudotsuga menziesii - Abies grandis cover Douglas-fir - grand fir forest type Pseudotsuga menziesii - Abies lasiocarpa Douglas-fir - subalpine fir forest cover type Pseudotsuga menziesii - Tsuga heterophylla Douglas-fir - western hemlock forest cover type Pseudotsuga menziesii / Acer circinatum Douglas-fir / vine maple forest Pseudotsuga menziesii / Arctostaphylos uva- Douglas-fir / kinikinnick - bitterbrush ursi - purshia tridentata forest Pseudotsuga menziesii / Arctostaphylos uva- Douglas-fir / kinikinnick cascadian forest ursi cascadian forest Pseudotsuga menziesii / Calamagrostis Douglas-fir / pinegrass rubescens forest Pseudotsuga menziesii / Symphoricarpos Douglas-fir / common snowberry albus forest Pseudotsuga menziesii cover type Douglas-fir forest Purshia tridentata / Festuca idahoensis Bitterbrush / Idaho fescue shrub herbaceous vegetation Purshia tridentata / Oryzopsis hymenoides Bitterbrush / indian ricegrass shrubland Purshia tridentata / Pseudoroegneria spicata Bitterbrush / bluebunch wheatgrass shrub herbaceous vegetation Purshia tridentata / Stipa comata shrub Bitterbrush / needle-and-thread herbaceous vegetation SCIENTIFIC NAME COMMON NAME Quercus garryana / Carex geyeri woodland Oregon white oak / Geyer's sedge Quercus garryana forest (provisional) Oregon white oak Rhus glabra / Pseudoroegneria spicata Smooth sumac / bluebunch wheatgrass shrub herbaceous vegetation Salix amygdaloides / Salix exigua woodland Peach-leaf willow / sandbar willow Salix drummondiana / Carex scopulorum Drummond's willow / Holm's rocky var. Prionophylla shrubland mountain sedge Tea-leaf willow / Holm's rocky mountain Salix planifolia / Carex scopulorum shrubland sedge Sarcobatus vermiculatus / Distichlis spicata Greasewood / saltgrass shrubland Scirpus maritimus herbaceous vegetation Seacoast bulrush Sporobolus cryptandrus - Poa secunda Sand dropseed - Sandberg's bluegrass herbaceous vegetation Stipa comata cover type Needle-and-thread grassland Subalpine freshwater wetland ec Subalpine freshwater wetland ec Subalpine riparian wetland ec Subalpine riparian wetland ec Western redcedar - western hemlock Thuja plicata - Tsuga heterophylla cover type forest Tsuga heterophylla / Mahonia nervosa var. Western hemlock / dwarf oregongrape Nervosa forest Tsuga mertensiana - Abies lasiocarpa cover Mountain hemlock - subalpine fir type community SCIENTIFIC NAME COMMON NAME Vernal pond cb Vernal pond cb (WNHP 2003) .
Recommended publications
  • Grazing Potential and Management: Knapweeds Are Generally Unpalatable to Livestock, Especially When Mature. Nutritive Value of R
    Grazing potential and management: Knapweeds are generally unpalatable to livestock, especially when mature. Nutritive value of rosette and bud stages is high (protein levels similar to alfalfa). Methods of grazing of knapweeds and starthistle without damaging associated more desirable forage species have not been developed except in isolated cases. Knapweeds are aggressive invaders and quickly dominate disturbed areas in rangeland or pasture. Management that maintains the vigor of perennial vegetation can slow, but not prevent, the invasion of knapweeds. Poisonous or mechanical injury properties: The spines of yellow starthistle may cause mechanical injury to livestock. Yellow starthistle and Russian knapweed cause "chewing disease" (nigropallidal encephalomalacia) in horses. Rehabilitation potential: The best strategies for knapweeds combine prevention, containment and controL Herbicides can be used effectively to prevent spread, eliminate new infestations, and as part of rehabilitation programs for more productive land. The knapweeds, except Russian, are easily killed with herbicides, but produce large numbers of seeds and will reoccupy the site unless desired competitive vegetation is established. In northeastern Washington, pastures were rehabilitated by selective herbicide followed by nitrogen fertilizer to revitalize the remnant perennial grasses. Biological control insects include 3 gall-forming flies (Urophora spp.), a seed-feeding fly (Chaetorellia), 3 seed-feeding weevils (Bangasternus, Larinus and Eustenopus), a root-feeding beetle (Sphenoptera), a seed-feeding moth (Metzneria), and a root-feeding moth (Agapeta). The goal is to establish enough host-specific insects to overgraze the weed and limit its competitiveness. For further information, refer to Knapweeds of Washington (EB1393), Meadow Knapweed (EB1524) and the Pacific Northwest Weed Control Handbook.
    [Show full text]
  • Petroleum Coke and Plants: Impact on Growth and Physiology
    Petroleum coke and plants: Impact on growth and physiology By: Colin Keiji Nakata A Thesis Submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree of; MASTER OF SCIENCE Department of Botany University of Manitoba Winnipeg, MB., Canada March 14th,2007 Copyright A 2007 by Colin Keiji Nakata THE TJNIVERSITY OF MANITOBA FACULTY OF GRADUATE STT]DIES ****:* COPYRIGHT PERMISSION Petroleum coke and Plants: Impact on growth and PhYsiolog¡r BY Colin Keiji Nakata A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirement of the degree MASTER OF SCIENCE Colin Keiji Nakata @2007 permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesigpracticum,io the National Library of Canada to microfîlm this thesis and to lend or sell copies of túe film, aná to University Microfilms rnc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solóty for the purpose of private study and research, and may only be reproduced and copied owner. as permitied by copyright laws or with express written authorization from the copyright l1 Ansrnacr: Greenhouse studies were conducted to determine the effects of coke, a by-product of the oil sand industry, on the emergence, growth and physiology of Triticum aestivum, Deschampsia caespitosa, Calamagr-ostis canadensis, Agropyron trachycaulum, Oryzopsis hymenoides, Fragaria virginiana and Cornus set"icea. Accumulation of potentially toxic elements in plant tissues was also determined.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS INTRODUCTION .....................................................................................................................1 CREATING A WILDLIFE FRIENDLY YARD ......................................................................2 With Plant Variety Comes Wildlife Diversity...............................................................2 Existing Yards....................................................................................................2 Native Plants ......................................................................................................3 Why Choose Organic Fertilizers?......................................................................3 Butterfly Gardens...............................................................................................3 Fall Flower Garden Maintenance.......................................................................3 Water Availability..............................................................................................4 Bird Feeders...................................................................................................................4 Provide Grit to Assist with Digestion ................................................................5 Unwelcome Visitors at Your Feeders? ..............................................................5 Attracting Hummingbirds ..................................................................................5 Cleaning Bird Feeders........................................................................................6
    [Show full text]
  • CDFG Natural Communities List
    Department of Fish and Game Biogeographic Data Branch The Vegetation Classification and Mapping Program List of California Terrestrial Natural Communities Recognized by The California Natural Diversity Database September 2003 Edition Introduction: This document supersedes all other lists of terrestrial natural communities developed by the Natural Diversity Database (CNDDB). It is based on the classification put forth in “A Manual of California Vegetation” (Sawyer and Keeler-Wolf 1995 and upcoming new edition). However, it is structured to be compatible with previous CNDDB lists (e.g., Holland 1986). For those familiar with the Holland numerical coding system you will see a general similarity in the upper levels of the hierarchy. You will also see a greater detail at the lower levels of the hierarchy. The numbering system has been modified to incorporate this richer detail. Decimal points have been added to separate major groupings and two additional digits have been added to encompass the finest hierarchal detail. One of the objectives of the Manual of California Vegetation (MCV) was to apply a uniform hierarchical structure to the State’s vegetation types. Quantifiable classification rules were established to define the major floristic groups, called alliances and associations in the National Vegetation Classification (Grossman et al. 1998). In this document, the alliance level is denoted in the center triplet of the coding system and the associations in the right hand pair of numbers to the left of the final decimal. The numbers of the alliance in the center triplet attempt to denote relationships in floristic similarity. For example, the Chamise-Eastwood Manzanita alliance (37.106.00) is more closely related to the Chamise- Cupleaf Ceanothus alliance (37.105.00) than it is to the Chaparral Whitethorn alliance (37.205.00).
    [Show full text]
  • Facilitation of Yucca Brevifolia Recruitment by Mojave Desert Shrubs
    UNLV Retrospective Theses & Dissertations 1-1-1998 Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs Steve B Brittingham University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Brittingham, Steve B, "Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs" (1998). UNLV Retrospective Theses & Dissertations. 950. http://dx.doi.org/10.25669/ms22-zauw This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • INDIAN RICEGRASS Erosion Control/Reclamation: One of Indian Ricegrass' Greatest Values Is for Stabilizing Sites Susceptible to Achnatherum Hymenoides Wind Erosion
    Plant Guide INDIAN RICEGRASS Erosion control/reclamation: One of Indian ricegrass' greatest values is for stabilizing sites susceptible to Achnatherum hymenoides wind erosion. It is well adapted to stabilization of (Roemer & J.A. Schultes) disturbed sandy soils in mixes with other species. It is naturally an early invader onto disturbed sandy Barkworth sites (after and in concert with needle and thread Plant Symbol = ACHY grass). It is also one of the first to establish on cut and fill slopes. It does not compete well with Contributed By: USDA NRCS Idaho State Office aggressive introduced grasses during the establishment period, but is very compatible with slower developing natives, such as Snake River wheatgrass (Elymus wawawaiensis), bluebunch wheatgrass (Pseudoroegneria spicata), thickspike wheatgrass (Elymus lanceolata ssp. lanceolata), streambank wheatgrass (Elymus lanceolata ssp. psammophila), western wheatgrass (Pascopyrum smithii), and needlegrass species (Stipa spp. and Ptilagrostis spp.). Drought tolerance combined with fibrous root system and fair to good seedling vigor, make Indian ricegrass desirable for reclamation in areas receiving 8 to 14 inches annual precipitation. Wildlife: Forage value is mentioned in the grazing/rangeland/hayland section above. Due to the abundance of plump, nutritious seed produced by Indian ricegrass, it is considered an excellent food source for birds, such as morning doves, pheasants, and songbirds. Rodents collect the seed for winter food supplies. It is considered good cover habitat for small
    [Show full text]
  • Sagebrush Bibliography
    For Research Use Rio Grande National Forest – Sagebrush Bibliography Prepared by Janine Rice, PhD Rice Consulting LLC November 10, 2016 Contents Overview ......................................................................................................................................... 1 Sagebrush: Ecology and Climate .................................................................................................... 3 Sagebrush: Carbon Cycle and Climate ........................................................................................... 7 Sagebrush: Fire, Stressors and Climate .......................................................................................... 8 Sagebrush: Vegetation Modeling .................................................................................................... 9 Sagebrush: Management and Restoration ..................................................................................... 14 Relevant Publications in other Bibliography Chapters ................................................................. 17 Vulnerability Assessments and Reports Bibliography ............................................................. 17 Spruce-Fir Bibliography ........................................................................................................... 17 --Ctrl/Click to follow link above Overview This bibliography provides relevant scientific citations with abstracts on topics identified by the Rio Grande National Forest staff as important to the development of their assessment and plan
    [Show full text]
  • Sagebrush Identification Guide
    Sagebrush Identification Table For Use With Black Light For Use in the Inter-Great Basin Area Fluoresces Under Ultraviolet Branching Mature Plant Plant Nomenclature Light Leaf shape and size Plant Growth Form Environment Comments Pattern Height Water Alcohol Leaves 3/4 ‐1 1/4 in. Uneven topped; Main stem is undivided and trunk‐like at base;. Located long; long narrow; Leaf Uneven normally in drainage bottoms; Small concave areas and valley floors, but will normally be 4 times Colorless to Very topped; always on deep Non‐saline Non‐calcareous soils. Vegetative leader is greater Brownish to longer than it is at its "V"ed Mesic to Frigid 3.5 ft. to Very Pale blue Floral stems than 1/2 the length of the flower stalk from the same single branch. In Basin Basin Big Sagebrush Artemisia Reddish‐Brown widest point; Leaf branching/ Xeric to Ustic greater than 8 tridentata subsp. tridentata (ARTRT) Rarely pale growing there are two growth forms: One the Typical tall form (Diploid); Two a shorter to colorless margins not extending upright 4000 to 8000 ft. ft. Brownish‐red throughout form that looks similar to Wyoming sagebrush if you do not look for the trunk outward; Crushed leaves the crown (around 1 inch or so); the branching pattern; and the seedhead to vegetative have a strong turpentine leader characteristics (Tetraploid). smell Uneven Leaves 1/2 ‐ 3/4 inches topped; Uneven topped; Main stem is usually divided at ground level. Plants will often Mesic to Frigid Wyoming Big Sagebrush Colorless to Very Colorless to pale long; Leaf margins curved Floral stems Spreading/ keep the last years seed stalks into the following fall.
    [Show full text]
  • Common Shrubs Shrub-Steppe Habitats
    Common shrubs shrub-steppe habitats Photos (unless noted) by Susan Ballinger Sources for text include: http://biology.burke.washington.edu/herbarium/imagecollection.php Flora of the Pacific Northwest by C. Leo Hitchcock & Arthur Cronquist Plants of Southern Interior British Columbia and the Inland Northwest by Roberta Parish, Ray Coupe, and Dennis Lloyd Fall, 2012 Artemisia tridentata big sagebrush ASTER Family Habitat: widespread and common in deep soiled (>12 in.) shrub-steppe up to 7 feet tall Prior fall’s flowering stalks. Leaves: wedge-shaped, most with 3 toothed-tip. Dense gray hair on both sides. Most leaves persist through winter. Yellow in photo are long thin leaves, that dry up & die in summer. Smaller hairy, thick leaves remain year-round Flowers: small, yellow, born in composite Flowers in fall. Does not re- heads of 3-5 sprout after wildfire but disk flowers. Evergreen aromatic shrub. Grayish regenerates from seed. Very small. shredding bark on older branches. Artemisia tripartita three-tip sagebrush ASTER Family Habitat: Generally smaller shrub than big sagebrush, growing in slightly moister sites. Leaves: deeply cleft into narrow linear divisions, 2-4 ft. tall which may themselves be 3-cleft A. tridentata A. tripartita Flowers in fall, evergreen 1-2 feet tall. Vigorous sprouter after wildfire. Flower buds appear brown Artemesia rigida rigid sagebrush ASTER Family habitat: dry, rocky, thin soils in shrub-steppe. Less than 2 feet tall Small, often spreading outward on ground. Older bark is very black. Flowers in fall Leaves: 1-4 cm. long, narrow, deeply divided into 3-5 narrow segments. All deciduous leaves Flowers: heads or clusters of heads sessile in the axils, surrounded by longer leaves.
    [Show full text]
  • An Agricultural Law Research Article the Federal Seed Act: Regulation
    University of Arkansas School of Law [email protected] $ (479) 575-7646 An Agricultural Law Research Article The Federal Seed Act: Regulation of Feed Sales and Remedies Available to the See Purchaser by James B. Wadley Originally published in SOUTH DAKOTA LAW REVIEW 27 S. D. L. REV. 453 (1982) www.NationalAgLawCenter.org THE FEDERAL SEED ACT: REGULATION OF SEED SALES AND REMEDIES AVAILABLE TO THE SEED PURCHASER* JAMES B. WADLEY·· INTRODUCTION. 453 NATURE AND SCOPE OF THE FEDERAL SEED ACT................... 454 RESTRICTIONS ON SEED PRODUCERS AND DISTRIBUTORS. 457 Laheling Requirements.......................................... 457 Advertising. .. .. 460 RESTRICTIONS ON IMPORTATION AND STAINING OF SEEDS........... 461 Importation and Staining 0/Seeds. 461 Cert!fied Seed . .. 462 Treated Seed. 463 Record Keeping . 464 REGULATION OF WEED SEEDS....................................... 465 DISCLAIMERS AND WARRANTIES. 467 ENFORCEMENT OF THE FEDERAL SEED ACT. • . • . 472 REMEDIES AVAILABLE TO THE SEED PURCHASER.................... 474 CONCLUSION 475 INTRODUCTION The sale of seed is of particular interest to the farmer. If the farmer receives the wrong seed, or defective seed, the farmer may not discover the error until it is too late to replant. If this occurs, the loss to the farmer in­ cludes, in addition to the cost of the seed, the value of the lost crop. Simi­ larly, if the farmer plants seed that is contaminated with undesirable weed seeds, it may take years and countless dollars to eventually rid the farm of the infestation. To protect the farmer, the federal government and state legislatures have adopted statutes regulating the sale and shipment of seeds. I This arti­ • This article is based in part on a chapter from "Agricultural Law" published by Little, Brown and Company.
    [Show full text]
  • Alternate Crops for Eastern Oregon: Research
    ALTERNATE CROPS FOR EASTERN OREGON: RESEARCH 1Stephen Machado, 2Brian Tuck, and 1Christopher Humphreys 1Oregon State University, Columbia Basin Agricultural Research Center, P.O. Box 370, Pendleton, OR 97801. Tel: (541) 278 4416 Email: [email protected] 2Oregon State University, Extension Service, Wasco County, 400 E. Scenic Drive, Suite 2.278, The Dalles, OR 97058. Tel: (541) 296 5494 Email: [email protected] 1 Table of Contents Crop Page Chickpeas (Cicer arietinum) 4 Lentils (Lens culinaris) 10 Peas (Pisum sativum) 17 Faba beans. (Vicia faba) 24 Linola/Flax. (Linum usitatissimum) 27 Safflower (Carthamus tinctorious) 30 Sunflower (Helianthus annus) 33 Mustard. (Brassica spp.) 36 Buckwheat (Fagopyrum esculentum/sagittatum Moench) 39 Millet (Panicum miliaceum L.) 42 Corn (Zea mays L.) 47 Lupin (L. albus L., L. augustifolius L., L. luteus L., L. 50 mutabalis L., and L. cosentenii L.) Indian Ricegrass (Achnatherum hymenoides, Oryzopsis 58 hymenoides) Green Needlegrass (Stipa viridula) 64 2 Introduction The Pacific Northwest (PNW) Columbia Plateau is semi-arid with rainfall ranging from 12 to 18 inches. About 70 percent of annual precipitation occurs from November to April during winter and water available to plants during spring and summer depends on how much water is stored in the soil. Because of steep slopes prevalent in the PNW, soil erosion is a major problem in fields that do not have sufficient residue cover. Cropping systems that improve water infiltration and storage, reduce evaporation, and increase water use efficiency of crops on a sustainable basis should be developed. Wheat/fallow rotation is the traditional crop production system in the PNW Columbia Plateau.
    [Show full text]
  • Plant Materials Technical Note No
    United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Plant Materials Technical Note No. MT-55 February 2006 PLANT MATERIALS TECHNICAL NOTE WAYNE BERRY COMPARATIVE EVALUATION PLANTING PERFORMANCE SUMMARY 1994-2002 Larry Holzworth, Plant Materials Specialist Joe Fidel, Resource Conservationist Susan Winslow, Agronomist Mark Majerus, Bridger Plant Materials Manager Abstract There is interest in the Northern Great Plains to use warm-season grasses for extending the “green period” for mid- and late-summer grazing and to increase species diversity in the re- vegetation of deteriorated rangelands, mine reclamation, and conservation practices applied through farm bill programs. The Bridger Plant Materials Center (PMC), in cooperation with the Bismarck PMC, the Sidney, Montana Natural Resources Conservation Service (NRCS) field and area office, and Mr. Wayne Berry established a study to evaluate warm-season and cool-season forages in east-central Montana. The Wayne Berry field evaluation planting was established on a dryland site in east-central Montana, to study the adaptation, performance, and use of new native and introduced pasture plants in comparison to commonly used species/cultivars. A replicated warm- and cool-season grass, forb, and shrub study featuring 56 accession/cultivars was planted in May 1994. The plots are four-rows, six meters (19.68 ft) long, and replicated four times in randomized complete blocks. The plots were evaluated for field emergence, plant vigor, basal cover and biomass production over nine years. The best performing cool-season species were Elytrigia intermedia, Elytrigia repens x pseudoroegneria, Agropyron cristatum x desertorum, Pascopyron smithii, and Psathyrostachys juncea. Warm-season grasses and forbs from southern latitudes, i.e., South Dakota, performed better than North Dakota eco-types, supporting the theory that southern eco-types perform better than northern eco-types in northern latitudes.
    [Show full text]