o OmJ

number 54 may 1988 european space agency agence spatiale europeenne

The European Space Agency was formed out of, and L'Agence Spatiale Europeenne est issue des deux took over the rights and obligations of, the two earlier Organisations spatia/es europeennes qui I'ont precedee European Space Organisations: the European Space - I'Organisation europeenne de recherches spatiales Research Organisation (ESRO) and the European (CERS) et I'Organisation europeenne pour la mise au Organisation for the Development and Construction of point et la construction de lanceurs d'engins spatiaux Space Veh icle Launchers (ELDO). The Member States (CECLES) - dont elle a repris les droits et obligations. are Austria, Belgium, Denmark, France, Germany, Les Etats membres en sont: l'Allemagne, I'Autriche, la Ireland, Italy, Netherlands, Norway, Spain, Sweden, Belgique, le Danemark, I'Espagne, la France, I'lrlande, Switzerland and the United Kingdom. Finland is an /'/talie, la Norvege, les Pays-Bas, le Royaume-Uni, la Associate Member of the Agency. Canada is a Suede et la Suisse. Finlande est membre associe de Cooperating State. I'Agence. Le Canada beneficie d'un statut d'Etat cooperant.

In the words of the Convention: The purpose of the Agen­ Se/on les termes de la Convention: L'Agence a pour mis­ cy shall be to provide for and to promote, for exclusively sion d'assurer et de developper. a des fins exclusivement peaceful purposes, co-operation among European pacifiques, la cooperation entre Etats europeens dans States in space research and technology and their space les domaines de la recherche et de la technologie applications, with a view to their being used for scientific spatiales et de leurs applications spatiales, en vue de purposes and for operational space applications leur utilisation a des fins scientifiques et pour des systems. systemes spatiaux operationnels d'applications:

(a) by elaborating and implementing a long-term Euro­ (a) en elaborant et en mettant en oeuvre une politique pean space policy, by recommending space objec­ spatiale europeenne a long terme, en recomman­ tives to the Member States, and by concerting the dant aux Etats membres des objectifs en matiere policies of the Member States with respect to other spatiale et en concertant les politiques des Etats national and international organisations and in­ membres a I'egard d 'autres organisations et institu­ stitutions; tions nationales et internationales; (b) by elaborating and implementing activities and pro­ (b) en elaborant et en mettant en oeuvre des activites et grammes in the space field; des programmes dans le domaine spatial; (c) by co-ordinating the European space programme (c) en coordonnant le programme spatial europeen et and national programmes, and by integrating the lat­ les programmes nationaux, et en integrant ces der­ ter progressively and as completely as possible into niers progressivement et aussi completement que the European space programme, in particular as possible dans le programme spatial europeen, regards the development of applications satellites; notamment en ce qui concerne le developpement (d) by elaborating and implementing the industrial de satellite d 'applications. policy appropriate to its programme and by recom­ (d) en elaborant et en mettant en oeuvre la politique in­ mending a coherent industrial policy to the Member dustrielle appropriee a son programme et en recom­ States. mandant aux Etats membres une politique industrielle coMrente.

The Agency is directed by a Council composed of L'Agence est dirigee par un Conseil, compose de representatives of Member States. The Director General representants des Etats membres. Le Directeur general is the chief executive of the Agency and its legal est le fonctionnaire executif superieur de I'Agence et la representative. represente dans tous ses actes.

The Directorate of the Agency consists of the Director Le Directoire de l'Agence est compose du Directeur General; the Inspector General; the Director of Scientific general; de I'lnspecteur general; du Directeur des Pro­ Programmes; the Director of the Earth Observation and grammes scientifiques; du Directeur des Programmes Microgravity Programme; the Director of the Telecom­ d 'Observation de la Terre et de Microgravite; du munications Programme; the Director of Space Transpor­ Directeur du Programme de Telecommunications; du tation Systems; the Director of the Space Station and Directeur des Systemes de Transport spatial; du Platforms Programme; the Director of ESTEC ; the Direc­ Directeur du Programme Station spatiale et Plates­ tor of Operations and the Director of Administration. formes; du Directeur de I'ESTEC, du Directeur des Operations et du Directeur de l'Administration.

The ESA HEADQUARTERS are in Paris. Le SIEGE de I'ESA est a PariS.

The major establishments of ESA are: Les principaux Etablissements de I'ESA sont:

THE EUROPEAN SPACE RESEARCH AND LE CENTRE EUROPEEN DE RECHERCHE ET DE TECHNOLOGY CENTRE (ESTEC), Noordwijk, TECHNOLOGIE SPATlALES (ESTEC), Noordwijk, Netherlands. Pays-Bas.

THE EUROPEAN SPACE OPERATIONS CENTRE LE CENTRE EUROPEEN D'OPERATlONS SPATlALES (ESOC), Darmstadt, Germany (ESOC), Darmstadt, Allemagne.

ESRIN, Frascati, Italy. ESRIN, Frascati, Italie

Chairman of the Council: Mr H. Grage. President du Conseil: M H. Grage.

Director General: Prof. R. LOst. Directeur general: Prot. R. Uist. no. 54 may 1988 contents/sommaire

Europe in Space: The Manned Space System R. wst 8

The European Long-Term Space Plan K.-E. Reuter 14

Analyse des facteurs de coOts des experiences embarquees sur vol habite G. Naja & D. Kap/an 30

The Olympus Propagation Experiment OPEX: A Unique Example of European Cooperation G. Brussaard 34

Front cover: The first Ariane-4 being prepared Programmes under Development and Operations for launch (see page 88). Programmes en cours de realisation et d'exploitation 39

Back cover: The Agency's Hipparcos spacecraft under test at ESTEC. Redu - Twenty Years On J.B. Mac Laugh/an 55

Optical Inter-Satellite and Inter-Orbit Links - The Critical Aspects Editorial/Circulation Office ESA Publications Division 0. B. Mi//ies-Lacroix & G. Berretta 62 clo ESTEC, Noordwijk, The Netherlands

Publication Manager The Use of PyrotechniCS on Spacecraft Bruce Battrick N. Cable 66

Editors Bruce Battrick, Duc Guyenne Les procedures et regles de vote dans la Convention de l'Agence et leur pratique Assistant Editor Erica Rolfe G. Lafferranderie 72

Layout The Hermes Safety Advisory Committee (HESAC) Carel Haakman R. wst 78 Montage Keith Briddon Un annee d'activite du Comite HESAC Advertising P. Govaerts 79 Brigitte Kaldeich In Brief 82

The ESA Bulletin is published by the European Space Agency. Individual articles Publications 90 may be reprinted provided that the credit line reads 'Reprinted from the ESA Bulletin' plus date of issue. Signed articles reprinted must bear the author's name. Advertisements are accepted in good faith: the Agency accepts no responsibility for their content or claims.

Copyright © 1988 European Space Agency Printed in The Netherlands ISSN 0376-4265 european space agency agence spatiale europeenne (9 bulletin 54

See-All Eye in Orbit.

Those first photographs taken oceans, coastlines and the polar in space of our planet evidenced regions under all-weather condi­ the practicability of Earth Obser­ tions, day and night. To receive vation. and process a vast flow of data Intensive R & 0 in Remote Sen­ quickly via ERS-1 even from sing, as well as having experience remote places on Earth, Oornier of designing and constructing are working on a solution that's full Concepts. Technologies. Systems. satellites, spoke in favour of of promise: the transportable Oornier being put in charge of the remote sensing station (TRAFES). project "ESA Remote Sensing Of course, Oornier's reputation as iiDORNIER Satellite ERS-1 ". Associate firms technical pioneer stands them in Oornier System GmbH from twelve European countries, good stead for undertakings of P.O. Box 1360, Oept. RVE and from Canada, are cofunding this complexity. 0-7990 Friedrichshafen 1 their skills and know-how. Today's progress secures the Federal Republic of Germany ERS-1 scans and monitors future. Oornier. Phone 7545/81 , Telex 734209-0

2 SIEMENS TheWorld According To G.A.R.P. This photograph shows the Research Program. distribution of water vapor in G.A.R.P.'s mission is to the earth's atmosphere at collect, collate and analyze about noon on March 26, 1982. complex data about the It was taken by Meteosat, earth's weather systems. the European weather satellite And to create a mathem­ designed by Aerospatiale. atical model that will some- Meteosat can also analyze day make accurate, long ~ the earth in infrared wavelengths. term forecasting a reality.

For more than two decades ANT In short, ANT designs, develops Telecommunications have been and manufactures satellites and at the forefront of satellite com­ earth stations for all telecommu­ munications technology. We nications applications. already contributed as main- or subcontractor to many important For more information please satellite programs. The present contact: backlog leads to a total of up to ANT Nachrichtentechnik GmbH 40 satellites. Space Communications Systems Presently we are manufacturing P.O. Box 1120 communications payloads for 0-7150 Backnang satellite programs like: EUTEL­ Telephone: (71 91) 13-2309 The German Telecommunications Satellite SAT/ECS, TV-SAT, TOF, METEO­ DFS Kopernikus: Payload system under orbital test conditions. SAT and OFS-Kopernikus.

--~.=.. - w -- - '"....o - co - - !z < -Telecommunications----

5 • bulletin 54

Launch your knowledge and skills Into• space Satellite communications and remote sensing acquisition systems used to ground test propulsion Qayloads call for the highest standards of engineering systems. An ability to write specifications, test plans a.esign and production, and growing numbers of new and procedures, and procure materials 'and contracts prove our continueo success in this equipment is also necessary. Candidates must have a demanding field. BSc in Electrical Engineering with specialisation in We are now looking for additional people to Aerospace topics. Understanding of electron join us. bombardment thruster principles is desirable. Ref: MSS47/ S. Principal Systems Design Engineers Our Communications Division requires senior Propulsion Engineer Mechanical Electronics Engineers with a BSc or equivalent To assist in the design of spacecraft propulsion qualification to work on the design of satellites and systems and the theoretical analysis of fluid flow and ground station communications links. You will also combustion processes. Setting up development tests work on the design of satellite Qayloads involving on systems/ components and writing specifications, end-to-end evaluation of noise budgets, reliability test plans and procedures is also required. A BSc in studies and signal routing. A knowledge of RF Mechanical or Aeronautical Engineering with microwave systems together with 5 years' overall specialisation in Aerospace or fluid topics is communications systems payload experience is essential. A good knowledge of orbital mechaniCS, required. Ref: MSS47/1. electropneumatics and electronics is desirable. Ref: MSS47/ 6. Senior Hardware Engineers Working on the latest space programme, you will RF Microwave Test Engineers be in charge of the technical management of selected You will test performance evaluation and fault subcontracts for supply of RF equipment. Control and diagnosis of a wide range of electronic and coordination of all design procurement, microwave communication equipment for spacecraft manufacture and tests of hardware items for the and launch support hardware. repeater equiRment will be your responsibility A relevant qualification and several years' therefore a technical understanding of payload.s is experience in modern microwave theory and needed in order to liaise with sl'stems and equipment techniques is essential, preferably including design engineers. Ref: MSS47/ 2. familiarity with MIC alignment and test. Ref: MSS47/ 7. Senior/Principal Mechanical Engineers Senior Quality Assurance Engineer (Structure Dynamics, Stress) You will prepare quality plans and documents, monitor quality aspects of design and production Vacancies are available for engineers qualified to work and liaise with subcontractors and customers. HND or Degree level with a vibration or structural Working under minimum supervision, you will be bias. Main tasks are to assess structural/ mechanical expectea. to advise on and supervise the resolution of requirements for conceptual designs, analyse quruity problems. You should be qualified to HNC or designs to determine natural frequencies response, degree level in Electrical Engineering with at least load spectra, strength margins and compl iance, three years' Quality Assurance experience. using hand and/ or computer aided methods. Familiarity with AQAP and ESA standards is A minimum of 6 years' experience is required in desirable. Ref: MSS47/ 8. relevant spacecnft structures design and the use of NASTRAN or similar FE code. In adoition experience in non-destructive testing of spacecraft structures If you are interested in any of these opportunities, would be an advantage. Ref: MSS47/ 3. please telephone Jack Burnie on Portsmouth (0705) 674019 for an application form, or write with full cv to Marconi Space Systems Ltd, Anchorage Road, Senior/Principal Mechanical Portsmouth P03 5PU, England, quoting the Engineer (Thermal) appropriate reference number. An opening is available for an engineer with a Mech.Eng degree with a thermaljheat transfer bias. The job will involve the definition of thermal design of spacecraft\ analysis of critical design cases and conceptual design of thermal hardware. Around 5 }Tears' experience in spacecraft equipment thermal oesign snould be combined with knowledge of SINDA, ESATAN, LOHARP and/ or VWHEAT codes. Ref: MSS47/4. Propulsion Engineer Electrical The main task is to assist in designing power conditioning and control equiQment for electric Qropulsion systems. There is also a requirement to a.esign and commission for electrical test and data Ma.. coni Space Systems

6 CHARGE SENSITIVE PREAMPLlFIER A250

RUN SILENT - RUN FAST!!!

700 r------_ A NEW STATE-OF-THE-ART 600 s- 500 S 90 % w 400 o ::> ~ 300 to;<-- OUTPUT RISETIME = 3.8 ns --1 a.. (CD = OpF) ~ 200 EXTERNAL FET

10% FET CAN BE COOLED 100 t------NOISE: < 100e-RMS (Room Temp.) < 20e-RMS (Cooled FET) Or---r-~--_+--_r--~--~--+_~ rOWER: 19 mW typical o 5 10 15 20 25 30 35 40 SLEW RATE: > 475 V / IJ 5 TIME (ns) GAIN-BANDWIDTH fT > 1.5 GHZ

7 • bulletin 54

Europe in Space: The Manned Space System*

Reimar Lust, Director General, European Space Agency, Paris

Introduction From time to time miracles do happen, 1. Why should Europe be in space? 'Quam Daedalus Quam Nos', or 'as - even in Europe. This was the impression 2. Why should Europe have its own Oaedalus did so do we', is as relevant to conveyed by some of the media when manned space system? us today as it was to the Ancient the positive news was announced in The 3. Why should European Governments Romans and Greeks. Indeed it is clear Hague last November that the Ministers as well as private enterprise be from the way our ancestors invested their of 13 European States had been able to involved in space? Gods with the ability to conquer space agree, during a two-day meeting, on a that this yearning to be free of the Long-Term Space Plan for Europe. This Why should Europe be in space? Earth's limitations is almost as old as Plan provides the orientation for If one analyses the motives and interests mankind itself. Those early philosophers European activities in space until the of the European States in space, one and writers saw that manned space flight year 2000. can identify six major reasons for the was not just a fantasy; they recognised European commitment: the need for safety, or if you like, To the insider, however, the success of 'Product Assurance' . For while they the Ministerial Council in The Hague was 1. Space research, which covers a admired Oaedalus for his prudent space not a miracle. Member States were able broad spectrum of scientific disciplines, travels, they warned of the dangers of to recognise just how useful space is a major component of modern basic foolhardiness by telling the story of his activities are, given ESA's proven ability research. It epitomises the human son Icarus, who came to grief because to develop and operate 14 scientific and search for knowledge, cultural his wings were fastened with wax, which 8 applications satellites successfully, and advancement, and technical melted when he flew too near the Sun. the record of 17 successful Ariane ingenuity. This 'bonding fault' resulted in Icarus launches. The individual Member States falling into the sea. might have somewhat different There is no question that important motivations for their involvement, but progress in astrophysics and geophysics The title of this Symposium is both a together they recognised the necessity is impossible without exploiting the statement and a pointer to the future. for increased European activities in possibilities that modern space 'Europe in Space' is an accepted reality, space, as foreseen in the Long-Term techniques offer. and next year we will be celebrating our Plan. silver jubilee, marking twenty-five years Furthermore, there are areas beyond of joint European ventures in space. The I should perhaps stress here that each space science that could benefit from the Manned Space System is our next step and every space activity must, of course, unique low-gravity conditions found on a forward, building on the confidence and fully justify its cost on its own merit. spacecraft orbiting the Earth. This special experience gained in our first two and a environment is of interest for material half decades, as well as on Europe's In addition, there are considerable sciences, pharmaceutical research , and political will to be placed alongside the indirect gains to be made through the life and medical sciences. other two major space powers, with an advancing technology, as well political independent means to carry man into benefits. 80th of these are important It is sometimes forgotten that space space, and a stake in the International arguments in favour of strengthening exploration and exploitation have brought Space Station. space activities, but they should not be together many disciplines and techniques the deciding factors. that might not otherwise have benefitted • Based on the Opening Lecture to the from this cross-fertilisation and International Symposium on Europe in Space, In this presentation, I would like to from the advantages of shared Strasbourg, France, 25 - 29 April 1988. address three main questions: facilities.

8 europe in space

2. Although Earth observation by for management applications in Past European missions devoted solely satellite is already widely used, its has general. to space science have all been still to achieve its full potential. Space­ 'automatic' in nature. The same applies based reconnaissance will certainly lead, A group of economists at the University to our Earth-observation and with the further development of of Strasbourg has made a study of the telecommunications projects. Having meteorological satellites and above all in impact of space projects carried out by astronauts on-board is an added conjunction with the use of larger European industry beyond specialised complication on any spacecraft, given computers, to greater precision in space technologies. A similar study has the inherent need for platform stability. weather forecasting. This should bring since been carried out for the Federal Furthermore, safety requirements for about considerable savings in, for Republic of Germany, by Kienbaum astronauts, and the resulting increased example, agriculture, offshore Unternehmensberatung. 80th studies costs, will restrict man-tended exploration, fishing and shipping. Special arrived at very similar conclusions, two of opportunities for scientific payloads. Most efforts are currently being devoted to which were as follows: first, almost 50% future space-science missions will Earth observation, and many domains of all contract payments are being spent therefore continue to be automated. will benefit from this, not least that of with smaller or medium-sized firms; However, we always need to ask environmental protection. secondly, there is a considerable benefit ourselves what tasks cannot be in terms of improved technology, higher performed by mechanisms or robots and 3. Communications satellites are not quality products, increased sales, better therefore call for human intervention. only important commercially, but have organisation, as well as higher already revolutionised global productivity and an improved work To define these tasks for which humans communications. Their social and factor. are indispensable, it is first necessary to political impact will increase further with evaluate previous experiences, most the advent of direct broadcasting by All of this results in overall benefits that notably in the United States and the satellite. It must be admitted, however, can be expressed in terms of a 'return Soviet Union, but also in Europe through that the technology is currently well coefficient' of 3.6 for space work. our two Spacelab missions. This ahead of the ability of television Comparison of these results with those of approach will enable us to formulate companies and others to provide new earlier studies in Strasbourg clearly sound objectives for the years to come. material to exploit the many new shows that this coefficient seems to be opportunities that direct-broadcast rising and, according to both studies, The experience of the past has clearly satellites will provide. Satellites for marine there is a remarkable transfer of confirmed some of the negative aspects and aeronautical navigation could have technology from the space sector to the of putting man into space, including significant advantages in the future for more general non-space sectors of higher costs and more stringent safety and other similar applications. industry. requirements. The Challenger disaster They are as yet only in their infancy. and the subsequent three-year 'paralysis' 6. Finally, one should not forget the have demonstrated the dire 4. Space opens up new fields of political impact - indeed prestige - consequences when things go wrong in economic activity. Space activities and associated with large-scale space space. Experience has, however, also the use of space have given rise to a projects, especially when they are highlighted particular circumstances new multi-product market for manned missions. This should not, of under which man's presence is of great transportation systems, satellites and course, provide the main impetus for a value; the part played by the associated ground facilities. European space policy. Nevertheless, as cosmonauts in the docking of the Soviet a political symbol and an indicator of astrophysics module, and the earlier Microgravity looks likely to provide new political self-confidence, manned space spectacular rescue of Skylab with the potential for economic and industrial exploration is of particular value. astronaut-installed 'solar shield' are just ventures, the true possibilities of which two examples. remain to be explored. Why should Europe have Its own manned space system? Neither the Americans nor the Soviets 5. Space technology is relevant not Let me try to answer this question in two are planning to reduce the importance of only for space projects, because the parts; namely, the human role, as is clearly evidenced latter's stringent requirements influence 1. Why is a human being necessary at by NASA's promotion of a permanent technological developments in other all in space? manned presence in space, and by the areas too. Moreover, management 2. Why must Europe be involved? Why manner in which the Soviet Union is systems that were first applied in large not leave it to the Americans and assembling its ever-expanding Space space projects have also proved useful Russians? Station.

9 (9 bulletin 54

Europe too has already accumulated a In the future, tele-robotic operations will Last but not least, new microgravity some experience with payload support the extension of knowledge and experiments are being planned. In my specialists/astronauts working in space even improve diagnostic systems when opinion, th is activity is still in its infancy aboard Spacelab. The significance of this remote work stations in space are and a number of scientific experiments experience ought not to be equipped with a multiplicity of information of limited interest managed to jump on underestimated, since the man-tended systems (such as data banks and the bandwagon in the early days. elements of the International Space stereoscopic and graphical displays) to Nevertheless, this should not prevent us Station project will be of the Spacelab­ improve information feedback. from giving this discipline a proper type in terms of both hardware and use. chance and, just as one cannot imagine The Spacelab missions demonstrated the Robots will thus enhance man's a totally automated ground-based astronauts' role to be much more capabilities, rather than replace him . laboratory being the most efficient important than had hitherto been Robots can only operate in a predefined solution , I do not think a completely anticipated, not so much for monitoring sequence: they can never match his automatic laboratory in space could meet experiments or even for playing an ability to plan, reason and troubleshoot. the requirements envisaged. active scientific role, but rather for their Even the most sophisticated robots are ability to deal with unforeseeable events, not flexible enough to adapt to new tasks Nor should we forget the valuable such as hardware failures, and to make and unknown situations. Only humans information to be gained from observing adjustments to particular experiments. are capable of integrating new and the reactions and behaviour of human Astronauts have genuinely 'rescued' diverse items of information, and only beings under low-gravity conditions in many experiments that would never have they have the intelligence and ability to space, information which can be used succeeded in their absence. innovate and to solve unexpected profitably by those involved in problems as and when they arise. researching the complexities of the There is a growing trend nowadays human mind and body. towards replacing humans with robotic The Agency's Columbus Programme will systems wherever the latter can perform see the development of a full range of The true future in space lies in striking tasks more economically or more 'automated operations'. Nevertheless, the right balance between activities that efficiently, or when the working despite the substantial investment in need to be carried out by humans and environment is hazardous. Robots can, automation planned here, astronauts will those that can be attended to by robots. in fact, perform quite complex tasks and still be needed to cope with Mankind already enjoys many of the can even improve on human abilities for unforeseeable or highly complex fruits of technology and automation; life highly repetitive jobs. situations, such as: has been made easier as a result, but Clearly, for certain tasks in space robots - the assembly and installation of new man is irreplaceable nonetheless. The can replace man. We can also assume experiments, requiring on-site same will hold true in the future in that robotics will make dramatic progress adjustments. space. in the future, particularly in the area of - maintaining equipment and repairing artificial intelligence. The overall efficiency hardware for both experiments and Without manned space flight, Europe of future space systems will therefore operating systems. would always have just a fraction of the depend heavily on close 'cooperation' It is therefore not only in the field of autonomous capabilities of the large between astronauts and task-oriented microgravity research that astronauts will space nations, such as the USA and the robotic systems. be necessary; they also have an USSR. This is why ESA is pressing influential role to play in the future ahead with the development of both Today's tele-operated systems still have development of space astrophysics. This manned and unmanned space systems. limited capacities in terms of dexterity, will become more apparent when the versatility and perception. However, by Hubble Space Telescope is finally put There are four essential elements in improving the perception systems into orbit. This telescope's intended ESA's future manned space systems: themselves and the feedback of operational lifetime of between ten and - the Columbus project information to the human operator on the fifteen years can only be achieved if the - the Hermes space plane ground, the interaction can be facility is maintained regularly and if its - the man-rated Ariane-5 launcher enhanced, so that the ground operator sensors can be replaced periodically. - the Data-Relay Satellite. will ultimately have the feeling of being present on the work-site. Development of There are, moreover, plans to assemble The Columbus project is Europe's this so-called 'tele-presence' will lead to large telescopes in orbit, which will contribution to the International Space 'tele-science' becoming much more in all likelihood only be possible with Station, being developed jointly with the realistic. astronaut intervention. USA, Canada and Japan. Columbus

10 europe in space

Figure 1 - Payload Specialist Wubbo Ockels working with the Fluid-Physics Module aboard Spacelab-D1 . He was free-floating and, contrary to mission intentions, had to pull out the Module for easier operation. All the paper in view was related to the specific task that he was performing

includes a permanently manned Relay Satellite to establish an private sector much more was raised . laboratory docked to the Space Station. independent communications link to the Although, in principle, the goal of A further element, to be launched by Space Station, the Man-Tended Free­ commercialising space activities as much Ariane-5, will be a free-flying laboratory Flyer and the Polar Platform . as possible is probably justified, the equipped with a resource module which question of when to hand over to private will be serviced from time to time by In summary then, it is ESA policy to put enterprise remains. astronauts. An additional free-flying human beings into space only when platform to be placed in polar orbit, absolutely necessary, using unmanned In the United States, there is indeed a mainly for Earth-observation purposes, is missions or robots wherever possible. strong trend towards commercialisation, also included. privatisation and deregulation. In Europe, Why should European Governments however, we are confronted with a The Hermes space plane represents a as well as private enterprise be somewhat different situation. Unlike the further step towards European autonomy involved in space? United States, Europe is not a federation in manned space flight. Launched by During the preparation of the Agency's and has to cope with a host of different Ariane-5, it will be used for servicing Long-Term Plan, and in particular at the national technical standards and legal both the Space Station and the Man­ Ministerial Council Meeting in The Hague and administrative regulations. Despite Tended Free-Flyer. last November, the question of whether this, ESA has already succeeded in governmental support in space matters handing over various space activities to In addition, ESA is developing a Data- could not be reduced by involving the international operators or companies,

11 • bulletin 54

Figure 2 - Wubbo Ocke/s, the ESA scientist-astronaut who acted as one of the Payload Specialists on the Spacelab­ D1 flight, seen here assisting Reinhard Furrer of DFVLR during vestibular tests using the Space Sled 'helmet'

12 europe in space

thereby ensuring that the results of its special interest: Earth observation and exchange views and ideas, to stUdy the space R&D activities can be exploited data-transmission via satellites. Together opportunities that are now open to us, efficiently to serve the public interest. with potential consumers, we are and to initiate a dialogue that will currently investigating how to involve the continue long after we have left In this spirit, the communications private sector from the outset in these Strasbourg. The Symposium will indeed satellites being used for television domains. There are two important have been a success if we go away with transmission have been transferred to the aspects when one is trying to convince greater confidence in each other, and European Telecommunications Satellite future potential customers to invest funds better equipped for the tasks in hand. Organisation EUTELSAT, formed by 26 at a very early stage. Firstly, a PTIs representing the whole of Europe considerable learning phase is As I said at the beginning 'Quam and not just ESA's Member States. The necessary; and secondly the potential Daedalus, Quam Nos'. What Daedalus Agency's two Marecs maritime customers must have some guarantee succeeded in achieving in fantasy, may communications satellites have similarly that existing opportunities will still be we achieve in reality! • been leased to the International Maritime worthwhile in a few years' time. Satellite Organisation INMARSAT. On the meteorological side, operational Even in a field such as meteorology, exploitation of the Agency's Meteosat where the advantage of observing the satellites has been taken over by the weather from above seemed so obvious, newly created European Meteorological the learning phase was very long and Satellite Organisation EUMETSAT. almost a decade elapsed before the meteorological offices were ready to take Finally, the Agency's Ariane launcher is over as operators. It is little wonder, now marketed by Arianespace, a private then, that in the field of Earth observation company set up by the Member States there will also be a very long learning that invested in ESA's Ariane phase before these activities can be development programme. Arianespace commercialised, even though Spot has to cover all its costs, other than the Image has already had almost instant launcher's development costs which are success in this domain. Clearly, the user borne by the ESA Member States, community wants to be guaranteed a through income from its customers. Even continuous flow of data before making before the Challenger disaster, heavy investments in the necessary Arianespace had captured half of the ground infrastructure. This is why a civilian launcher market. To date decision to have a follow-up to the Arianespace has managed to chalk up Agency's ERS-1 satellite is so urgently 66 satellite launch contracts: 44 of these needed. satellites are currently waiting for launch, representing a revenue of 14.7 billion The same logic also applies to the field French Francs (about 2.5 billion US of data transmission via satellites. Here Dollars). the future DRS will play a decisive role, and a workshop is being held to discuss There are still considerable possibilities the possible involvement of the private for the involvement of the private sector sector in this project. in the space effort which should be explored. Encouragement will be Conclusion needed, however, to ensure that non­ Space offers our society great governmental institutions and private opportunities for improving living firms do indeed make use of the conditions here on Earth, and we as available capacity in space, that they good Europeans must make the most of participate in the investment, and that them. they are ultimately ready to take over the operating responsibilities. I hope that this Symposium will give the representatives from all sides of this Two sectors of space activity spring to complex but exhilarating venture a mind in this connection as being of chance to become better acquainted, to

13 (9 bulletin 54

The European Long-Term Space Plan

K-E. Reuter, Coordination and Monitoring Office, ESA, Paris

The Council of the European Space During their Meeting in The Hague, the and its competitiveness in all sectors of Agency, meeting at Ministerial Level Ministers paid particular tribute to the space activity. on 9 and 10 November 1987, reviewed impressive results achieved in Europe in the development of Europe's space the space field during the last twenty The overriding general guidelines, activities within the framework of a years, and to the impetus given to the confirmed by the Ministers in their Long-Term Space Plan, formulated Programme in 1973 by the European Resolution adopted on 10 November during nearly three years of Ministers at the European Space 1987 in The Hague, are therefore to: preparatory work, initiated by the Conference in Brussels. It was this previous Ministers' Meeting in impetus that led to the realisation , - orient space activities towards January 1985. through the Ariane Programme, of an achieving a coherent European independent and competitive launch Programme The Ministers welcomed the Director capability, and to Europe's access to - ensure that European spending on General's proposal on this Plan, manned- technology through space will be balanced between which will carry ESA Member States' the construction and flight of Spacelab. expenditure on enabling tools and efforts far into the next century, and infrastructure, and expenditure on endorsed it as the strategic They also noted that during the same primary applications such as space framework and basis for the period the exploration and utilisation of science and space applications subsequent decisions regarding space had contributed to the - ensure that the scope of the Europe's space activities and establishment of an overall European European Programme allows programmes up to the end of this policy in the field of technology and that, adequate coverage of all sectors of century. They also underlined that all by the end of the century, space space activity and that developments of the elements of this Plan are activities as a whole will constitute an in one sector can be to the benefit of important for achieving its objectives important factor in the political, all sectors. and considered that the carrying out economic, social and cultural life of all of the programmes required a countries. The specific objectives of the Plan set by reinforcement of ESA's role as a the Ministers are to: coordinating, strategic and executive The Ministers recognised that the scope - enable the European scientific authority, especially with regard to of the Agency's programmes had to be community, via an expansion of the safety and coherence. enlarged and its resources increased ESA Scientific Programme, to remain substantially to cope with the challenge in the vanguard of space research of the next decade and beyond, whilst of - further develop the potential of space course taking the financial constraints of in the areas of telecommunications the Member States into account. and meteorology - prepare a substantial contribution Objectives of Europe's Long-Term from space and ground techniques to Space Plan Earth-observation sciences and The guiding objectives underlying the applications and also for the setting approved Long-Term Plan are based on up of operational systems and user­ the need for Europe to maintain and oriented organisations to operate build on the achievements of the first two them decades of European space cooperation, - improve the competitiveness of and to expand its autonomous capability European industry in applications

14 europe's long-term space programme

Figure 1 - Artist's impression of the Soho mission element of the Scientific Programme's STSP Cornerstone

areas via advanced development of space systems and technologies - explore, via a substantial research programme (e.g . in materials and life sciences), the practical applications of microgravity in space - strengthen Europe's space­ transportation capacity, to meet foreseeable future user requirements within and also outside Europe, while remaining competitive with space­ transportation systems that already exist or are planned elsewhere - prepare autonomous European facilities for the support of man in space, for the transport of equipment and crews, and for making use of low Earth orbits - enhance international cooperation and in particular aim at a partnership with the United Stat~s through significant participation in an International Space Station.

The programme proposal The advent of new space capabilities and Europe's political will to compete with the other space powers, even in the area of manned space activities, have now been given a programmatic framework that will enable Europe to develop and exploit its technical capabilities.

The inclusion of the space infrastructure encompassing Columbus, Ariane-5 and Hermes - supported by the Data-Relay Satellite - gives a new dimension to the Agency's programmes and will form the devised to comply with all the other international scientific organisations backbone of these future activities. The requirements of the different elements (ESF, CERN, ESO and IAU). It identifies impact of the space-infrastructure and enable their combined operation. the future major thrusts in space programmes lies, however, not only in its research and those areas where Europe financial importance; the new elements The Scientific Programme could play a determining role over the also impose new parameters for the The general objective in science, via the next twenty years. planning of the Earth-observation, realisation of the Long~erm Plan 'Space microgravity and space-science user Science:Horizon 2000', is to continue to The Programme is founded on four programmes, and require the setting-up mai:;tain Europe in the forefront of 'Cornerstones': of a new ground infrastructure capable of scientific progress. - The Solar Terrestrial Science operating all of these elements Programme (STSP) . simultaneously, particularly those to be The Horizon 2000 Programme was - A mission to asteroids or comets, manned on either an occasional or a established in 1984 by a Survey including return to Earth of primitive permanent basis. A new approach to the Committee, composed of members of the materials. operation of this future space Space-Science Advisory Committee - An observatory for spectroscopic infrastructure will therefore have to be (SSAC) and additional scientists from studies of X-ray sources.

15 • bulletin 54

Figure 2 - Artist's impression of the Figure 3 - The Comet-Nucleus Sample Cluster mission element of the Scientific Return (CNSR) spacecraft (potential Programme's STSP Cornerstone Scientific Programme Cornerstone mission)

- An observatory employing heterodyne techniques at far-infrared/sub­ millimetre wavelengths.

In addition to these four Cornerstones, the Horizon 2000 Programme also includes a number of medium- and smaller-sized projects to be selected at appropriate times, via the Agency's present competitive selection procedure, by the bodies responsible for ESA's Scientific Programme.

A number of Eureca and Space-Station­ compatible platform flights are also foreseen in order to provide frequent flight opportunities.

The Earth Observation Programme Taking into account the success of the Agency's work during the last fifteen years in the domain of Earth observation from space, with Meteosat, ERS-1 and Earth net, the long-term objectives of this Programme are to: - provide, by the mid-1990s, operational - develop space techniques from polar - continuously improve meteorological systems in polar orbit tailored to orbit for experimental/pre-operational services by contributing to the scientific and applications needs in use in remote-sensing land development of a second-generation the fields of ocean, ice, coastal applications, with emphasis on all­ meteorological satellite processes and meteorology weather microwave instrumentation - develop continuous atmospheric monitoring from polar orbit for scientific, operational and climatological purposes - develop space techniques for a scientific research and application mission in the solid-Earth field - prepare for potential future missions via advanced system and instrument studies and carry out pre­ development work on instruments - establish and further develop the ground segment, currently based on Earthnet facilities, for payload data handling.

These goals will be achieved via the following main new programme elements: - An ERS-2 satellite for launch in 1993. - A multi-disciplinary Earth-Observation Programme based on the use of polar platforms from 1997 onwards. - An ESA contribution to the development of a second-generation geostationary meteorological satellite

16 europe's long-term space programme

Figure 4 - The X-Ray Spectroscopy Figure 5 - The Far-Infrared Mission (XMM) spacecraft (Scientific Spectroscopy Mission (First) spacecraft Programme Cornerstone mission) (potential Scientific Programme Cornerstone mission)

The Telecommunications Programme A strong, coherent and unified Agency effort in space communications is needed to ensure that European industry can maintain and expand its competitive position in this market, and to enable Europe to operate efficiently and independently in other space fields.

More specifically, the fulfilment of the above broad guidelines requires a well­ directed Agency effort in accordance with the following Programme objectives: - to develop, and ultimately test in orbit, specific advanced space techniques ·that will contribute to the long-term development of established communications systems - to demonstrate and promote new space-communication services for the expansion of European activities and the development of a larger European commercial market, as the necessary pre-requisites of any successful export effort for launch at the beginning of 1995. Space Station. Life sciences and fluid­ - to support other space missions and - A solid-Earth research and application physics researchers will be the main applications, such as Space Station mission for launch in 1993. users of the manned laboratories, while and remote sensing, through inter alia - A climatology and atmospheric­ crystal-growth and metals-processing the development of a European science programme and its proposed activities will be mainly performed on the space-communications infrastructure. extension with studies, measurement unmanned platforms. campaigns, instrument development and critical technology developments. The future phases of the Microgravity Programme are directed towards the The Microgravity Research Programme preparation and development of payload The Microgravity Programme is intended elements for the Columbus modules, the to prepare for the future utilisation of Attached Pressurised Module (APM) and microgravity in space and therefore, in a the Man-Tended Free Flyer (MTFF). The first phase, is promoting fundamental preparatory activities will involve: research in the materials- and life­ - future studies sciences disciplines, such as solidification - reflights of existing facilities or those physics, physical chemistry, fluid under development (e.g. Biorack, sciences, biology, biotechnology, human Autonomous Fluid-Physics Module, and animal physiology and medicine. It is Anthrorack, etc.) on the IML-1 and also establishing a database upon which Spacelab-02 missions future users from research institutes and - 10w-cosUshort-duration missions industry can draw for critical knowledge. (sounding rockets, parabolic aircraft Since the materials- and life-sciences flights, Shuttle 'Get-Away Specials') communities are likely to be a major user - Eureca flights of the future space infrastructure in low - a few new payload elements for Earth orbit, a prime objective of the Eureca, Spacelab and short-duration Programme is to prepare actively, by missions and Shuttle­ conducting the maximum number of independent flight experiments in space, for utilisation of the opportunities.

17 • bulletin 54

Figure 6 - The first European remote­ sensing satellite, ERS-1 (Earth-Observation Programme)

Figure 7 - The Eureca spacecraft (Space Station and Platforms Programme)

The Programme proposal therefore consists of the following elements:

- The Payload and Spacecraft Development and Experimentation (PSDE) Programme, which includes the development and the necessary in-orbit experiments to prepare for the communications-related missions foreseeable in the 1990s. - The Advanced Systems and Technology Programme (ASTP), which contributes to the technology support needed by the PSDE Programme. - A first operational European Data­ Relay Satellite (EDRS) System , as part of the future space infrastructure.

The space and ground segments of the Data-Relay Satellite System will provide cost-effective data-relay, information­ transmission, telemetry, telecommand and ranging services to the future European space programmes, including in particular Columbus, Ariane-5, Hermes and Advanced Earth Observation Satellites.

The EDRS system will be made available in a time frame compatible with the needs of the space infrastructure (i .e. around the mid-1990s). The space segment will consist of two satellites operating in the S- and K-bands, and will also include an optical pre-operational payload.

The Space Station and Platforms Programme The main aim of the Space-Station Programme is to prepare, as a long-term goal, for an autonomous capability for supporting man in orbit, for docking and robotics operations, for building, servicing and repairing space facilities, and generally for exploiting the low Earth orbit by establishing a manned space infrastructure.

In view of the need to approach this long-term goal progressively, and of the opportunity offered by the Space-Station Programme, the Programme objectives are to:

18 europe's long-term space programme

Figure 8 - The Olympus flight-model satellite under test in Canada (Telecommunications Programme)

Figure 9 - One concept for the Data­ Relay Satellite, DRS (Telecommunications Programme)

- develop and operate elements of the space infrastructure - provide capacity for users and promote the use of this capacity - prepare a European autonomous manned space capability.

These objectives will be achieved via the development and exploitation of Columbus.

Columbus development activities The present plan contains the following elements: - development of an Attached Pressurised Module (APM) as an integral part of the International Space Station, to be used primarily for materials sciences, fluid physics and life sciences - development of a Polar Platform (PPF), dedicated primarily to Earth­ observation disciplines - development of a Man~ended Free Flyer (MTFF), consisting of a pressurised module and a resource module; the MTFF will be used primarily for materials processing, fluid physics and life sciences - Columbus element launches; the APM will be launched by the Space Shuttle in 1996, while the Polar Platform and the MTFF will be put into orbit by Ariane-5 in 1997 and 1998, respectively - Utilisation Preparation Activities, which will develop and practise utilisation concepts and methods that will lead to efficient and well-organised exploitation of the space infrastructure, and 'will elaborate new payload accommodation and operations concepts. The activities foreseen include participation in Spacelab flights, simulating Space-Station conditions from both a hardware and an operations point of view - ground-infrastructure equipment and preparation activities for the initial operations.

The Columbus Development Programme will be undertaken with a phased approach. Phase-1, which has started at

19 • bulletin 54

Figure 10 - A concept for a future advanced communications spacecraft (Telecommunications PSDE Programme)

Figure 11 - The Attached Pressurised Module (APM) for the Space­ StationlColumbus Programme

the beginning of 1988, will last three years and cover pre-development work on all three Columbus elements.

A self-contained three-year pre­ development phase will provide a level of definition for the Columbus elements greater than that normally expected at the beginning of a main development phase (Phase-CID), and the associated programmatic data will allow a smooth transition to the full implementation phase.

Phase-2 should start - after approval by the Participating States - in January 1991 and will cover the full development, construction and in-orbit deployment of the three Columbus elements: APM, PPF and MTFF.

Columbus Exploitation Programme (CEP) This Programme will cover system operations (e.g . Space-Station services, servicing by Hermes, logistic support) and utilisation support (e.g . payload launch and recovery, user-support-centre operation) during the exploitation of the Columbus in-orbit elements.

The Space.:rransportation Programme The Programme objective here is to maintain an independent capability for Europe that both meets the foreseeable requirements of European and other users, and remains competitive with other space-transportation systems, existing or planned. In addition, a reusable manned transportation capability must be including its infrastructure, capable of The Ariane-5 Development acquired and employed for the supply transporting men and payloads, Programme, which will provide and servicing of the European space performing servicing and supply Europe with a multipurpose launcher infrastructure. missions in-orbit and returning to suitable for putting: Earth. (i) automatic spacecraft with a mass of In line with this objective, the up to 6800 kg into geostationary development of a new-generation The above goals, plus the need to transfer orbit; transportation system is being undertaken consolidate the present achievements (ii) the Hermes space plane, with a which includes: and to prepare for the future beyond the mass of 21 000 kg, into low Earth - The Ariane-5 launcher, including its year 2000, lead to the following main orbit; infrastructure, with improved programme elements: (iii) Columbus elements into various performance, reliability and cost­ - The Ariane-3/4 Operations Support low Earth orbits (the Man~ended Free effectiveness for launches into Programme, aimed at continuous Flyer and the Polar Platform). geostationary (GTO) , low Earth (LEO) improvement of Ariane-4 until a few The Ariane-5 development phase and Sun-synchronous (SSO) orbits. years before the end of its operational started at the beginning of 1988 and - The reusable space plane Hermes, lifetime (1998). will be finalised with three test flights:

20 europe's long-term space programme

Figure 12 - The Polar Platform (Space Figure 13 - The Man-Tended Free-Flyer, Station and Platforms Programme) MTFF (Space Station and Platforms Programme)

a coherent and efficient manner. The overall concept relates to: - the development and production of space-segment elements - the production and check-out of transportation systems for both automatic and manned missions - full operational status of launch sites and rescue facilities - the readiness of a communications i nfrastructu re - the availability of ground operations centres, including simulation and back-up facilities - the continuous construction, improvement and refurbishment of payload and experiment facilities - the availability of ground training facilities for space-segment crews, etc. two in 1995 for automatic missions, Preparation of far-term programmes and one in 1998 for Hermes. A space plan covering nearly 15 years The operations link is therefore present in - The Ariane-5 Operations Support of development effort must also look all programme areas, be it on the Programme (PAPA), which should beyond that period, with the aim of infrastructure side, with Ariane-5, Hermes, start in 1996 with the aim of achieving full autonomy still to be the Columbus elements and the Data­ continuously improving the vehicle's pursued. Two study and technology Relay Satellite (DRS), or on the user side operational capabilities. programmes are therefore proposed in terms of, for example, scientific, Earth­ - The Hermes Development aimed at preparing far-term programmes: observation or microgravity projects. An Programme, which will be undertaken analysis of the various needs has in a phased approach. Phase-1 of the - The European Manned Space resulted in the proposal to establish Programme, started at the beginning Infrastructure (EMSI) Programme, of 1988, will last three years and cover evolving from the present Columbus initial development work in order to effort. This study programme will, bring the space plane's design to from 1988/89 onwards, prepare the maturity. basis for future manned space capabilities, permitting a start to be It will validate the technologies made during the late 1990s on the needed to reduce the risks in the development of an autonomous Development Programme, confirm the European Space Station. Hermes servicing missions, in particular the HermeS/MTFF servicing - The Future European Space scenarios, provide the Ariane-5 Transportation Investigation programme with the data needed for Programme (FESTIP), to be initiated in the freezing of the vehicle's 1988/89, which will prepare Europe concept,ual design, and confirm the for a decision to develop, from the implementation of the necessary late 1990s onwards, a Space­ manned safety requirements. Transportation System beyond Phase-2 of the Hermes Development Ariane-5 and Hermes. Programme should start - subject to approval by the Participating States - The Space Infrastructure Operations in January 1991 and cover the full The step-by-step establishment of the development and construction effort. It European Space Infrastructure wi.1I will be completed with two impose a new approach on operations, qualification flights: one unmanned in both in space and on the ground, if the 1998, the other manned in 1999. various elements are to work together in

21 • bulletin 54

Figure 14 - Artist's impression of Space­ StationlColumbus

several self-standing operations Facilities for development phases will require the construction of a new programmes, as the user programmes The development work on the projects launch site, ELA-3, at the Guiana Space themselves will certainly not be able to and programmes that make up ESA's Centre in Kourou, French Guiana. The provide the full complement of resources Long~erm Plan will require considerable main facilities to be provided are: that will be required. support. In addition to the programme­ - A Booster Integration Building, in specific facilities to be set up in industry, which the huge solid-propellant The Future Ground Infrastructure this will entail : booster segments will be assembled The new Long~erm Programme will not - an increase in the scope and capacity and erected. only give the space segment a new of general-purpose, multiproject - A Launcher Integration Building. dimension, it will also require a ground facilities at ESTEC for supporting - A Final-Assembly Building, in which, infrastructure of a different magnitude, as industry depending on the launch Europe embarks for the first time upon - the possible building of two additional configuration, the payload composite, manned space programmes, with their large environmental test facilities at the Columbus elements or the particular safety implications. This new ESTEC to meet the needs of Ariane-5 Hermes space plane will be mated to approach also requires a new concept and its payloads the assembled launcher. for planning and setting up the ground - the setting up of an astronaut training - A Launch Zone. facilities coherently. In addition, nearly all complex covering the needs of both - A Launch Centre, from which the Agency programmes will be interlinked Columbus and Hermes. launch team will conduct and monitor through the technical capabilities and launch operations. advantages offered by the space Launch and landing facilities infrastructure's elements. The preparation and launch of Ariane-5 The Guiana Space Centre will also be

22 europe's long-term space programme

Figure 15 - The Ariane family of launchers, including today's versatile Ariane-4 series

ARIANE 1 ARIANE 2 & 3

A1 A2 A3

1835* 2175* 2600'

2 SOLID BOOSTERS

* Payload mass into GTO (kg) one of the two prime landing sites for - A Data-Relay Satellite System growing number and variety of user Hermes, the other being at Istres in the Operations Control Centre. communities, present planning foresees South of France. A number of back-up the setting up of user centres for different landing sites, at various locations around The future ESA ground network, based disciplines and/or regions. A centralised the World, will also have to be selected. on existing stations, will consist of three coordination and support unit will , main, overlapping subnetworks: however, be required to provide the Ground operations facilities necessary link between the ESA's existing ground infrastructure will - The Launch and Early-Orbit Phase users and the mission and control have to be considerably expanded to Network, consisting of a set of ground centres. cope with the planned European space terminals located at low latitudes infrastructure. This will entail setting up: around the World. Data will be acquired: - The Mission-Dedicated Network for - through the existing tracking network - A Central Mission Control Centre at full-time tracking, telemetry and and Earthnet stations for scientific, ESOC, from which all combined and control, as well as for data-acquisition meteorological and Earth-observation critical operations will be conducted. support for missions not using the missions - A Hermes Flight Control Centre. Data-Relay Satellite System. - via the Data-Relay Satellite ground - An Attached-Pressurised-Module - The Data-Relay Satellite Ground network, at terminals to be set up at Operations Centre. Network. ESRIN in Frascati and near t~e - A Man-Tended Free-Flyer Control processing and archiving facilities in Centre. Data-handling facilities ESA Member States for Columbus - A Polar-Platform Control Centre. In order to meet the requirements of a payloads.

23 • bulletin 54

Figure 16 - The Ariane-51Hermes composite

Data will be processed: basis for the successful competition of - at ESOC in Darmstadt, or at the European space industry in World ground stations, for scientific and markets meteorological missions - reduce the critical dependence of - directly at the receiving stations for Europe on US technology and Earth-observation missions, with more component supply which currently complete processing being carried exists in some areas out by Earth net - provide the means for demonstration - at specialised users' centres for and qualification of European microgravity payloads. technology through ground and flight testing. Data archiving The idea is to decentralise archiving as To achieve these objectives, the Agency far as possible. However, a central facility pursues three major programmes: will be set up at ESRIN for data-archiving network management and development. - The Basic Technology Programme for Present planning foresees that ESRIN will all the common domains of also be responsible for monitoring a technology applicable to medium­ unique data-dissemination network, which and far-term missions that advance will, in addition, be used for near-real­ technology to the point of time distribution of data. demonstrated feasibility. - The Preparatory and Supporting The ground investments required by the Technology Programme elements for various programmes of the Long.:rerm each of the major programme areas, Plan are being scrutinised critically in which advance technology to the order to identify possibilities for point of demonstrating flight suitability. rationalisation in terms of loading, - The In-Orbit Technology location and logistics. Utilisation of Demonstration Programme, which aria ne 5 existing facilities within the Agency or provides in-orbit demonstration -'--___. C belonging to national organisations, and opportunities for European commonality aspects between technologies that cannot be Q programmes, have to be taken into adequately tested on the ground. ---- 0 account. Coherence of the programme The Technology Programme The coherence of this European Long­ The prime goal of the Agency's Term Space Plan can be assessed on Technology Programme is to ensure the basis of four criteria: funding, effective technological preparation of performance, schedule and industrial Europe's future space projects, while policy. implementing a coherent European industrial policy directed towards Funding improving European competitiveness in After a transitional phase that has lasted World markets. One important several years, ·he three well-established contribution towards this objective classes of mission, i.e. science, remains the harmonisation of ESA and telecommunications and Earth national technology activities. observation, are now running at similar funding levels, while microgravity is This goal translates into more specific increasing gradually to reach the funding programme objectives, which are to: level necessary for preparing for - ensure timely availability of the utilisation of the Space Station. technologies needed to execute all programmes of the Agency The funding foreseen for the Space - maintain a high level of competence Infrastructure is already running at the in space technology in Europe as a required level. Basic technological

24 europe's long-term space programme

Figure 17 - The Man-Tended Free-Flyer Figure 18 - The Hermes spaceplane (MTFF) launch and in-orbit-servicing docked with Space-StationlColumbus scenario

research is undergoing a progressive but substantial growth, enhanced by the need for flight demonstration, which reflects the accelerating worldwide evolution.

The relation between mission-oriented user programmes (science, Earth­ observation, microgravity and telecommunications) and infrastructure­ oriented expenditures (launchers, Hermes, Columbus, DRS, technology) for the period 1987-2000 reflects the need for a continuous infrastructure effort and the fact that ESA is responsible in Europe for launcher and in-orbit infrastructure development that will subsequently be available for national and commercial missions.

The right balance will, however, be achieved when the proposed space infrastructure of the Long~erm Plan is fully operational.

25 ~ bulletin 54

Figure 19 - The ESTEC Test Centre

Performance infrastructure, of which the two Data­ the scenario will be influenced by the The Plan will allow Europe to develop the Relay Satellites form a major part. availability of a European manned necessary technology and bring it to transportation capability, which will allow fruition in the construction of innovative Schedule European autonomy to be fully infrastructural elements. In the area of The overall schedule and project established by the end of the century. space transportation, a heavy unmanned implementation is commensurate with the lift capability and a manned space­ availability initially of Ariane-3 and 4 The schedule ensures timely availability transportation capability will be launchers and occasional use of the of the necessary ground and space­ developed. The infrastructure foreseen Shuttle for Eureca and Spacelab operation infrastructures, in particular caters for permanently manned and man­ launches. From the mid-nineties onwards, through the launches of the DRS tended pressurised modules, as well as the emphasis will shift, with the satellites in the 1996 time frame. platforms in either polar or equatorial availability of Ariane-5 and Europe's orbits. In addition, provision is made for participation in the International Space­ the installation of the requisite operational Station Programme. In the late nineties,

1 Test area for small and medium-sized structures 2 The;mal and mechanical data­ handling facilities 3 Users' area 4 Spacecraft checkout room 5 Test preparation area 6 Physical-proper1ies machines 7 Vibration systems 8 Transport bay and airlock 9 Electromagnetic-compatibility area 10 Large Space Simulator

26 europe's long-term space programme

Figure 20 - Two examples of space­ technology development (a) Inflatable rigidised antenna (3 m diameter) being developed by Contraves for future satellites (b) Oocking/berthing latching subsystem being developed by Oornier System

For Columbus payload development, the equitable participation in the work of The competence of European industry lin spending profile is such that experiments technological interest. the various technological areas involved and facilities of the necessary quality and d. Exploiting the advantages of free in space research has developed performance will be available to meet the competition, except where progressively, usually drawing upon established integration, test and launch incompatible with other objectives. existing knowhow in associated areas schedules.

The Columbus Utilisation Preparation Activities will prepare the community for the quantum jump in flight opportunities that availability of the Space Station will bring. The culmination of these activities in the 1992/94 time frame is ideally phased with respect to the launchings of the Columbus elements.

Industrial policy One of the highest-ranking considerations behind the approval of the Agency's programmes is the aim of implementing an industrial policy that will satisfy Europe's technological aspirations. This goal , expressed in Article VII of the ESA Convention, can be summarised as one of: a. Meeting the requirements of the European and national programmes in a cost-effective manner. b. Improving the worldwide competitiveness of European industry through the promotion of space technology and development of an appropriate industrial structure. Ensuring all Member States an

27 (9 bulletin 54

Figure 21 - Funding overview for the Long-Term Programme (per mid-February 1988)

such as aeronautics and terrestrial telecommunications.

ESRO and subsequently ESA have influenced this development in two ways; initially by entrusting the building of satellites to a European industry that had still to master all the necessary technologies, and in a later stage by entrusting technological research projects to a larger number of firms.

The production capacity of the European firms most active in the space segment and the expected trend in this capacity compared with the foreseeable requirements of ESA programmes, national programmes and the commercial market, have been assessed several times. The most recent study on the future workload of European space industry has indicated the need to increase the numbers of skilled personnel in order to be able to meet the requirements of the new programmes now starting, such as Ariane-5, Columbus and Hermes. A major training effort directed at specialised engineers and technicians is therefore essential.

Cooperation with the United States In a speech on 25 January 1984, respective endeavours on the detailed and ESA defining the technical, President Reagan invited the United definition and preliminary design phase organisational and financial conditions of States' partners to participate in the of the Station. Canada and Japan, the cooperation. design, development and utilisation of an having also responded favourably to International Space Station. This offer President Reagan's offer, have concluded Since 1986, when negotiations on was accepted by the ESA Ministerial similar MOUs. Europe's role in the Space Station began Council, meeting in January 1985, while in earnest, the object of these emphasising the need for achieving In parallel with the technical definition discussions has been to give substance genuine partnership as proposed by work during the different steps of to the genuine partnership offered by President Reagan. Phase-B, initial discussions on the legal President Reagan. ESA's Member States framework for future cooperation in the have made it clear from the outset that to On the basis of the arrangements for the development and operation of the them partnership meant a meaningful Columbus Preparatory Programme, the International Space Station have taken involvement in a truly international Space Agency negotiated with NASA the place. These discussions concluded that, Station, with multilateral and bilateral Memorandum of Understanding (MOU) due to the importance of such a long­ coordination and all partners retaining on Phase-B studies for a Space Station. term cooperative venture, a two-fold rights over their contributions, within the This MOU, approved by Council on 25 approach had to be adopted; namely to limits of technical and operational April 1985, was signed by the ESA establish on the one hand, an Inter­ constraints. The discussions with the US Director General and the NASA Governmental Agreement (IGA) between representatives therefore dwelt largely on Administrator on 3 June 1985 in Paris. Its the United States and the ESA Member four items of major importance to purpose was to define the arrangements States as the political basis, and on the Europe: and conditions governing the relations other to conclude a Memorandum of - jurisdiction and control between NASA and ESA during their Understanding (MOU) between NASA - future evolution

28 europe's long-term space programme

Figure 22 - Schedule overview for the Long-Term Programme (per mid-February 1988)

PROJECT 87 88 89 90 91 92 93 94 95 96 97 98 99 2000 COMMENTS the progressive buildup over the next few SPACE TELESCOPE ____~~~~. O.p.E.RA.n.. O.. N------APPROVED, l.D.U.R.' years, it will lead between 1986 and 1994 ULYSSES ~ APPROVED, L.D.U.R. to a doubling of the resources provided HIPPARCOS ~ APPROVED, l.D.U.R. OPERAll0N by European Governments for the ISO APPROVED, l.D.U.R. OPERAll0N STSP 1 (SO HO) APPROVED Agency's programmes. However, this still OPERAll0N STSP 2 (CLUSTER) - APPROVED appears a modest effort not only in OPERAll0N MEDIUM 1 - LYMAN, QUASAT OR OTHER OPERAll0N absolute terms, seen against the overall ~ CORNERSTONE 2 (XMM) OPERATION programmes of the other space powers, ~ SPACE STATION 1 EURECA B OPERAll0N MEDIUM 2 but also on a per-capita basis. CORNERSTONE 3 LAUNCH END 2001 OPERATION SPACE STATION 2 The planned European Programme is CORNERSTONE 4 LAUN<:H END 2004 characterised by the high degree of MEDIUM 3 LAUNCH 2003 SPACE STATION 3 LAUNCH 2001 integration of its various elements and by MEDIUM 4 LAUNCH 2006 the fact that it can, to a large extent,. be P2 Mm M02 M03 OPERATION METEOSAT OPERATIONAL APPROVED, L D's.U.R. LAUNCH OPERATION executed without recourse to non­ ERS-l - APPROVED LAUNCH OPERATION European products, facilities or services. a ERS-2 - LAUNCH OPERATION SHARED LAUNCH ~ SOUD EARTH - 5; LAUNCH OPERATION POlAR ORBIT PROG. 1 _ INITIAl PHASE The implementation of this Programme ~ LAUNCH POlAR ORBIT PROG. 2 • MID-TERM EXTENSION will permit a substantial broadening of POlAR ORBIT PROG. 3 LONG-TERM EXTENSION LAUNCH OPERATION LAUNCH POST-2000 ~ 2ND GEN. METEOSAT the scope of European space activities, EOPP I ••••••••••••••••• : ••~.!.: -.. ~.:.~.~.~ ...... I •• I •••••••••• APPROVED (EXCEPT EXTENS.) similar to that which followed the 1971 IMLl EURl D2 APPROVED ~ PHASE 2 and 1973 package deals. The latter 1li PHASE 2 EXTENSION IML2 EUR2 03 IML3 eUR3 APM opened up commercial space ~ PHASE 3 EUR4 MTFF EURS ~ PHASE 4 exploitation to Europe and enabled F5 READY OPERATION ECS LAUNCH DATE UNDER REVIEW European industry to compete with the READY FOR LAUNCH OPERATION ~ OLYMPUS - LAUNCH DATE UNDER REVIEW o DRPP USA in unmanned space transportation. DRS DR5-1A D ~ DRPP APPROVED lA1lB 3 OPERAll0N The new Long~erm Plan will permit a ~ PSDE TECHNO MISS. 1 OPERAll0N 2 PSDE-AOTS - further development of European space­ 1ST LAUNCH 2ND LAUNCH EURECA-A IN.QRBrr FOR 6 - 12 MONTHS ---ri:UNCH transportation capabilities, including a EURECA-B LAUNCH OPERAll0N manned transportation and habitation ATTACHED MODULE LAUNCH !li POlAR PLATFORM - capability which will eventually lead to fulll LAUNCH 1ST HERMES SERV. MTFF -__ SERVICING EVERY 6 MONTHS European autonomy in space. EMSI 1ST FLIGHT OPERATION ARIANE-4 8 LAUNCHESIYR UNTIL 1994 THEN 3/YR IN 1998 Pursuit of this goal is justified not only by ARIANE-4 PAPA ARIANE-5 501502 345 506 LAUNCH. AFTER 1996:1997:4, the existing and ever-growing - 1998: 6. 1999: 9, 2000:9 III ARIANE-5 PAPA requirements of a wide variety of users, 0 1 02034 5 HERMES _ 2 LAUNCHESIYR AS OF 1999 FESllP 1 FESllP 2 but also by the increase in knowhow and FESTIP PHASE CID ability it will give to Europe's aerospace • LO.U.R. .... l aunch Dole Under Review industry, not to mention the broadening of economic perspectives and the technological spin-offs it should trigger. ~

- protection of the partners, and prepared the ground for the successful - the civil status and 'peaceful conclusion of the legal documents purposes' of the Space Station. forming the basis for international cooperation in the Space-Station During their Meeting on 9 and 10 Programme. November, the Ministers confirmed their interest in participating with the United Conclusion States in the International Space Station, The European Long~erm Space Plan, and established clear instructions for the outlined above and approved by the ESA negotiation rounds still required for Council at Ministerial Level last finalising the MOU and IGA texts. The November, represents a major increase ESA Council at Ministerial Level thus over the past level of effort. Indeed, after

29 • bulletin 54

Analyse des facteurs de coats des experiences embarquees sur vol habite

G. Naja, Direction Station spatiale & Plates-formes, ESA, Paris D. Kaplan, Matra Espace, Velizy, France

Le programme Columbus, qui est Introduction scientifiques, industriels et agences; entre dans sa phase CID le 1er 11 est necessaire de pouvoir controler et ensuite, les conclusions de I'etude janvier 1988, offrira aux utilisateurs reduire les coOts des missions de applicables a Columbus, sur la des possibilites considerables Columbus, et donc, en particulier, les preparation des missions, le probleme de d'acces It I'espace, qu'iI s'agisse de coOts de developpement, de la documentation et de la familiarisation la capacite de ses differents elements qualification, d'integration et d'utilisation de I'utilisateur, l'entraTnement des ou de la duree des missions. des charges utiles, mais aussi de astronautes, la reduction des delais et la Cependant, I'extrapolation It preparation et d'entraTnement pour la coordination des ditterentes equipes. Columbus des coOts de mission. Dans ce contexte, il a ete developpement et de vol des charges interessant de pouvoir beneficier de Principaux resultats de I'etude utiles de type Spacelab montre qu'iI I'experience d'un industriel comme Matra, Interface experiencelvehicule est necessaire de les reduire si I'on experience d'ailleurs unique puisque Les deux missions ont eu lieu a trois ans veut rester dans des IImites I'experience 'Echographie-Doppler' a d'intervalle; I'echographe a vole a bord budgetaires compatlbles avec le plan deja ete embarquee sur Saliout et dans de Saliout en juin 1982 et sur la Navette It long terme de l'Agence. Afln de le p~nt intermediaire de la Navette spatiale en juin 1985. Les deux modeles determiner les facteurs de coOts spatiale. De plus, I'echographe* va, dans ayant vole sont en fait identiques quant Intervenant dans des missions une version amelioree nommee 'As de aux fonctions specifiques, mais 'habltees', et les moyens de les coeur', voler a bord d'Anthrorack (mission I'echographe a dO etre adapte redulre, une etude a ete sous-traltee 02), sur la station Mir lors du deuxieme mecaniquement pour prendre place It Matra, portant sur une experience vol franco-sovietique (mi-1988) et a dans le 'middeck locker' (espace de mise au point par la flrme et menee It nouveau dans la Navette (vol prevu en rangement du p~nt intermediaire de la la fols dans la station Sallout et le 1989). Navette). Les contraintes pour I'utilisateur pont Intermediaire de la Navette lors de la preparation des deux missions spatiale. La synthese des resultats de t:etude realisee a porte sur les deux vols - en termes de documentation a fournir, I'etude est presentee Icl, alnsi que deja effectues de I'echographe, et a de revues d'aptitude au vol - etaient a les conclusions pouvant en Atre consiste en une comparaison qualitative peu pres semblables; mais les tlrees pour Columbus. et quantitative de ces deux vols, en contraintes mecaniques etaient tres insistant sur leur preparation, differentes, que ce soit pour le transport l'entraTnement des astronautes et la en orbite ou pour I'installation de repartition des coOts. I'experience; ainsi, dans le cas sovietique, le transport de I'experience se fait dans t:articie est divise en deux parties: tout des conteneurs standards emportes par d'abord la presentation des principaux Progress, et une fois en orbite les resultats de I'etude, avec la comparaison interfaces experienceslvaisseaux sont qualitative des deux missions, reduites au minimum (Ies experiences I'importance des delais sur les coOts, le sont accrochees dans Saliout par du role des astronautes et leur entraTnement, Velcro) , alors que les interfaces avec et I'importance de la relation entre I'espace de rangement du p~nt intermediaire de la Navette sont un peu • Appareil permettant d'etudier I'evolution de plus complexes, a cause des contraintes la fonction cardio-vasculaire de I'astronaute en imposees par la phase de lancement. microgravite.

30 coOts des experiences sur vol habite

Preparation des missions augmente d'autant les coOts. Un essai au Enfin, I'etude a montre I' importance En revanche, la preparation de la mission moyen du programme PRICE a ainsi fondamentale des bonnes relations entre a ete tres differente: le planning de mise montre que I'augmentation relative de industriels, agences et scientifiques. Les au point de I'echographe pour Saliout a coOt etait egale a la moitie de circonstances particulieres du ete tres serre puisque la selection des I'allongement relatif des delais. developpement de I'echographe, en experiences a eu lieu fin 1979, les moins de 18 mois, ont exige une relation interfaces des experiences ont ete fixees Letude a egalement perm is de mettre en tres etroite (all ant jusqu'a la sous­ en septembre 1980 et les modeles de evidence I'importance de I'entrainement traitance) entre le scientifique, auteur du qualification testes et livres fin 1981 (le des astronautes et leur role essentiel premier prototype, et I'industriel charge vol a eu lieu a la mi-1982). Sur une dans le succes des deux missions. 11 faut d'en realiser la version spatiale, le duree de developpement de deux ans et remarquer que pour une experience premier etant charge de definir la demi, a peine plus d'une annee a donc comme celle de I'echographe, performance scientifique de I'appareil, le ete disponible pour la realisation et la I'astronaute est a la fois operateur et sujet second assurant les specifications livraison de tous les modeles. En de I'experience, et son role en est fonctionnelles et la conception optimale revanche, la mission avec la NASA qui d'autant plus critique. Dans les deux cas, de I'interface homme-appareil. Les coOts consistait a embarquer de nouveau une les astronautes ont ete incorpores aux ont ainsi pu etre reduits par une plus experience, a beneficie d'environ deux equipages et ont subi le meme entraine­ grande responsabilisation de I'industriel ans pour proceder a I'adaptation de ment general que les autres membres vis-a-vis des problemes de securite et de I'echographe. De plus, la preparation de des equipes. De plus, Patrick Baudry, qui qualite - ce qui a permis d'utiliser des la mission avec la NASA s'est trouvee a vole a bord de la Navette, etait le sous-systemes aux normes militaires, considerablement amelioree du fait de remplac;:ant de Jean-Loup Chretien, qui a moins chers que des sous-systemes qui I'experience precedente; en particulier, vole sur Saliout, et vice versa pour la auraient dO etre conc;:us selon des les processus de recette et de mission NASA, ce qui a permis normes les plus extremes, i.e. les normes qualification de I'echographe ont pu etre d'optimiser I'exploitation de I'echographe. spatiales. Le pourcentage des coats simplifies, I'echographe ayant deja ete concernant la qualite et la securite s'en qualifie en vol et beneficiant ainsi d'une Mais le facteur de succes le plus est trouve reduit d'autant et, au total , le grande credibilite. Le premier vol s'est important a ete I'entrainement direct des coat du projet '()chographe' a ete Ms aussi repercute sur le second au niveau astronautes par I'equipe scientifique de modere au regard de projets spatiaux de I'efficacite scientifique: le premier vol I'echographe; I'enseignement tire a ete comparables. ayant permis de determiner que les que I'astronaute doit s'entrainer chez modifications physiologiques attendues I'utilisateur avec I'utilisateur. En effet, a Conclusions pour Columbus se produisaient plus tot que prevu , il a cause de la disponibilite tardive des 11 est tentant d'appliquer directement a ete demande a la NASA de pouvoir astronautes et du planning tres serre, le Columbus tous les enseignements tires commencer les mesures des I'arrivee en contact de ceux-ci avec I'industriel, qui de I'experience de I'echographe. orbite, et les protocoles experimentaux aurait pu les entrainer, a ete tres restreint. Cependant, il faut se rappeler la au sol, apres le retour, ont ete egalement Le probleme s'est pose pendant la specificite de I'echographe, appareil modifies a la suite du premier vol. mission Saliout avec d'autant plus autonome et conc;:u pour un systeme d'acuite que I'entrainement et, de (Progress-Saliout) aux interfaces Facteurs de coOts maniere plus generale, tous les aspects minimales. Aussi cette etude n'a-t-elle pu Letude des facteurs de coOt de ces deux operationnels sont tres centralises en aborder tous les problemes qui vont se vols a permis d'identifier un element URSS; de fait, I'entrainement sur la poser aux utilisateurs de Columbus, essentiel de la 'facture' finale: les delais charge utile etait assure par des utilisant des racks a usages multiples, (et surtout les reports). En effet, les coats 'entraineurs' officiels, et I'equipe c'est-a-dire des problemes de sont etablis au debut du projet sur la scientifique de I'echographe avait dO compatibilite, de gestion centralisee des base des devis correspondant aux entrainer les entraineurs. Aussi, les donnees, d'interfaces complexes. activites necessaires pour la realisation contacts directs entre astronautes et Neamoins, I'une des caracteristiques de des equipements dans le temps imparti. utilisateur (I 'equipe scientifique), bien que I'echographe, son planning tres serre de Ceci impose de bien prevoir les peu nombreux, ont-ils permis un developpement, est representative de enchainements des taches successives complement d'entrainement tres efficace. Columbus, pour lequel I'un des objectifs ainsi que les approvisionnements dont Le probleme etait different aux Etats-Unis, majeurs est de reduire les delais. Des tout retard pe ut venir bousculer les ou scientifiques et industriels franc;:ais conclusions generales peuvent etre previsions. En cas de retard (tests a pouvaient avoir une relation directe avec tirees afin d'ameliorer I'efficacite de refaire, date de lancement retardee, etc.), les equipes operationnelles, et beneficier I'utilisation de Columbus et d'en diminuer les equipes restent a disposition, ce qui d'un entrainement en partie decentralise. les coats.

31 • bulletin 54

Figure 1 - L'echographe pr~t a voler a bord de Progress

Figure 2 - L'echographe version rangement dans le pont intermediaire de la Navette

Figure 3 - L'echographe version Saliout

- '""'!"!I"'-- 2

3

Familiarisation de I'utilisateur il conviendrait qu'ils puissent se faire le procedures et donc de modeles Le probleme de la documentation, et plus pres possible de I'utilisateur lui­ necessaires. plus generalement du mode meme, c'est-a-dire de maniere d'i nformation de I'utilisateur potential pour decentralisee. Entrainement des astronautes parvenir a une connaissance optimale du Le role de I'astronaute et de son systeme et de ses interfaces, influe Qualification entrainement est considere comme fortement sur les coOts. Fournir a 11 semble ensuite important de simplifier, preponderant. Ameliorer I'efficacite de I'utilisateur une documentation sans pour autant relacher les contraintes I'entrainement par des contacts directs importante, et lui demander en retour un de securite, les procedures de avec les responsables scientifiques de nombre impressionnant de documents qualification des charges utiles. A ce I'experience - c'est-a-dire I'entrainement techniques sur son experience est tres sujet, il faut remarquer - et I'etude I'a de I'astronaute par I'utilisateur sur un coOteux en temps et en argent. II est confirme - que le nombre d'exemplaires modele similaire au modele de vol - sans doute plus simple de limiter le plus d'un appareil (entrainement, qualification, permet egalement I'amelioration de la possible le flot de documents, et identification des interfaces, etc) devant performance de I'experience (ce qui a d'informer I'utilisateur au moyen de etre developpe pour une mission donnee ete constate a bord de Saliout) en materiel reel ou de baneS d'essai et de est un facteur de coOt essentiel. Aussi apprenant par exemple a I'astronaute a simulation, afin de lui permettre doit-on tenter de minimiser, par une reparer des defaillances sans gravite de d'apprehender directement les meilleure responsabilisation de I'industriel I'experience en orbite, et reduit le temps specifications et les interfaces. Afin et une synergie entre les ditterentes de preparation de la mission. De plus, d'optimiser familiarisation et entrainement, parties concernees, le nombre de I'experience de I'astronaute est

32 coOts des experiences sur vol habite

Figure 4 - Interface homme-appareil sur Echog,aphe la Navette Challenger 51E 1985 Module A Paid, 37 kg Profondeur .. 21 mm Hauteur 3, 4 mm l argeur 497 mm Modul. B Paid. 36 kg Protondeut .... 2 mm Hauteur 31 . mm Largeur 497 mm

Double lockers : 19 kg Accessolres Accessories 1 kg

1. Electrodes ltlectrocardlogramme 2. Ecouteurs de signal dappler 3. Sonde dappler (vltesse de la circulation sanguine) 4 . Sonde mode templ-mou .... emenl pour vlsuaUsatlon cardlaque 5 . Ecran vidlto de visualisation dlrecte des organes O. Megnttoscape enreglslreur 7. Sondes pour I'imagene 6chotomographique (plan en coupe des organes)

irrempla9able au cas ou I'appareil volerait necessairement centralise, celui de Lexperience acquise au cours des deux a nouveau, surtout bien sOr avec un I'integration systeme, do it etre minimal. vols de I'echographe, et au fur et a appareil de physiologie humaine comme mesure du developpement de sa version I'echographe. Coordination des equipes amelioree 'As de Coeur ', nous montre Enfin, une bonne coordination entre donc des voies a explorer pour preparer Preparation de la mission l'Agence, I'industriel et le scientifique au mieux I'utilisation de Columbus et Mais le facteur le plus important reste, permet une repartition optimale des pour faire le compromis optimal entre comme on I'a vu , les delais entre la taches. En particulier, une implication retour scientifique, succes des missions conception de I'experience et son vol. 11 plus grande du scientifique apporte au et coOts de developpement et faut optimiser ces delais et eviter tout projet spatial un savoir-faire specialise a d'utilisation. Ces enseignements, tires des retard; pour cela, il faut reduire les temps un coOt modere, contribue a la experiences vecues, que nous pourrons de preparation, surtout au niveau integre, motivation des equipes et permet plus appliquer lors des vols de simulation niveau ou la preparation est la plus de souplesse dans la gestion et avant Columbus, doivent constituer le coOteuse, puisqu'elle suppose I'utilisation I'avancement du projet. Cette point de depart du programme de de maquettes completes du systeme et coordination est due en grande partie, preparation de I'utilisation de de sa charge utile, a haute fidelite de dans le cas de I'echographe, a la relative Columbus. ~ reproduction. La reduction des delais et simplicite de sa conception pour un la suppression de retards eventuels appareil somme toute assez complexe passe aussi par une organisation efficace d'un point de vue electronique, mais qui du deroulement de la mission, sans a pu etre fonctionnellement modularise, doute, certains niveaux (familiarisation, et a la necessite de s'adapter a un entrainement, premier niveau calendrier tres serre; elle ne sera d'integration) peuvent-ils etre utilement cependant pas facile a etablir dans un decentralises, ce qui permet de gagner projet comme Columbus, dont les du temps et facilite le 'parcours du charges utiles servent de multiples combattant' de I'utilisateur, et le niveau util isateu rs.

33 G bulletin 54

The Olympus Propagation Experiment OPEX - A Unique Example of European Cooperation

G. Brussaard, Electromagnetics Division, Electrical Systems Department, ESA Technical Directorate, ESTEC, Noordwijk, The Netherlands

One of the four payloads to be OPEX individual horn antennas (Fig. 2). These carried by the Agency's Olympus-1 The Olympus-1 satellite (Fig. 1) will carry signals are designated BO, B1 and B2 , communications spacecraft, due for four distinct payloads for satellite­ respectively. BO will be transmitted at launch early next year is the so­ communications experimentation and 12.5 GHz and will deliver 10 dBW of called 'Propagation Payload'. It will research : radiated power (EIRP) over the entire transmit three stable radio-beacon visible Earth (Fig . 3) . The B1 (20 GHz) signals covering primarily Europe, but - a Direct-Broadcast Service (DBS) and B2 (30 GHz) antennas are designed also visible from the East Coast of Payload to cover Western Europe with an El RP of the USA. These beacon signals will - a Specialised-Services Payload 24 dBW. be measured by calibrated ground - a 20/30 GHz Advanced stations to study the effects of the Communications Payload The high effective radiated powers of the atmosphere on microwave propaga­ - a Propagation Payload. beams, and hence high flu x densities on tion. This data is indispensable for the ground, will allow the experimenters the planning of new satellite Experimental utilisation of the first three to use relatively small earth stations, with communications systems using payloads involves ground transmissions antennas ranging from 1 to 6 m in frequencies in the 20/30 GHz bands. to the satellite and hence sharing of diameter. The beacon frequencies are all available satellite time among derived from a common oscillator, which A project involving intensive experimenters. This is coordinated will allow coherent detection of all three cooperation between the numerous through the Olympus Utilisation beacons. This feature provides the experimenters working with the Programme (see Bulletin No. 50, May possibility to conduct special experiments Propagation Payload has been set up 1987). The Propagation Payload will allow and allows several alternatives for earth­ with a view to defining standards for ground reception by all participants station design. ground-station hardware and data­ simultaneously and will be available processing and analysis methods to continuously. Its utilisation, therefore, is An interesting feature of the coverage of allow free exchange and pooling of not a matter of scheduling. In fact, the the 20 and 30 GHz (B1 and B2) beacons experiment results. This cooperative high level of interest shown by many is that reception on the east coasts of the endeavour is being coordinated by research institutes in using this payload USA and Canada is not excluded, albeit ESTEC under the name 'OPEX'. has led to a programme of intensive with reduced signal power and stability cooperation in preparing for the (Fig . 4) . propagation experiments with Olympus. The background to and content of this Stability and purity are important design unique voluntary cooperative project, criteria for the beacons. Amplitude coordinated by ESAIESTEC under the stability is required for high-accuracy name 'OPEX' (Olympus Propagation measurements of attenuation by EXperiment), are described here. calibrated earth-station receivers. Phase stability and purity allow the use of very Characteristics of the Olympus narrow bandwidths, increasing the Propagation Payload dynamic range of attenuation This beacon payload consists of three measurements. High polarisation purity is microwave transmitters that will produce required for the measurement of cross­ three unmodulated continuous-wave polarisation induced by the signals for transmission via three atmosphere.

34 opex

Figure 1 - The Olympus spacecraft Figure 2 - The Olympus propagation beacon payload (enlargement from Fig. 1)

14/11 GHz bands, the employment of 'safety margins' usually means that such outages typically occur for less than 0.1% of the time. The ever-increasing demands for capacity, however, are now necessitating exploitation of still higher frequencies, where the atmospheric effects impose much more severe limitations on system performance. So much so, in fact, that future system design will often be conditioned by propagation considerations.

As propagation is a much more critical factor at higher frequencies, with higher outage percentages having to be budgeted for for systems using frequencies above 20 GHz, more In its normal operating mode, the B1 Background to the propagation detailed models of atmospheric beacon will be transmitting with mission influences are now required for the alternating orthogonal polarisations (N - S The influence of the Earth's lower design of future advanced systems. and E-W). The switching frequency will atmosphere on the propagation of radio There is a urgent need for experimental be 1866 Hz. This arrangement allows waves did not pose severe problems for data to supplement theoretical measurements of co-polar and cross­ the design of satellite communications predictions based on physical modelling. polar signal components at both systems operating at 6/4 GHz. At The Olympus Propagation Payload will polarisations. This is important as it frequencies above 10 GHz, however, this provide Europe with the means to is the only means of fully characterising influence can no longer be ignored. conduct active experiments to provide the atmosphere's effect on signal Attenuation due to clouds and rain limits this information. propagation. Full measurement of all the performance of high-reliability eight signal components (amplitude and systems. Cross-polarisation and scattering History of European cooperation phase, co- and cross-polar, N-S and due to precipitation and ice may cause Between July 1976 and October 1977, E-W polarisation) with the requisite interference inside a system or between NASA's ATS-6 satellite was placed at accuracy is rather complicated. Similar different systems. 35°E longitude and its beacon facilities measurements were made in the early gave the European scientific community seventies with the Comstar satellites in These effects have been studied in an opportunity to carry out propagation the USA, but at that time the recent years with a view to estimating the experiments. These included the so­ complications of earth-station receiver number and duration of system outages called Millimetre-Wave Experiment with design led to rather low participation in likely to occur under extreme conditions. onboard beacons operating at 20 and the overall experiment. For today's systems that operate in the 30 GHz, and the Comsat experiment

35 • bulletin 54

Figure 3 - Coverage of the Olympus BO beacon from 19°W

Figure 4 - Coverage of the Olympus B2 beacon from 19°W

using a transponder arrangement allowing 13 and 18 GHz uplink • measurements.

Unfortunately, these experiments could • only be carried out during certain hours • of the day, or rather night. Moreover, rather complicated arrangements were necessary for participation, including dissemination of schedules, loan of !/ "," A I ",", '/- 1 dB transmitting equipment, and centralised I,,'" / processing of the uplink measurements. ESA was therefore asked to coordinate European participation in the experiments and to represent European experimenters vis-a-vis NASA and Comsat. This led to the establishment of a European experimenter group, which met regularly during the project and published its collective results in an ESA Special Publication (ESA SP-131 , 1977).

Another example of European cooperation in propagation research was initiated in the framework of the COST (Cooperation scientifique et technique) project funded by the European a J • • Commission. Between 1972 and 1977, the results of propagation experiments

36 opex

conducted above 10 GHz in thirteen formats for presenting the various Organisation of OPEX different countries were collectively statistics obtained. Thus, in the previous 15 years an active analysed to gain a better understanding European community of researchers in of the variations of propagation effects The OTS experiments themselves were the field of radio propagation had been with climate. In this project, known as coordinated by ESA and Eutelsat established and the scene was set for COST 25/4, mainly already-analysed together. The habit of convening the further collaboration. When plans for a results from many invidual experiments coordination meetings of experimenters large satellite carrying a number of were put together and compared, and at the various participating institutes experimental telecommunications some special analyses were carried out across Europe, initiated for the COST payloads were taking shape in the late by individual experimenters for the project. 25/4 project and followed since for many seventies, this community was called other COST projects, has led to an upon to input their requirements for a It soon became clear, however, that a intensive exchange of information. This propagation experiment. ESA's higher level of collective analysis would approach has proved indispensable in specifications were drawn up in have been possible if the statistics terms of promoting cooperation at the consultation with prospective obtained from the measurements had working level. experimenters. It quickly became clear been put into a common database and that there was wide interest in such made available for collective analysis. Collective European results from these experiments and a need existed for This approach was followed in a satellite propagation experiments have regular information exchange in the subsequent project called COST 205 been made available to the International preparatory stages. As early as 1980, (1978-1984), in which 11/14/18 GHz Telecommunications Union (ITU) , where meetings were held between the propagation data obtained with the ESA they form a major part of the database of interested parties, both researchers and satellite OTS and the Italian satellite Sirio CCIR Study Group 5, charged with the industry. Since then , these meetings have were collated and analysed. This development of worldwide models for the been taking place on a regular basis. required a higher level of cooperation, prediction of propagation effects on radio including agreements on standard communication systems. Based on prior experience with the

Table 1 - Participants in aPEX

Organisation Location Organisation Location

Technical University Graz Graz, Austria CSR IIkley, UK Austrian Solar & Space Agency Vienna, Austria BTRL Martlesham, UK Bell Telephone Manufact. Co. Antwerp, Belgium Portsmouth Polytech. Portsmouth, UK Newtech Antwerp, Belgium BAe Stevenage, UK EBU Technical Centre Brussels, Belgium Politecnico di Milano Milan, Italy UCLlLab. de Telecomm . Louvain-Ia-Neuve, Belgium CNR/PSN Rome, Italy CRC/Radio Prop. Lab. Ottawa, Canada Fond. Ugo Bordoni Rome, Italy FTZ Darmstadt, W. Germany Selenia Spazio Rome, Italy Dornier System Friedrichshafen, W. Germany Telespazio Rome, Italy Inst. fOr Rundfunktechnik Munich, W. Germany CSELT Turin, Italy DFVLR Oberpfaffenhofen, W. Germany Telecomm. Research Est. Kjeller, Norway P&T/Radio Comms. Office Copenhagen, Denmark ELAB Trondheim , Norway Elektronikcentralen Copenhagen, Denmark NIVR Delft, The Netherlands TUD/Electromagn. Inst. Copenhagen, Denmark Technical Univ. Delft Delft, The Netherlands ETSI Telecomunicacion Barcelona, Spain Technical Univ. Eindhoven Eindhoven, The Netherlands ETSI Telecomunicacion Madrid, Spain APT Huizen, The Netherlands CNET Paris, France Dr. Neher-Lab. PTT Leidschendam, The IRAM Grenoble, France Netherlands EUTELSAT Paris, France Universidade Aveiro Aveiro, Portugal March Microwave Braintree, UK Swedish Telecom. Radio Farsta, Sweden Univ. of Bradford Bradford, UK Helsinki Univ. of Technol. Espoo, Finland Signal Processors Cambridge, UK Virginia Tech . Blacksburg, USA Rutherford Appleton Lab. Chilton, UK NASAlJPL Pasadena, USA Univ. of Essex Colchester, UK NASA HQ Washington DC, USA

37 • bulletin 54

COST projects, the general consensus Results and outlook database for satellite communications was that collective development of The first result of the work of the OPEX systems design be achieved. specifications for earth-station hardware group was the issue of three handbooks, as well as procedures for data as mentioned above. The handbook for Conclusion acquisition, preprocessing and analysis, receiver design, rather than constraining Fifteen years of cooperation between would be very beneficial for development by specifying a particular research institutes in Europe have experimenters and would greatly design, gives a clear output specification resulted in a level of international enhance the results obtained. This work and quality criteria as well as several cooperation and coordination that will was started in 1984 with the ideas for design alternatives and trade-off ensure that maximum benefit is derived establishment of three working areas. A wide variety of earth stations from the planned Olympus propagation groups: can be used, ranging from very small experiments. Furthermore, the 20/40/50 stations for attenuation measurements GHz beacon payloads planned for the - Working Group 1 only, to elaborate stations for a full co­ Italian Italsat satellite, which will have Earth-Station Requirements polar and cross-polar experiment. A similar characteristics, will allow Chairman: Mr S.K. Barton (UK) number of stations have already been experiments at even higher frequencies built, and others are under development, to be carried out in the nineties with the - Working Group 2 based on these recommendations. same level of cooperation. Data Acquisition and Preprocessing Chairman: Mr F. Zelders (NL) The second handbook, concerning The final result should be the collation of procedures for data pre-processing, a very large database of statistics on - Working Group 3 analyses the requirements for data atmospheric radio-propagation effects, Data Analysis editing, data error-correction, and data which will be an indispensable tool for Chairman: Prof. A. Paraboni (I). reduction to include only interesting the design of Europe's future advanced 'events'. This is a fundamental satellite communications systems. ~ The overall objective of the OPEX project cornerstone of the collaboration; only if thus established was, and still remains, to the preprocessing and calibration of arrive at a level of standardisation that measured data is standardised in detail allows direct comparison of experiment will it be possible to compare results results without the usual uncertainties meaningfully. At the same time this regarding equipment quality and requires a level of cooperation and a compatibility of data-analysis procedures. willingness to standardise that is unique The work of the three Groups has in this type of voluntary collaboration. already resulted in the issuing of three handbooks, specifying quality objectives The material of the pre-processing and defining interfaces for data handbook has been condensed into a acquisition, preprocessing and analysis, specification for a 'model software' respectively. system, for which a contract study will be placed by the Agency to obtain a Participation in the OPEX meetings has detailed software design. This will been very encouraging and a high level possibly be followed by actual production of interest is being maintained. Each of standard software to be made meeting is attended by some 40 available for use by the experimenters, specialists drawn from all of the ESA thereby ensuring the maximum level of Member States. compatibility between results.

The possibility of carrying out The same activity has taken place for the experiments from the North American topics of data analysis and presentation continent has stimulated interest from a of results, the material for which has number of US experimenters also, and been collected in the third handbook. A regular contact with a NASA-sponsored design study, again possibly followed by group of researchers has been software production, will establish a truly established. The accompanying table lists European standard for the production of the organisations that are now actively propagation statistics. Only in this way involved in the OPEX endeavour. can the goal of providing a European

38 programmes & operations

Programmes under Development and Operations/ Programmes en cours de realisation et d'exploitation

In Orbit / En orbite

1988 I 1989 I 1990 I 1991 I 1992 I 1993 I 1994 PROJECT COMMENTS -1FIM~MJ\JI~sIDiNIDiJIFIMAJi1J\JI~sloINIDIJIFIMAI~JIJI"lS[O~DIJIFIMNMJIJINSIOIN1D1J\FI~~~JIJI~SIO[N[D1JIFI~"I~IJINSIOINIDIJIFIMNMJIJINSIOINID SCIEN ------OP$, FUNDED UNTIL PROG. IUE .•...•.•... END 1988 MARECS-1 ..••...... • Ww Z::;: Q::;: MARECS-2 ...•..••••...... •.. LIFETIME 5 YEARS t{..: ua: METEOSAl'2 ...... :J8 ~[ ECS-1 ...•...... ------LIFETIME 7 YEARS ECS-2 ...... ----- LIFETIME 7 YEARS

Under Development / En cours de realisation

1988 I 1989 I 1990 I 1991 I 1992 I 1993 I 1994 PROJECT COMMENTS JIFI~~~JIJI~SIDIN[DIJIFI~"I~JIJl"lSIOINIDIJIFIMNMJIJINSIOINIDIJIFIMNMJ\JINSIOINIDIJ\FIMNMJIJINSIOINIDjJjFl~1~J[Jl"lSJOIN[DIJ[FI~''I~JIJI''ISloINlc SPACE TELESCOPE ------+ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• LIFETIME 11 YEARS w u::;: ULYSSES #################################+ •••••••••••••••••••••••••••••••••••••••••••••••••• MISSION DURATION 4.5 YEARS U:::;: >=..: za: »:»»»» LAUNCHES: SOHD MARCH 1995: W(9 ~g~~~~~'i5JT(~~~) CLUSTER DEC. 1995 ~~ HIPPARCOS ~############~ ••••••••••••••••••••••••••• LIFETIME 2.5 YEARS "- ISO ...... LAUNCH 1992/93 ~; ...... LAUNCH DATE :qW ECS UNDER REVIEW 0..: OLYMPUS-1 ...... •...... LIFETIME 5 YEARS tda: -'(9 DATA-RELAY »»»»»»»»»> wo SATELLITE (DRS) SYSTEM OPERATIONAL 1996 ~a: "- PSDE/SAl'2 .> .> .> .> .> .> .> .> .> .> .> .> .> .> .> .> ~$.Hffi'WUIh0'/Zi~ffi0'lffuffiW;0"A09'4!0'ffi'lA! READY FOR LAUNCH MI0-1993 Z 0 ERS-1 ...... \i'~w EARTH OBS. PREPAR. ~~~ PROG . (EO PP) wa:::;: LAUNCH DATE METEOSAT P2/LASSO ~ ~8~ •.•....••..• UNDER REVIEW 0a:(9 1 ·2 r UO ...... M0-3 LAUNCH DATE Ii::;:g: METEOSAT OPS. PROG. UNDER REVIEW LA . LAUNCH DATES UNDER ..:'"w MICROGRAVITY REVIEW ~~g EURECA ...... ~a..a: 3 YEAR INITIAL DEVELOPMENT llli"'''- COLUMBUS PHASE Z LAUNCH DATES UNDER Qw ARIANE-2/3 ~'...... 0-,::;: REVIEW wg::;: ARIANE-4 ~...... •..•....•.••...... •...... •...... OPERATIONAL UNTIL END 1998 ~O~ Bsesg ARIANE-5 START MAIN DEVELOPMENT Za: PROG. JANUARY 1988 H 1 3 YEAR INITIAL ~"- HERMES DEVELOPMENT PHASE SEVERAL DIFFERENT TECH, IN-ORBIT TECHNOL. '1'-'1'-+'1''1'-'1'- PROG. DEMO. PROG. (PH-ll CARRIERS USED

DEFINITION PHASE > PREPARATORY PHASE o MAIN DEVELOPMENT PHASE • STORAGE <:> HARDWARE DELIVERIES ~ INTEGRATION '1'- LAUNCH/READY FOR LAUNCH • OPERATIONS - ADDITIONAL LIFE POSSIBLE ... RETRIEVAL

39 G bulletin 54 Telescope spatial

Les deux ailes du generateur so/aire de vol qui avaient ete livrees aux Etats-Unis il y a deux ans ont ete renvoyees en Europe au debut de cette annee. Une reunion de revue a eu lieu en fevrier pour convenir du programme de refection de ces ailes. Ce programme comportera le remplacement des nappes du generateur solaire par des nappes plus puissantes resistant a I'oxygfme atomique, la protection d'autres elements du generateur solaire de I'oxygene atomique, et des modifications mecaniques permettant de remplacer facilement les panneaux solaires en orbite.

Une revue de definition de base de reference du second generateur sola ire a eu lieu en mars 1988. Ce generateur devrait etre disponible d'ici a la fin de 1990.

La chambre cl objets faibles (FOC) a ete reinstallee dans le telescope spatial le 27 janvier. L 'un des detecteurs de rechange de la FOC a subi un etalonnage sous vide de deux semaines cl I'IAL.

I'ESTEC ou, dans les limites de Hipparcos under test at ESTEC

conditions d'ultra-proprete (c/asse de Hipparcos aux essais cl I'ESTEC Hipparcos proprete 100), iI a ere prepare pour des essais dans le grand simulateur spatial La periode concernee par ce rapport a (LSS). C'etait la premiere fois que cette vu la concentration des activites relatives installation etait utilisee pour une serie au satellite sur les essais de recette au d'essais aussi complexe. Le debut des niveau du systeme. L'integration du essais de vide-temperature a ete retarde sur le modele d 'identification du satellite, prototype de vol du satellite (PFM) a ete de quelques jours pour des raisons de pour demontrer la capacite de survie du menee cl bien chez Aeritalia (Ita lie) et a securite du satellite et de /'installation satellite aux niveaux de vibration et ete suivie par un essai de systeme mais, grace aux efforts et cl la d 'ambiance acoustiques qui ont ete integre (1ST) du satellite complet. 11 s 'agit determination de toutes les personnes recemment annonces pour Ariane-4. Ces d'un essai electrique permettant de concernees, les sequences d'essai essais se sont termines de maniere verifier le fonctionnement complet du completes (cl haute temperature et cl satisfaisante et le satellite a ete ensuite systeme de satellite. basse temperature) ont ete terminees cl expedie chez Matra (F) pour servir a des la date prevue, permettant ainsi de activites de validation de I'entreposage L 'acMvement reussi de I'IST en maintenir cl la mi-avril la date prevue de la charge utile, com;ues pour assurer decembre a permis le transport du pour la revue de recette de vol du que la charge utile du prototype de vol satellite chez Intespace, cl Toulouse, pour satellite. A la date ou ce rapport est du satellite ne se degradera pas pendant des essais des proprietes de masse et redige, une analyse detaillee complete le stockage du satellite. d 'ambiance dynamique. Ces essais, qui des resultats des essais reste a effectuer, comprenaient des essais acoustiques et mais un examen rapide et I'observation de vibration aux niveaux de recette, visuelle des essais de deploiement du Olympus entremeles de contr61es du bon etat generateur sola ire indiquent que I'essai electrique du systeme satellite (contr6le de vide-temperature est tres concluant, Les essais electriques du satellite se sont du systeme integre), ont ete termines les quelques incidents qui ont ete poursuivis aux laboratoires Oavid Florida avec succes au debut fevrier, quand le enregistres etant tous de nature mineure. (OFL) cl Ottawa. L 'essai de base de satellite a ete emballe et expedie cl reference de communications (CBT) et I'ESTEC pour des essais finals de recette Bien que les principaux efforts aient ete I'essai d 'intercompatibilite de la charge dans des conditions de vide-temperature. consacres au prototype de vol du utile ont ete conclus avec succes, et le satellite, des essais supplementaires de comite de revue des essais s 'est reuni Le satellite est arrive le 12 fevrier cl qualification mecanique ont ete executes en decembre 1987. L'instrumentation

40 programmes & operations

Space Telescope and determination of all involved, the full broadcast payloads have been handed test sequences (hot and cold over to the Agency by the contractors. The two flight solar-array wings delivered temperatures) were nevertheless The specialised-services station will be to the USA two years ago were returned completed by the scheduled date, used in the test campaign for the to Europe at the beginning of 1988. A thereby permitting the satellite Flight Agency's forthcoming ECS-5 review was held in February to agree the Acceptance Review to be maintained in , which will rework programme for these wings. It will mid-April. provide useful early operational involve replacing the solar-array blankets experience with this station. The with higher power, atomic-oxygen­ At the time of writing, full detailed transportable stations for the specialised resistant blankets, protecting other solar­ analysis of the test results still has to be services, 20/30 GHz and TV-broadcast array elements from atomic oxygen, and performed, but quick-look analysis and payloads, are all undergoing in-plant mechanical modifications to allow the visual observation of solar-array testing by the contractors. easy exchange of solar arrays in orbit. deployment testing indicate a very successful thermal-vacuum test, with the More than a hundred potential users A Baseline Design Review for the few recorded incidents all being minor in have already expressed interest in second solar array was held in March nature. Olympus and a detailed utilisation plan 1988. This array should be available by has been prepared for the first Olympus the end of 1990. Whilst the main effort was devoted to the flight model. This is now being updated protoflight satellite, additional mechanical on a regular basis. The Faint-Object Camera (FOC) was re­ qualification testing was being performed installed in the Space Telescope on 27 on the engineering-model satellite, to January. One of the FOC spare demonstrate the satellite's survival detectors has recently completed a two­ capability at the recently announced DRPP week vacuum calibration at IAL. Ariane-4 vibration/acoustic levels. These tests were completed satisfactorily and Two parallel Phase-A 1 studies of the the satellite was then shipped to Matra Data-Relay System (DRS) have been (F) to be used for payload-storage completed. These two studies, Hipparcos validation activities, designed to ensure conducted by industrial consortia led by that the PFM payload will not degrade Matra (France) and MBB (Germany), This reporting period has seen the during the satellite storage period. have resulted in the definition of a concentration of satellite activities on baseline for the complete DRS, including system-level acceptance testing. the data-relay satellites, the user space Integration of the Proto-Flight Satellite terminals and the associated ground (PFM) was completed at Aeritalia (I), Olympus segment. followed by a complete satellite Integrated System Test (1ST), an electrical Electrical testing of the spacecraft has The DRS will consist of two operational test that checks the complete functioning continued at the David Florida satellites in geosynchronous orbit. The of the satellite system. Laboratories (DFL) in Ottawa. The baseline DRS satellite has four antennas, Communications Baseline Test (CBT) and each with a diameter of about 3 m and Successful completion of the 1ST in Payload Intercompatibility Test have one optical package to support five user December allowed the satellite to be been completed successfully and Test spacecraft simultaneously. The satellite transported to Intespace, Toulouse, for Review Boards met in December 1987. also has two antennas for the links to mass-properties and dynamic Instrumentation for the Electromagnetic ground, one providing permanent environmental testing. These tests, which Compatibility Test was then installed and European coverage and the other included acoustic and vibration tests this test was conducted successfully steerable spot coverage of any location interspersed with electrical satellite­ whilst the spacecraft was still in the visible from the satellite. The maximum system health checks, were successfully anechoic chamber. data capacity of each DRS satellite is accomplished by early February, when about 1.2 Gbitls and their lift-off mass is the satellite was packed and shipped to The Special Performance Test is estimated to be between 2500 and ESTEC for final acceptance testing under currently being conducted, and the 3000 kg for the full mission as currently thermal-vacuum conditions. results will be reviewed at a Test­ specified. Readiness Review to be held before The satellite arrived at ESTEC on 12 proceeding with environmental testing. A Phase-A2 contract will be awarded to February where, within the confines of an industrial group led by Selenia ultra-clean conditions (cleanliness class Radio-frequency compatibility testing of Spazio, Italy. The basis of this Phase-A2 100), it was prepared for testing in the the Operations Control Centre (OCC) at work will be the baseline defined in Large Space Simulator (LSS) facility. This Fucino (Italy) using a spacecraft Phase-A 1, but reduced options reflecting was the first time the facility had been 'suitcase' simulator will be carried out in alternative user scenarios will also be used for such a complex series of tests. April 1988. This will complete the formal addressed. acceptance of the OCC for Olympus. The start of thermal-vacuum testing was It is planned to construct a hardware delayed for some days for satellite/facility The in-orbit-testing ground stations for simulation facility to verify system safety reasons. Through the hard work the specialised services and TV- assumptions regarding the maximum

41 G bulletin 54 permettant I'essai de compatibilite utilisateurs et le secteur terrien - Un satellite technologique de electromagnetique a ensuite ete installee, correspondant. communications evolue, Sat-2. et cet essai a ete realise avec succes - Une mission de communication et de tandis que le satellite se trouvait encore Le DRS se composera de deux satellites navigation pour mobiles terrestres dans la chambre anechoi'que. operationnels sur orbite geosynchrone. faisant appel a des orbites inc/inees Le satellite du DRS de base de (Archimede) sur Sat-3. L 'essai de performances speciales est en reference a quatre antennes, ayant cours de realisation, et les resultats en chacune un diametre de 3 m environ et Sat-1 (Aramis) seront passes en revue lors de la un bloc optique prenant en charge cinq Aramis est une charge utile evoluee de reunion de revue du degre de satellites utilisateurs simultanement. Le communication entre mobiles assurant la preparation de I'essai qui doit se tenir satellite a aussi deux antennes pour les couverture, par pinceaux multiples, de avant qu'il soit procede aux essais liaisons avec le sol, I'une assurant une I'ocean Atlantique et des regions cotieres d'ambiance. couverture europeenne permanente et depuis une orbite geostationnaire. Un I'autre la couverture par pinceau certain nombre d'etudes de charge utile Les essais de compatibilite de dirigeable de n'importe quel point visible et de satellite ont ete effectuees, et la radiofrequence du centre directeur des depuis le satellite. La capacite de charge utile est a un stade de definition operations (OCC) de Fucino (Ita lie), donnees maxima le de chaque satellite avance. La realisation de la charge utile faisant appel a un simulateur 'mallette' DRS est de 1,2 Gbitls environ, et leur Aramis se poursuivra selon la tranche du satellite seront effectues en avril masse au decollage est estimee entre No 2 du programme PSDE. 1988. Ces essais completeront les essais 2500 et 3000 kg pour I'ensemble de la officiels de recette de I'OCC pour mission telle qu'elle est actuellement D'apres un accord passe entre les Olympus. specifiee. participants du PSDE, toutefois, le satellite Sat-1 ne sera realise et lance Les stations terriennes d'essai en orbite Un contrat de Phase A2 sera adjuge a que si son financement peut etre assure destinees aux services specialises et aux un groupe industriel mene par Selenia par des tiers. A cette fin, I'ESA a soumis charges utiles de diffusion de Spazio, Italie. La base de ce travail de une proposition a Inmarsat, et les programmes de television ont ete Phase A2 sera la base de reference discussions sont encore en cours. remises a I'Agence par les contractants. definie dans la Phase A 1, mais d'autres La station destinee aux services options reduites, reflectant d'autres Sat-2 specialises sera utilisee dans la scenarios d'utilisateurs possibles, seront Les etudes de Phase A de toutes les campagne d'essai pour le prochain egalement etudiees. charges utiles pressenties pour cette satellite de communications ECS-5 de mission sont main tenant tres avancees. I'Agence, lequel fournira une experience Pour verifier des hypotheses de systeme De plus, les etudes de Phase A utile de debut d'exploitation avec cette concernant la capacite maximale par concernant la mise en place des charges station. Les stations transportables canal, iI est prevu de construire une utiles pressenties sur des plates-formes destinees aux services specialises, installation de simulation du materiel. Un europeennes existantes de c/asse demi­ charges utiles de 20-30 GHz et de contrat de realisation du materiel de Ariane (Eurostar, Spacebus et Ita/sat) diffusion de programmes de television, codage et de decodage destine a cette indiquent qu'il est possible de realiser sont toutes en train de subir des essais installation a ete adjuge a Newtec une combinaison de charges utiles en usine chez les contractants. (Belgique), avec SPL (Royaume Uni) representant un veritable defi. Les comme sous-traitant. Des offres resultats de ces etudes ont ete presentes Un interet considerable pour I'emploi concernant le materiel de modulation et a une premiere reunion des participants d'Olympus a ete manifeste par plus de demodulation sont a I'etude, et un potentiels au PSDE en fevrier, et depuis d'une centaine d'utilisateurs en contrat sera adjuge sous peu. le choix des charges utiles a encore ete puissance, et un plan d'utilisation detaille affine. Des charges utiles de base de a ete prepare pour le premier modele de Des contacts sont actuellement reference pour la mission sont vol d'Olympus, lequel est maintenant mis maintenus avec la NASA et la NASDA main tenant: a jour regulierement. (Japon) pour examiner le degre d'interfonctionnalite souhaitable entre le - Une charge utile de communications DRS europeen et les systemes americain optiques offrant des communications et japonais equivalents. a tres haut debit de donnees entre DRPP une orbite geostationnaire et une orbite basse. Deux etudes paralleles de Phase A 1 du systeme de relais de donnees (DRS) ont - Une mission combinee bande ete menees a bien. Ces deux etudes, PSDE L-bande S faisant appel a un grand realisees par des consortiums industrie/s reflecteur non repliable. La mission en menes respectivement par Matra Trois missions sont actuellement bande L assurera des pinceaux (France) et par MBB (Allemagne), ont programmees dans le cadre du multiples a hautes performances au­ abouti a la definition d'une base de programme PSDE: dessus de I'Europe pour developper reference pour le DRS complet, y - Une charge utile evoluee de le marcM des mobiles terrestres. Une compris les satellites de relais de communications aeronautiques et charge utile de navigation (Locstar ou donnees, les terminaux spatiaux des maritimes mobiles (Aramis) sur Sat-1. Navsat) pourrait en outre etre

42 programmes & operations capacity per channel. A contract for the participants' meeting in February and service over the European Continent and development of the encoder and payload selection has since been further the Atlantic with a minimum number of decoder equipment for this facility has refined. Baseline payloads for the satellites. been awarded to Newtec (Belgium) with mission are now: SPL (UK) as subcontractor. Proposals for - An optical communications payload A number of related feasibility studies the modulation and demodulation offering very high data rate are in progress. equipment are in hand and a contract communications between will be awarded shortly. geostationary and low Earth orbits. - A combined L-band/S-band mission Contacts are being maintained with using a large unfurlable reflector ERS NASA and NASDA (Japan) to examine antenna. The L-band mission will the degree of interoperability desirable provide high-performance, multiple Programmatic/technical aspects between the European DRS and the spot beams over Europe to develop The main event during recent months equivalent American and Japanese the land-mobile market. A navigation has been completion of the ERS-1 systems. payload (Locstar or Navsat) may System Critical Design Review (COR), further be combined with the L-band which was initiated with data-package payload. delivery on 12 October and concluded - A communications payload operating with the Board Meeting on 11 PSDE at 40/50 GHz, providing steerable November. The System COR had been spots for inter-orbit communication, preceded by 56 CDRs at equipment, Three missions are currently planned and also capable of offering fixed subsystem and instrument level. within the PSDE Programme: services for very-small-aperture - An advanced aeronautical and terminals. The Board assessed that these maritime mobile communications - A propagation experiment at preceding CDRs, the data package with payload (Aramis) on Sat-1 . 45/90/135 GHz to provide supporting information, and the review - An advanced communications­ propagation data at the higher presentation had allowed thorough technology satellite, Sat-2. frequency range. review and assessment of the status of - Land-mobile communications and - An on-board processing payload to the programme. It concluded that the navigation using inclined orbits prepare for technology offering requisite performances can indeed be (Archimedes) on Sat-3. greater interconnectivity. met and that the programme has - Technology experiments such as ion­ matured sufficiently to allow progressive Sat-1 (Aramis) propulsion and a nickel-hydrogen release of flight-model hardware Aramis is an enhanced mobile battery to improve spacecraft manufacturing. communications payload providing performance. multiple spot-beam coverage of the Since the Review, work has continued to Atlantic and coastal regions from Phase-B1 spacecraft studies will take resolve open action items; in particular, geostationary orbit. A number of payload place between April and August 1988, much attention has been paid to system­ and spacecraft studies have been leading to final payload selection shortly level evaluation of instrument test results. performed and the payload is at an thereafter. Phase-B2 contracts will be advanced stage of definition. placed at that time, maintaining Launcher Development of the Aramis payload will competition up to the award of a Phase­ Launch-operations-facility requirements continue under the PSDE Programme CID contract to a single prime contractor have been agreed with ERS-1 Slice-2. during 1989. contractors. These, together with definitions of the launcher interfaces and Based on an agreement between the Phase-B payload-development and the launch-operations tasks, have been PSDE participants, however, the Sat-1 bread boarding activities will continue in included in the Agency's 'Demande spacecraft will only be developed and parallel, under the management of a d'Utilisation Ariane', issued to launched if funding by third parties can single contractor for each payload. Arianespace as a basis for detailed be assured. To this end, ESA has Hardware procurement will be discussion and subsequent agreement. submitted a proposal to Inmarsat, and competitive, however. discussions are still in progress. Schedule Sat-3 (Archimedes) Following the delays that have occurred Sat-2 This mission is based upon 12 hand in the delivery of the engineering-model Phase-A studies for all candidate 24 h quasi-synchronous orbits with an (EM) instruments, integration of the EM payloads for this mission are now largely inclination of 63° (Molniya and Tundra payload has been resumed in March, complete. In addition, Phase-A studies orbits). If sufficient satellites with the leading to predicted completion of the for the accommodation of the candidate correct orbital phasing are in operation, EM payload tests in November 1988. payloads on existing European platforms the land-mobile user in Europe and the of half-Ariane class (Eurostar, Spacebus northern regions will obtain continuous Subsequent integration of the EM and Italsat) indicate that a challenging coverage at high elevation angles, payload and flight-model (FM) platform payload combination can be realised. resulting in increased system availability. will allow the f1ight- and engineering­ The results of these studies were ESA's Navsat navigation system also model satellite tests (functional, presented at a first PSDE potential- uses these orbits to provide continuous electromagnetic and radio-frequency

43 • bulletin 54

combinee a la charge utile en ERS Parallelement aux essais du modele de bande L. vol et du modele d 'identification du Aspect programmatique et technique satellite, I'integration de la charge utile - Une charge utile de communications Au cours des derniers mois, le principal est programmee de fayon a battre son fonctionnant a 40-50 GHz, assurant evenement a ete I'achevement de la plein d 'ici a novembre 1988, pour des pinceaux dirigeables pour la revue de conception critique (COR) du aboutir a la fin des essais du modele de communication entre orbites, et systeme ERS-1, qui avait commence vol de la charge utile d 'ici a la fin juillet ega/ement capable d'offrir des avec la livraison de I'ensemble de 1989. L'integration et les essais utterieurs services fixes pour des terminaux a donnees le 12 octobre et s'est terminee du modele de vol de satellite sont prevus ouverture tres petite. avec la reunion du comite le 11 pour le second semestre de 1989, tout novembre. La COR du systeme avait ete en permettant une revue de recette de Une experience de propagation a precedee par 56 COR au niveau des vol d 'ici la fin 1989 et la fin des 45-90-115 GHz, fournissant des a materie/s, des sous-systemes et des preparatifs de lancement en avril 1990, donnees de propagation dans la instruments. Le comite a estime que les conformement aux dates fixees dans le gamme de frequence superieure. COR precedents, I'ensemble de donnees contrat de lancement d 'ERS-1 . - Une charge utile de traitement a avec les informations a I'appui, et la bord, permettant de preparer la presentation de la revue permettaient Centre de gestion et de commande de technologie offrant la plus grande une revue et une evaluation completes la mission (MMCC) possibilite d 'interconnexion. de I'etat d'avancement du programme. " Une revue detaillee du plan de mise en en a conclu que les performances oeuvre de la mission (MIP) a eu lieu, - Des experiences technologiques telles exigees pouvaient en rea lite etre aboutissant a un accord fondamental sur que la propulsion ionique et une pile respectees et que le programme etait le contenu et les estimations de prix nickel-hydrogene pour ameliorer les assez mOr pour permettre le lancement correspondantes, sous reserve d'une performances des satellites. progressif de la fabrication du materiel reevaluation de plusieurs facteurs de prix des modeles de vol. Depuis la revue, le mineurs. Les etudes de la Phase 81 du satellite travail de resolution des problemes en auront lieu entre avril et aoOt 1988, et suspens s 'est poursuivi; en particulier, Les details de !'interface de materiel aboutiront au choix final de la charge une grande attention a ete consacree a entre le MMCC et le bureau du utile peu apres. Des contrats de Phase I'evaluation, au niveau du systeme, programme Earthnet (EPO) ont fait I'objet 82 seront adjuges a ce moment-la, pour des resultats des essais des d 'un accord. La fourniture d 'un systeme maintenir la concurrence jusqu'a instruments. de mise au pOint formant le noyau du I'adjudication d 'un contrat de Phase CID premier systeme informatique d 'ERS a un seul et unique maTtre d'oeuvre en a Lanceur commence, la livraison et I'installation 1989. Les activites de mise au point et Les exigences concernant I'installation etant prevues pour avril 1988. de construction de maquette d'une necessaire aux operations de lancement charge utile de Phase 8 se poursuivront ont fait I'objet d 'un accord avec les Des negociations ont eu lieu avec la parallelement, sous la direction d'un contractants d 'ERS-1. Celles-ci, ainsi que Swedish Space Corporation (SSC) pour contractant unique pour chaque charge les definitions des interfaces du lanceur definir le soutien qui doit etre apporte utile. Toutefois, la fourniture du materiel par la SSC la station ERS-1 de Kiruna et les taches operationnelles de a sera ouverte a la concurrence. lancement, ont ete incluses dans la pour la periode allant de mai 1988 a 'demande d 'utilisation Ariane ' de octobre 1989. Le contrat couvrira Sat-3 (ArchimMe) I'Agence, presentee a Arianespace pour I'achevement des batiments, les essais Cette mission est basee sur des orbites d 'integration et de recette de la station, former la base de discussions detaillee et quasi-synchrones de 12 heures et de 24 d'un accord ulterieur. la mise en service, et une periode de heures, avec une inclinaison de 63 transition eventuelle jusqu 'au debut du degres (orbites Molniya et Tundra). Si un contrat classique de maintenance et nombre suffisant de satellites a phases Calendrier d 'exploitation pour la phase orbitales correctes est en service, les Suite aux retards qui se sont produits operationnelle. utilisateurs de mobiles terrestres en dans la livraison des instruments du Europe et dans les regions modele d 'identificattion (EM), I'integration septentrionales obtiendront une de la charge utile de I'EM a pu etre couverture continue avec de grands reprise en mars 1988, aboutissant a Earthnet angles d 'elevation, avec pour resultat I'achevement prevu des essais de la une plus grande disponibilite du charge utile de I'EM en novembre Landsat systeme. Le systeme de navigation 1988. Les performances de Landsat-5 ont ete Navsat de I'ESA utilise lui aussi ces nominales au cours de la periode orbites pour assurer un service continu L'integration utterieure de la charge utile concernee par ce rapport. La station de au-dessus du continent europeen et de de I'EM et du modele de vol de la plate­ Fucino a saisi des donnees tout au long I'Ocean At/antique, avec un nombre forme permettra I'achevement, d 'ici a la de la periode, tandis que la station de minimal de satellite. mi-1989, des essais (fonctionne/s, de Maspalomas a arrete la saisie le 16 compatibilite electromagnetique et de decembre 1987 (fin de la campagne Un certain nombre d 'etudes de faisabilite radiofrequence) du modele de vol et du CEE). La station de Kiruna a interrompu connexes sont en cours. modele d'identification du satellite. la saisie en decembre-janvier a cause de

44 programmes & operations compatibility) to be completed by Data processing and distribution has Generation and Polar-Orbit Earth mid-1989. been carried out regularly. Thematic­ Observation. Mapper data acquired at Maspalomas In parallel with the flight- and during 1987 have been shipped to Solid-Earth Programme: 'Aristoteles' engineering-model satellite tests, Frascati for transcription, which will allow Following successful negotiations, a integration of the fl ight-model (FM) the generation of Thematic-Mapper data contract has been placed with a payload is scheduled to gain full for West Africa in the very near future. European industrial team headed by momentum by November 1988, leading Dornier System (D) for the Phase-A study to finalisation of the FM payload tests by MOS-1 of the Aristoteles mission. the end of July 1989. Subsequent MOS-1 data are being acquired regularly integration and testing of the FM satellite at the four stations of Fucino, Kiruna, Phase-A 1, which was kicked off in is foreseen during the second half of Maspalomas and Troms

45 • bulletin 54 problemes poses par la faible hauteur du (DGFI) a Munich les 15 et 16 decembre etudes se concentrent sur les possibilites Soleil. Des contrats ont ete negocies 1987. Les operateurs des stations laser de configuration, et les deux equipes pour les operations de Fucino et de ont manifeste de I'interet pour la prise en industrielles se sont pencMes sur un Kiruna en 1988. charge des operations de poursuite certain nombre de conceptions de d'ERS-1, mais des engagements a satellite: gyrateur, double gyration et Le traitement et la distribution des moyen terme et a long terme existants stabilisation sur trois axes, avec les donnees se sont deroules regulierement. entrainent actuellement des problemes divers instruments dans des Les donnees du cartographe tMmatique conflictue/s de nature substantielle. configurations differentes. Dans la saisies a Maspalomas en 1987 ont ete seconde phase, le travail se concentrera expediees a Frascati pour transcription, sur les concepts preferes, et les ce qui permettra la creation de donnees presentations finales sont programmees du cartographe tMmatique pour I'Afrique EOPP pour le mois d'avril. occidentale dans un tres proche avenir. Generalites Un aspect important a deja ete mis en Les activites du programme preparatoire lumiere par les deux contractants, a d 'observation de la Terre (EOPP) se sont savoir que si tous les elements de la MOS-1 poursuivies dans trois secteurs charge utile (imageur, sondeur Les donnees de MOS-1 sont principaux: le programme solide infrarouge, sondeur a hyperfrequences et actuellement saisies regulierement aux terrestre, I'observation de la Terre en appareillage experimental de circulation quatre stations de Fucino, Kiruna, orbite polaire, et le Meteosat de seconde des donnees) sont maintenus dans la Maspalomas et Troms~ . generation. configuration actuellement prevue, il sera difficile de maintenir la masse du satellite La realisation de la chaine de creation Programme Solide Terrestre: 'Aristote' en de9a de la moiM de la capacite de produits rencontre actuellement Apres des negociations couronnees de d'une fusee Ariane-4. Cela a de certaines difficuttes dues a I'integration succes, un contrat a ete adjuge a une considerables implications financieres, et des equipements specifiques a la equipe industrielle europeenne menee la situation est actuellement passee en mission et du materiel de traitement. par Dornier System (0) pour I'etude de revue. Cela aura des repercussions negatives Phase A de la mission Aristote. sur la date de livraison du logiciel Systemes a orbite polaire: observation d 'applications aux stations, laquelle etait La Phase A 1, dont le coup d'envoi a ete de la Terre prevue a I'origine pour le second donne en janvier 1988, est consacree a Pendant la periode concernee par ce trimestre de 1988. un compromis des systemes de divers rapport, les activites se sont poursuivies concepts techniques relatifs a la mise en dans les divers secteurs d 'etude. place d'un gradiometre suspendu ou Parallelement, d 'intenses activites Tiros fixe, a des accelerometres a deux axes internes ont eu lieu pour analyser la Le satellite et les stations de saisie de ou a trois axes, ainsi qu'a differentes situation qui prevalait apres la donnees se sont comportes precisions de mesure, altitudes orbitales, conference ministerielle et pour identifier normalement. La realisation des sous­ durees de mission et nombre d 'elements les diverses lignes de conduite possibles. systemes fondamentaux a ete terminee. tenseurs de gradient de gravite mesuree. Les chaines de creation de produits qui De plus, I'Executif a etabli une base de doivent etre installees a Maspalomas et a A la fin de cette premiere phase, en reference possible pour le secteur terrien Tromslj sont en cours de fabrication en mars 1988, un concept sera retenu pour d'observation de la Terre et le traitement vue de leur livraison en avril-mai 1988. une etude plus detaillee, en termes de des donnees de la charge utile faisabilite technique, de cout et de (extrapolee de I'experience ERS) dans le Accord ESA-CEE calendrier de programme pendant la cadre des activites de I'autorite de L 'extension de I'accord pour la Phase A2. conception centrale (CDA), auxquelles il campagne Landsat-Spot-Tiros de 1988 sera mis un pOint final en mars-avril est en cours de negociation. L 'achevement de I'etude est programme 1988. pour juillet 1988. ERS-1 L 'appel d 'offres pour la Phase CID des Seconde generation de Meteosat services d 'utilisateurs centraux et de Les etudes se sont poursuivies sur divers Meteosat Browse (CUSBS) d 'ERS-1 a ete lance. Le aspects du programme Meteosat de travail de definition de taille des interfaces seconde generation (MSG). De plus, les Programme pre-operationnel de !'installation centrale d 'ERS-1 contacts avec Eumetsat se sont La premiere partie de la campagne de d 'Earthnet (EECF) avec les autres intensifies pour ouvrir la voie aux activites lancement de Meteosat P2 a eu lieu de elements du secteur terrien d 'ERS-1 est de Phase A. la mi-novembre a la mi-decembre 1987. en cours. L 'ensemble de la campagne etait divise Les deux etudes de configuration de en deux parties pour laisser une marge Poursuite precise d'ERS-1 systeme confiee a I'Aerospatiale (F) et a au cas OU des problemes auraient surgi La premiere reunion de travail pour la BAe (UK) se deroulent selon le pendant la preparation du satellite. poursuite d'ERS-1 a eu lieu a I'lnstitut calendrier, et des presentations de mi­ Toutefois, aucun probleme ne s'est pose Allemand de Recherche Geodesique etude ont eu lieu a I'ESTEG. Les deux et le satellite est main tenant entrepose

46 programmes & operations

Polar-orbiting systems: Earth observation During the reporting period, activities have continued in the various study areas. In parallel, intense internal activities have been taking place to analyse the Post-Ministerial-Conference situation and identify possible courses of action .

In addition, the Executive has established a possible baseline for the Earth­ observation ground segment and payload data handling (extrapolated from ERS experience) in the framework of the Central Design Authority (CDA) activities, which will be finalised in March/April 1988.

Meteosat

Preoperational programme The first part of the Meteosat P2 launch campaign took place from mid­ November to mid-December 1987. The overall campaign was split into two parts to provide a margin in the event of problems arising during preparation of the spacecraft. However, no problems were encountered and the satellite is now being stored in its container in Kourou (CSG) . The two apogee-boost motors (prime and spare) have been tested and are also being stored at CSG . The flight battery is being stored under refrigeration at the CSG technical centre; it will be installed in the spacecraft during the second part of the campaign.

The Ground-Segment Readiness Review installed on the spacecraft just before Le panneau retroreflecteur de /'experience was held at ESOC in January. The launch. LASSO embarquee sur Meteosat P2 (vue Review Board's report concluded that rapprocMe). the ground segment is ready to support In accordance with the LASSO Control Close-up of the LASSO retro-reflector array on the P2 launch, subject to successful Centre contract, the T elespazio team has Meteosat P2. completion of a few action items. been put on standby and will be called into service two months prior to launch. The Flight Acceptance Review, scheduled to be held at the beginning of Operational programme February, has been postponed until Flight-hardware manufacture and system Ground segment and operations March. testing for the three MOP spacecraft are Extension of the ground-segment progressing satisfactorily at Aerospatiale. capabilities to full MOP satellite standards The Ariane 401 launch is now scheduled System testing was temporarily has been successfully completed. for the the second half of May 1988. It is suspended on the MOP-1 satellite as the Further work, such as refurbishment of therefore planned to resume the prime task of the project team was the ranging system as well as the Meteosat launch campaign at the preparation of the P2 spacecraft for extension of the Data-Collection Platform beginning of April. launch, scheduled for the second quarter (DCP) receiving chain (up to 72 of 1988. MOP-1 activities have been channels), is on schedule, with The LASSO experiment was successfully resumed early in 1988, but will again be completion expected towards mid-1988. tested during the first part of the P2 interrupted when the second part of the launch campaign. The flight retroreflector P2 launch campaign starts at the The GOES-IV satellite, supporting the is being kept in storage and will be beginning of April. DCP operations, has no fuel left to

47 G bulletin 54 dans son conteneur au centre spatial guyanais (CS G) de Kourou. Les deux moteurs d 'apogee (principal et de rechange) ont subi des essais et sont egalement entreposes au CSG. La batterie de vol est actuellement entreposee 8 basse temperature au centre technique du CSG; elle sera installee dans le satellite pendant la seconde partie de la campagne.

La revue du degre de preparation du secteur terrien s'est tenue 8 I'ESOC en janvier. Le rapport du comite de revue a conclu que le secteur terrien etait pret 8 prendre en charge le lancement de P2, sous reserve que quelques actions ponctuelles soient menees 8 bien.

La revue de recette de vol, programmee pour le debut de tevrier, a ete repoussee au mois de mars.

Le lancement d'Ariane 401 est main tenant programme pour la seconde moiM de mai 1988. 11 est donc prevu de reprendre la campagne de lancement de MeMosat au debut d'avril.

Pendant la premiere partie de la campagne de lancement de Meteosat P2, I'experience LASSO a subi des essais couronnes de succes. Le MOP a ete completee avec succes. Eureca mock-up structure at DFVLR , retroretlecteur de vol est maintenu 8 O'autres travaux, tels que la remise en Porz-Wahn. I'entreposage et sera monte sur le etat du systeme d'ecartometrie, ainsi que Structure de support d'experience pour satellite juste avant le lancement. I'extension de la chaTne de reception de Eureca chez DFVLR cl Porz-Wahn . la plate-forme de collecte de donnees Conformement au contrat passe avec le (OCP) Ousqu '8 72 canaux) se deroulent centre directeur de LASSO, I'equipe de conformement au calendrier, en Telespazio a eM mise en a ttente, et on attendant leur acMvement vers la fera de nouveau appel 8 ses services mi-1988. Microgravite deux mois avant le lancement. Le satellite GOES IV, qui prend en Fusees-sondes Programme operationnel charge les operations de la OCP, n'a Une charge utile comportant une La fabrication du maMriel de vol et les plus assez de carburant pour abaisser la contribution de 90% du programme de essais du systeme pour les trois satellites forte inclinaison et la ramener dans la microgravite de I'ESA a eM lancee avec MOP se deroulent de maniere bande operationnelle normale. Par succes dans le programme suedois de satisfaisante 8 I'Aerospatiale. Les essais ailleurs, des problemes se sont poses fusees-sondes (Maser). Le lancement a au niveau du systeme du satellite MOP 1 avec la chaTne d'emetteurs, ce qui a eu lieu 8 Esrange, installation de la ont ete temporairement suspendus, car pour effet une deterioration de 20% Swedish Space Corporation 8 Kiruna, le la tache premiere de I'equipe chargee environ des performances de la mission. 29 fevrier 1988. du projet etait la preparation du satellite P2 pour le lancement, programme pour Le satellite MeMosat P2, actuellement La charge utile, pour laquelle I'ESA a le second trimestre de 1988. Les utilise pour prendre en charge les fourni sept des huit experiences activites de MOP 1 ont eM reprises au missions de saisie et de diffusion emportees, a eM soumise 8 des debut de 1988, mais seront de nouveau d'images, a lui aussi atteint le point conditions de micrograviM pendant 7 interrompues quand la seconde partie de (apres 6,5 annees d'exploitation minutes et 18 secondes exactement. La la campagne de lancement de P2 fructueuse) auquel il n'est plus possible recherche fondamentale couvrait des commencera au debut d'avril. de maTtriser son inclinaison. Toutefois, les secteurs tels que les alliages non deux missions peuvent, pour le moment, miscibles, la metallurgie, la croissance Secteur terrien et operations continuer 8 etre exploiMes avec un des semiconducteurs, ainsi que les L 'extension des capacites du secteur chiffre de performances nettement proprieMs de transmission de chaleur et terrien aux normes completes du satellite superieur 8 celui qui avait eM speciM. de tension superficielle de liquides.

48 programmes & operations reduce its high inclination to within the from the scientific community and are between the Shuttle umbilical and the normal operational band. Furthermore, being submitted to a Scientific Peer Eureca hydrazine thrusters, in the event problems with the transmitter chain have Group for evaluation. of uncontrolled movements by the occurred, the combined effect being that Shuttle's Remote Manipulator (RMS). mission performance has dropped by Biorack Another is the ability of the Shuttle to fly about 20%. The scientific samples from Biorack-type in special attitudes to protect Eureca experiments (using mainly Biorack from overheating or overcooling (in case The Meteosat-F2 satellite, currently being containers) flown on the Russian of a Eureca heater-system failure) while used to support the image-acquisition Biokosmos 1887 satellite in September either inside the Shuttle's cargo bay or and dissemination missions, has also 1987 are in the process of being held by the Remote Manipulator. reached the point (after 6.5 years of analysed by the investigators in West successful operations) at which its Germany and the USSR. A joint review NASA has also given safety clearance inclination can no longer be controlled. of the results is scheduled at ESTEC at for Eureca's high-pressure gas and However, both missions can, for the time the end of April. According to advance hydrazine tanks, and work can now being, continue to be operated at a information, the results are conclusive, proceed on their integration into the performance figure well above the interesting and in line with the results structure. The supplier has succeeded in specified minimum. from the Biorack's flight on the Spacelab improving the welding technique for the D-1 mission. hydrazine lines, removing previous problems in this area. MUlti-user facilities on the Spacelab D-2 mission Preparations for Eureca thermal-model Microgravity The multi-user facilities to be flown on testing in the ESTEC facilities are in the Spacelab D-2 mission consist of the progress and these tests are now Sounding rockets Advanced Fluid-Physics Module (AFPM), scheduled for end-April. A payload with a 90% contribution from the Critical-Point Facility (CPF), and the ESA Microgravity Programme has Anthrorack (AR). Final installation of the OCOE checkout been successfully launched in the software is proceeding well , with only Swedish Maser sounding-rocket Development work is proceeding on three problems left to be resolved before programme. The launch took place from these facilities and detailed negotiations the end of April. The bypass design for Esrange, the Swedish Space on their accommodation are taking the liquid-coolant loop has been finalised Corporation's facility in Kiruna, on 29 place with the Spacelab D-2 and procurement of the necessary February 1988. Management. hardware is proceeding. The planning for part one of the Equipment The payload, for which ESA provided Bubble, Drop and Particle Unit (BDPU) Qualification Review was finalised, and seven of the eight experiments carried, The Concept Acceptance Review (CAR), review activities started at the end of was under microgravity conditions for the first milestone in the Phase-CID March. They will be completed by the 7 min 18 sec. The basic research development contract, was held recently. first week in May. covered such areas as immiscible alloys, Its purpose was to define the overall metallurgy, growth of semi-conductors, layout of this facility in detail, and the The five core-payload facilities have as well as the heat-transfer and surface­ operational concept. somewhat diverged in their development tension properties of liquids. status, but all planning dates still comply Parabolic aircraft flights with Eureca integration-and-test need These experiments from ESA Member An Announcement of Opportunity for dates. States (Germany, The Netherlands, such flights was released in November Sweden and France) are aimed at 1987. As a result, fifteen proposals in the Electromagnetic testing of the non-co re­ significantly improving our understanding area of fluid-physics/materials-science payload instruments has continued of materials processing and also have and twenty-two in the area of life successfully and will be completed in considerable potential for future sciences were received. The next flight May 1988. No significant problems are applications. campaign is scheduled to take place in currently expected. August this year. Preparations for the Texus -17 and 18 The changed NASA Shuttle Flight launches are proceeding well. ESA Manifest of October 1987 foresees a participation is approximately 59% on Eureca launch in January 1991 on Flight Texus 17, and 25% on Texus 18. 46 and its retrieval in June 1991 on Eureca Flight 51. Sled An 'Announcement of Opportunity' The second NASA Safety Review for the The current contractually binding offering flight possibilities on the ESA Eureca system and thirteen of the fifteen planning for Eureca is still for a launch Sled to research institutions interested in Eureca payload instruments has been as early as May 1990. The final decision neurophysiological investigations has completed successfully. as to how to adjust the final schedule to been released. Five proposals (two from cope with this and possible further France, two from Germany and one from One item still requiring further analysis by changes in the NASA Manifest has to be The Netherlands) have been received NASA and ESA is the interface gap taken in early 1989.

49 • bulletin 54

Ces experiences provenant d'Etats detail la topographie globale de cette du materiel necessaire est en cours. Le membres de I'ESA (Allemagne, Pays-Bas, installation, ainsi que le concept ca/endrier previsionnel de la partie No 1 Suede et France) visent cl ameliorer de operationnel. de la revue de qualification du maMriel a maniere notable notre comprehension du eM etabli definitivement, le passage en traitement des maMriaux, et representent Vols paraboliques d'aeronefs revue a commence fin mars et sera egalement un potentiel considerable Une offre de participation a des vo/s de termine d'ici cl la premiere semaine de pour des applications futures. ce genre a eM lancee en novembre mai. 1987. " en a resulM quinze propositions Les preparatifs de lancement de dans le secteur de la physique des La mise au point des cinq ensembles Texus-17 et de Texus-18 se deroulent fluides, de la science des materiaux, et principaux de la charge utile a evolue correctement. La participation de I'ESA vingt-deux dans le secteur des sciences quelque peu differemment selon les est de 59% environ pour Texus-17, et de de la vie. La prochaine campagne de parties, mais toutes les dates 25% pour Texus-18. vo/s est programmee pour le mois d'aoOt previsionnelles sont encore compatibles de cette annee. avec les dates fixees pour I'integration et Sled (Traineau spatial) les essais d'Eureca. Une offre de participation concernant des possibilites de vol sur le 'Sled' de Eureca Les essais electromagnetiques des I'ESA a eM diffusee aux instituts de instruments ne faisant pas partie du recherche interesses par les La seconde revue de securite de la noyau de la charge utile se sont investigations neurophysiologiques. Cinq NASA pour le systeme Eureca et treize poursuivis avec succes et seront propositions (deux de la France, deux de des quinze instruments de la charge utile termines en mai 1988. Actuellement, on I'Allemagne et une des Pays-Bas) ont eM d'Eureca a ete conclue avec succes. ne s 'attend pas a rencontrer de reQues des milieux scientifiques, et sont problemes importants. actuellement soumises cl un groupe de Les elements qui necessitent encore une specialistes pour evaluation. analyse complementaire de la NASA et Le calendrier de vol de la Navette de la de I'ESA sont le jeu d'interface entre NASA, modifie en octobre 1987, prevoit Biorack I'ombilical de la Navette et les un lancement d 'Eureca en janvier 1991 Les echantillons scientifiques provenant propulseurs cl hydrazine d 'Eureca, en sur le vol No 46 et sa recuperation en d'experiences du type Biorack (utilisant cas de deplacements incontr61es par le juin 1991 sur le vol No 51 . principalement des conteneurs Biorack) bras Mlemanipulateur (RMS) de la embarquees sur le satellite Biokosmos Navette, et I'aptitude de la Navette a Le calendrier previsionnel actuel, requis 1987 en septembre 1987 sont en cours voler dans des attitudes speciales pour par le contrat du projet Eureca prevoit d 'analyse par les chercheurs proteger Eureca d 'un echauffement ou encore un lancement des le mois de mai d 'Allemagne Federale et d'Union d 'un refroidissement excessif (en cas de 1990. La decision finale quant a Sovietique. Une revue conjointe des panne du systeme de chauffage I'ajustement du dernier calendrier de resultats est programmee a I'ESTEC pour d'Eureca) pendant qu 'Eureca se trouve a far;on cl faire face cl cette obligation et a la fin avril. Selon des informations I'interieur de la soute de la Navette ou de nouveaux changements eventue/s du preliminaires, les resultats sont qu'il est maintenu par le bras calendrier de la NASA doit etre prise par concluants, inMressants et en accord telemanipulateur. les responsables du projet au debut de avec les resultats obtenus par le vol de 1989. Biorack sur la mission Spacelab 01. La NASA a egalement accepte pour les reservoirs de gaz a haute pression et Installations multi-utilisateurs sur la d 'hydrazine d'Eureca du point de vue de Station mission Spacelab D2 la securite et le travail d 'integration de Les installations multi-utilisateurs a ces reservoirs dans la structure peut spatiale/Columbus embarquer sur la mission Spacelab 0-2 main tenant se derouler. Le fournisseur a se composent du module evolue de reussi a ameliorer sa technique de Au cours du dernier trimestre, les physique des fluides (A FPM), de soudage pour les conduites d'hydrazine, principales activites ont eM la Revue I'installation point critique (CPF), et en resolvant les problemes anterieurs finale de la Phase B2XX, et l'acMvement d 'Anthrorack (AR). dans ce secteur. des etudes de compromis de la plate­ forme meridienne. Le travail de realisation de ces Les preparatifs d 'essais du modele installations est en cours, et des thermique d 'Eureca dans les installations L 'ensemble des donnees fournies par negociations detaillees concernant leur de I'ESTEC sont en cours, et trois de ces I'industrie a eM livre, avec un certain mise en place ont actuellement lieu avec essais sont main tenant programmes pour .retard, a I'ESA pour evaluation avant la la direction de la mission Spacelab 02. la fin avril. revue conjointe avec les contractants {'Revue finale; qui a eu lieu du 22 au 30 Unite Bulles, Gouttes et Particules L'installation definitive du logiciel de mars 1988 cl Breme. "a eM necessaire (BDPU) contr61e d'OCOE se deroule bien, seuls d'organiser des revues mineures La revue de recette de concept (CAR), trois problemes restant a resoudre avant supplementaires pendant le mois d 'avril premiere etape majeure du contrat de la fin avril. La conception definitive de la pour completer le cycle de revue total. realisation de la Phase CID, a eu lieu boucle de derivation du liquide Cela a eu certaines repercussions sur le recemment. Son objet etait de definir en frigorigene a ete etablie et la fourniture debut de la phase suivante.

50 programmes & operations

Space contractor to establish guidelines for the additional effort needed to define initiating the ce phase in line with the adequately the system-requirements Station/Columbus revised schedule, and taking into external-interfaces baseline, and is The main activities during the last quarter account the need during the first five consistent with the currently known have been the Phase-B2XX Final Review, months of the phase to place special schedules of the interfacing programmes. and completion of the Polar-Platform emphasis on external interfaces, Polar­ trade-off studies. Platform definition tasks and possible further Man-Tended Free-Flyer (MTFF) Hermes The industrial data package was configuration updating, resulting from the delivered, with some delay, for evaluation revised Polar-Platform baseline. The Phase-B2 activities that form part of by ESA prior to the joint review with the the Hermes Preparatory Programme are contractors ('Final Review'), which took An ESA/NASA Level-2 Technical nearly complete. The first slice of the place during the period 22-30 March Coordination Meeting took place in Phase-B2 contract placed with the 1988 in Bremen. It was necessary to Washington (Reston) from 22 to 26 spaceplane consortium headed by plan further minor reviews during the February 1988. Screening of the major Aerospatiale started in June 1987. The month of April to complete the total Space-Station Level-2 Requirements second slice covers the first three review cycle. This has had some impact Documents for applicability to the months of this year. on the start of the next phase. Columbus Programme, particularly the Attached Pressurised Module (APM), was The results of this phase, and particularly The Final-Review data package included completed and a draft ESA/NASA the detailed definition of the spaceplane the contractor's assessment of the Programme Description and configuration, will be reviewed by ESA Coherence Task Force's Step-2 Requirements Document (JPDRD) was and CNES in April and May 1988. It is recommendations, and these will now be established. expected that this review, which will evaluated jointly with the Hermes project concentrate on the already-identified to determine the feasibility, or otherwise, The screening process resulted in the critical areas - particularly the of their incorporation into the respective identification of several major interface aerodynamics and the overall mass programme baselines. This evaluation issues by the Executive as priority-1 budget - will lead to the will be conducted in conjunction with the issues to be resolved prior to Columbus recommendation of some improvements Hermes Phase-B3 Final Review, Phase-CID RFQ final release. The in the Hermes design. scheduled for the period mid-April to criterion used by the Executive for mid-May 1988. identification of priority-1 issues was: any Following approval of the Hermes issue, the eventual resolution of which Development Programme in November, Assessment of Polar-Platform options could potentially lead to a basic change its declaration was opened to continued throughout March. Additional in the APM architecture or to a basic subscription. The latter exceeded the inputs from CNES and BAe were architectural change in any of its programme-start threshold of 80% on 11 assessed - together with earlier inputs subsystems. All priority-1 issues were February. The level of subscription is received from Matra, Dornier and assigned a latest date for resolution of currently 99.05%, and the decision of MBB/ERNO - against the revised set of 1 June 1988. the twelfth participating state, Canada, is requirements. The latter, together with expected shortly. possible Polar-Platform configuration The next key event in the Space-Station concepts, have now been reviewed Preliminary Requirements Review The contents of the first programme within the Agency and with NASA. process is the Level-2 Space-Station phase, Phase-1 , which will cover the Control Board (SSCB) meeting scheduled years 1988, 1989, and 1990, have been Following an internal assessment of the for 26 April 1988. The prime objective of defined in further detail. The objectives of current status of definition of the major this meeting is to release an updated this phase are fourfold: to advance the Columbus external interfaces with the NASA Level-2 Requirements Baseline, definition of the spaceplane and other Space Station and Hermes, and which will then be used as the basis of Hermes elements; to develop the most recognising the time needed to the Level-3 Preliminary Requirements critical technologies needed; to define completely update and incorporate the Review to be conducted by the Level-3 the interfaces with other programmes, Polar-Platform requirements set into the Work Package Centres during the principally Ariane and Columbus; and basel ine, the Phase-CID Request for summer. Once the updated Level-2 finally to prepare for the next phase with Quotation (RFQ) planning has been Requirements Baseline set has been the negotiation of a detailed industrial adjusted to reflect the following key approved by the SSCB in April, it will be offer. dates: necessary to re-review the recently - Formal release date of 1 June 1988 established draft ESA/NASA JPDRD for The main contract to be placed during for the Phase-CID RFQ is maintained. possible updating. Phase-1 of the development programme - Submittal date for the Phase-CID covers the definition of the spaceplane. proposal has been shifted to 15 The Executive is continuing to prepare Subject to the approval of the Industrial December 1988. and implement the necessary actions to Policy Committee, this tender will be - Phase-CID Authority-to-Proceed (ATP) allow the Space Segment to transit from issued in early April. Steps have been is planned for 1 May 1989. Phase-B to Phase-CID with the minimum taken to ensure continuity of the of disturbance to industrial continuity. industrial effort whilst awaiting final The Agency is currently working with the This transition planning accommodates approval of the contract.

51 • bulletin 54

L 'ensemble de donnees de la Revue Une reunion de coordination technique exigences du systeme; il suit les finale comprenait I'evaluation par le de niveau 2 a eu lieu entre I'ESA et la calendriers actue/s des programmes de contractant des recommandations NASA a Washington (Reston) du 22 au liaison. formulees pour I'etape No 2 par I'equipe 26 fevrier 1988. La selection des speciale de coherence, et celles-ci vont principaux documents d'exigences de maintenant etre evaluees conjointement niveau 2 pour la Station spatiale, avec le projet Hermes pour determiner concernant I'applicabilite au programme Hermes leur faisabilite, ou, sinon, pour les Columbus, notamment le module incorporer aux bases de reference de pressurise fixe a la Station (A PM), a ele Les activites de Phase B2, qui font partie programme respectives. Cette evaluation achevee et un projet de document du programme preparatoire d 'Hermes, sera menee conjointement a la Revue d'exigences et de description de sont presque terminees. La premiere finale de la Phase B3 d'Hermes, programme conjoint ESA-NASA tranche du contrat de Phase B2, programmee entre la mi-avril et la mi-mai (JPDRD) a ete etabli. adjugee a un consortium d 'avion spatial 1988. mene par I'Aerospatiale, a debute en juin Le processus de selection a abouti a 1987. La seconde tranche couvre les L 'evaluation des options de la plate­ !'identification de plusieurs questions trois premiers mois de cette annee. Les forme meridienne s'est poursuivie au d 'interface essentielles, que I'Executif resultats de cette phase, et notamment cours du mois de mars. Les nouveaux souhaite traiter en priorite avant le la definition detaillee de la configuration apports du CNES et de BAe ont ete lancement final du RFQ pour la Phase de I'avion spatial, seront passes en revue evalues ainsi que ceux rec;us CID de Columbus. Le critere utilise par par I'ESA et le CNES en avril et mai precedemment de Matra, Dornier et I'Executif pour determiner les questions 1988. On s 'attend a ce que cette revue, MBBIERNO - en fonction des exigences absolument prioritaires etait le suivant qui se concentrera sur les secteurs revisees. Ces dernieres, ainsi que les toute question, dont la resolution critiques deja identifies - notamment concepts possibles de configuration de eventuelle serait susceptible de conduire I'aerodynamique et le bilan masse global la plate-forme meridienne, ont a une modification fondamentale de - aboutisse a la recommandation de main tenant ete revues au sein de I'architecture de I'APM ou de I'un de ses certaines ameliorations de la conception I'Agence et avec la NASA. sous-systemes. La date limite pour d'Hermes. resoudre toutes les questions prioritaires Suite a une evaluation interne de I'etat a ete fixee au 1er juin 1988. Suite a I'approbation du programme de actuel de la definition des interfaces realisation d 'Hermes, en novembre, sa externes principales de Columbus avec Le prochain evenement majeur du declaration a ete ouverte a souscription. la Station spatiale et Hermes, et compte processus de revue des exigences Cette derniere a depasse le 11 fevrier le tenu du temps necessaire a la mise a preliminaires de la Station spatiale est la seuil de 80% exige pour le demarrage jour complete et a !'incorporation des reunion du comite directeur de la Station du programme. Le niveau de exigences de la plate-forme meridienne spatiale (SSCB) de niveau 2, qui est souscription est actuellement de 99.05%, dans la solution de reference, le prevue pour le 26 avril 1988. L 'objectif et la decision du douzieme Etat calendrier previsionnel de I'appel d 'offres premier de cette reunion est la diffusion participant, le Canada, est attendue (RFQ) pour la Phase CID a ete ajuste de d 'une base de reference mise a jour des prochainement. fac;on a prendre en compte les dates exigences de niveau 2 de la NASA, qui suivantes: sera ensuite utilise comme base pour la Le contenu de la premiere phase du - La date de lancement officielle du 1er revu.e des exigences preliminaires de programme, la Phase 1, qui couvrira les juin 1988 pour le RFQ de la Phase niveau 3, laquelle doit etre menee par annees 1988, 1989 et 1990, a ete defini CID est maintenue. les centres responsables des lots de de fac;on plus detaillee. L 'objectif de - La date de soumission de I'offre pour taches de niveau 3 au cours de I'ete. cette phase est quadruple: faire la Phase CID a ete repoussee au 15 progress er la definition de I'avion spatial decembre 1988. Une fois que I'exigence de base de et des autres elements d'Hermes; mettre - L 'autorisation de proceder (A TP) pour reference de niveau 2 mis a jour aura au point les technologies les plus la Phase CID est programmee pour le ete approuve par le SS CB en avril, il critiques necessaires; definir les 1er mai 1989. sera necessaire de passer a nouveau en interfaces avec d'autres programmes, revue le projet JPDRD en vue d 'une principalement Ariane et Columbus; et L 'Agence determine actuellement avec le mise a jour eventuelle. enfin preparer la phase suivante, en conlractant des lignes directrices pour negociant une offre industrielle detaillee. engager la Phase CID en accord avec le L 'Executif continue a preparer et a calendrier revise qui prennent en compte mettre en oeuvre les mesures, Le principal contrat a adjuger pendant la la necessite, pendant les cinq premiers necessaires pour permettre aux elements Phase 1 du programme de realisation mois de cette phase, de mettre un spatiaux de passer de la Phase B a la couvre la definition de I'avion spatial. accent tout particulier sur les interfaces Phase CID sans que la continuite Sous reserve d 'approbation par le comite externes, les taches de definition de la des travaux effectues dans de politique industrielle, cet appel plate-forme meridienne et une nouvelle I'industrie en soit affectee. Ce planning d'offres sera lance debut avril. Des mise a jour eventuelle de la configuration de transition prend en compte le travail mesures ont ete prises pour assurer la du module autonome visitable (MTFF), supplementaire necessaire pour definir continuite de I'effort industriel dans resultant de la revision de la base de de maniere adequate la base de I'attente de I'approbation finale du reference de la plate-forme meridienne. reference des interfaces externes des contrat.

52 programmes & operations

TOP Liquid Gauging Technology Ariane A study to define the experiment is in The In-Orbit Technology Demonstration progress and will be completed by The American satellite Spacenet 3R and Programme has progressed in all areas, mid-1988. A breadboard has been the French satellite Telecom 1C were in particular: manufactured and tested. The In for launched at 23.28 h, precisely at the experiment adaptation will then be opening of the launch window, on 11 Common Support Subsystems issued. March 1988. Hitchhiker-G Simulator The breadboard has successfully passed Flight opportunities The launch campaign, which began on the acceptance test. Production of the The Preliminary Safety Review for the 25 January, the count-down, which units is about to start; four units are to Shuttle Get-Away Special (GAS) began on 10 March, and the final be manufactured. experiment (G-21) has been successfully synchronised sequence, which began six completed for the Solid-State Micro­ min before launch, proceeded smoothly Payload Control Unit accelerometer. and without incident. Phase-1 of the contract will be completed in May 1988. In this phase The Payload Accommodation Request All the launcher systems functioned the recurring price of the unit will be has been completed for the Liquid correctly, the vibration level was low and fixed, together with the detailed Gauging Technology (G-22) and In­ the spacecraft separated from the design. Space Aluminium Coating (G-485) launcher according to plan. Experiments. Experiments Both satellites were injected with a high Gallium-Arsenide (GaAs) Solar Array For the experiments using Hitchhiker-G level of precision into geostationary The production of the solar cells has carriers - Altitude Sensor Package, transfer orbit as can be seen from the started. Solar-cell-module prototypes Collapsible-Tube Mast and Heat-Pipe table below (injection parameters have been tested under thermal cycling Radiator - manifesting is expected in acquired just before separation). in ESTEC. An early flight opportunity to April 1988. NASA's pricing policy for test in-orbit solar-cell strings has been Hitchhiker secondary payloads is still not secured. finalised . Planned Reached

Altitude-Sensor Package The technical feasibility of flying the Spacenet Work is progressing on this package to Inflatable Space-Rigidised Antenna on Apogee (km) 36041 .8 35983 upgrade the existing sensors - including the USSR's MlR Space Station has been Perigee (km) 200.0 200.3 Earth sensor, modular star sensor established. The mechanical/electrical Inclination (0) 6.99 6.99 and yaw Earth sensor - to flight interfaces are currently being defined. status. Telecom 1C The Transputer and Single-Event Upset Apogee (km) 35985.6 35956 Solid-State Micro-accelerometer Experiment will be carried on board a Perigee (km) 200.4 200.3 The contract for experiment adaptation UOSAT-type spacecraft to be launched Inclination (0) 6.99 6.99 and integration was awarded in March shortly. The selection of a small free-flyer • and work started in April 1988. satellite to carry the GaAs solar array is still in progress and is expected to be Collapsible-Tube Mast and Heat-Pipe finalised this year. Radiator Industry is preparing its proposals. International cooperation with NASA's Office of Aeronautics and Space Inflatable Space-Rigidised Antennas Technology has been agreed for the The Invitation to Tender (ITT) is currently Phase-B of two new experiments being prepared. proposed by ESA (In-Flight Contamination and Solar-Array-Module Transputer and Single-Event Upset Plasma Interaction); both should be This is a new experiment which has carried as passengers with the recently been added to the existing Collapsible-Tube Mast. experiment list. The In is in preparation. In the context of looking, together with the Ariane Department, for further flight Dynamic Cooler opportunities, negotiations are underway This item has been deleted, in with Arianespace for the launch of a agreement with the Swiss Delegation. 'Pathfinder Platform' carrying technology experiments. In-Space Aluminium Coating The study to define the experiment has Preparations for the next phase of the been completed and the In is in In-Orbit Technology Demonstration preparation. Programme have started.

53 • bulletin 54

TOP Aluminiage dans I'espace occasions de vol, des negociations sont L 'etude de definition de cette experience en cours avec Arianespace pour le Le programme de demonstration a ete terminee, et I'appel d'offres (ITT) lancement d'une 'plate-forme eclaireur' technologique (TOP) en orbite a est en cours de preparation. emportant des experiences progresse dans tous les secteurs, en technologiques. particulier: Technologie de mesure du niveau des liquides Les preparatifs de la phase suivante du Sous-systemes de prise en charge Une etude de definition de I'experience programme de demonstration commune est en cours et sera terminee d'ici a la technologique en orbite ont commence. Simulateur Hitchhiker-G mi-1988. Une maquette a ete fabriquee La maquette a subi avec succes I'essai et essayee. L'appel d'offres d'adaptation de recette. La production des de I'experience sera ensuite lance. exemplaires est prete a commencer; la Ariane fabrication de quatre exemplaires est Occasions de vol programmee. Pour I'experience de petites charges Le lancement du satellite americain utiles en conteneur (GAS) de la Navette, Spacenet 3R et du satellite fram;ais Unite de commande de charge utile (G-21): la revue de securite preliminaire Telecom 1C a eu lieu le 11 mars 1988 a La Phase 1 du contrat sera terminee en du micro-accelerometre a semi­ 23 h 28 mn TU, exactement a mai 1988. Dans cette phase, le prix conducteurs a ete effectuee avec succes; I'ouverture de la fenetre de lancement. recurrent de I'unite sera fixe, ainsi que la (G-22): la demande de mise en place de conception detaillee. la charge utile pour la technologie de La campagne de lancement qui a mesure du niveau des liquides et (G-485) debute le 25 janvier, la chronologie Experiences les experiences d'aluminage dans entamee le 10 mars et le decompte final Generateur solaire a I'arseniure de I'espace, ont ete completees. amorce le 11 mars six minutes avant le gallium (GaAs) lancement, se sont deroules sans aucun La production des piles so/aires a Pour les experiences faisant appel a des incident. commence. Des prototypes de module porteurs Hitchhiker-G - bloc capteur de pile solaire ont ete essayes dans des d'altidude, mat a tube repliable et Tous les systemes du lanceur ont conditions d'iteration thermique a radiateur a caloduc - I'etablissement du fonctionne norma/ement; I'ambiance I'ESTEG. Une prochaine occasion de vol programme est prevu pour avril 1988. La vibratoire de vol a ete calme et les permettant d'essayer en orbite des politique de tarification de la NASA pour conditions de separation des satellites chaines de piles solaires a ete les charges utiles secondaires ont ete nomina/es. assuree. (Hitchhiker) n'est pas encore fixee definitivement. La faisabilite technique du L 'orbite de transfert geostationnaire a ete Bloc capteur d'altitude vol de I'antenne gonflable a armature atteinte, pour chaque satellite, avec une Les travaux progressent sur ce bloc - y rigide sur la station spatia/e MlR de tres bonne precision selon les compris capteur terrestre, capteur I'URSS a ete etablie. La definition des caracteristiques suivantes (parametres stellaire modulaire - pour qualifier pour interfaces mecaniques et electriques est d'injection juste avant separation). le vol les capteurs existants. en cours. Spacenet Prevision Obtenu Micro-accelerometre a semi-conducteurs L 'experience 'Transputer' sera menee a Le contrat d'adaptation et d'integration bord d'un satellite du type UOSA T, qui Apogee (km) 36041,8 35983 de I'experience a ete adjuge en mars, et doit etre lance prochainement. La Perigee (km) 200,0 200,3 le travail a commence en avril 1988. selection d'un petit satellite autonome Inclinaison (0) 6,99 6,99 porteur des generateurs so/aires a Mat a tube repliable et radiateur a I'arseniure de gallium se poursuit, et Telecom 1C coloduc devrait etre terminee cette annee. Apogee (km) 35985,6 35956 L'industrie prepare ses propositions. Perigee (km) 200,4 200,3 Inclinaison (0) 6,99 6,99 G Antennes gonflables a armature rigide L'appel d'offres (ITT) est en cours de La cooperation avec le Bureau preparation. de technologie aeronautique et spatiale de la NASA a fait I'objet d'un 'Transputer' et derangement par les accord pour la Phase B de deux particules elementaires nouvelles experiences proposees par 11 s'agit d'une nouvelle experience qui a I'ESA (contamination en vol et interaction recemment ete ajoutee a la liste entre le module de generateur solaire et d'experiences existante. L 'appel d'offres le plasma); les deux devraient etre (ITT) est en cours de preparation. emportes comme passagers avec le mat a tube repliable. Refroidisseur dynamique Cet element a ete supprime, en accord Dans le contexte de la recherche, avec avec la delegation suisse. le departement Ariane, de nouvelles

54 redu - twenty years on

Redu Twenty Years On

J. B. Mac Laugh/an, ESA Ground Station, Redu, Be/gium

On 1 January 1988, the ESA station Background during each pass. Such satellites have at Redu celebrated twenty years of ESA's is situated outside the included: the Agency's ESRO-IA, ESRO­ operations. Originally conceived as village of Redu, approximately half way IB, ESRO-II, ESRO-IV and TD-1A and the part of the ESTRACK network between the cities of Brussels and Dutch ANS spacecraft. Those with highly supporting ESRO's near-Earth Luxembourg. It lies in a natural valley eccentric orbits have included Heos-A1, scientific satellites, Redu has evolved and covers an area of some 19 hectares Heos-A2 and Cos-B. to play a major role in the launch and at an average altitude of some 330 m. early-orbit operations of ESA's The geostationary-orbit era started for geostationary satellites, and to host a The station was declared operational on ESA in 1977 with Meteosat-1, soon to be dedicated ECS Control Centre and in­ 1 January 1968 and commenced followed by OTS-2 and Geos-2 (because orbit-test facilities for the ECS and operations with the ESRO-II satellite of the Thor-Delta launcher failures, Olympus missions. Although these which was launched in May of that year. Geos-1 was unable to attain missions will be operational for some During these early days, the station was geostationary orbit and OTS-1 did not years to come, consideration is equipped with a high- and a low-gain even reach transfer orbit). Redu provided already being given to the role that VHF telemetry antenna and a VHF support for all of these missions, and Redu can play in future Agency telecommand antenna, together with an subsequently for Meteosat-2 and the programmes such as PSDE, DRS and interferometer for localisation purposes. Marecs and ECS satellite series. AOTS. An additional VHF telecommand antenna was installed in the mid-1970s for the Current and planned mission support Geos mission. Redu currently provides 24 h-per-day support for the ECS satellites (ECS-1, The main transformation of Redu into its ECS-2 and ECS-4) and OTS-2, and on a present form began with the decision in regular basis also for the NASA satellite 1979 to install not only the telemetry, IMP-8. In the course of 1988, Redu will telecommand and ranging facilities for be involved in the Launch and Early-Orbit the European Communications Satellite Phase (LEOP) operations of both (ECS) missions, but also a dedicated Meteosat-P2 and ECS-5. Control Centre and a Communications Payload Test and Monitoring Terminal. With the exception of the LEOp, which is Subsequent additions have been made controlled from ESOC, and periodic ECS to the ECS facilities to permit the control ranging measurements from Villafranca, of four ECS satellites in orbit. Three new Redu has full autonomy for all the terminals have also been installed for the operations required for the ECS missions. in-orbit testing of the Olympus satellite's The ~CS satellites are operated on behalf communications payload. of EUTELSAT, who become the satellite owners following in-orbit acceptance and Early missions who lease the communications During the first ten years of operations at transponders to the various European Redu, the satellites were all scientific and PTIs. most were in near-Earth orbit, which meant that they were 'visible' to the In addition to the tracking and control of station for approximately ten minutes satellites, comprehensive in-orbit-test

55 G bulletin 54

Figure 1 - The Main Equipment Room

Figure 2 - The ECS Control Room

Figure 3 - The Test and Monitoring Room

facilities have been installed for the ECS satellites and Olympus. These facilities will also be used for the Scandanavian satellite Tele-X .

The current operational activities at Redu may be conveniently grouped into three categories: - tracking-station support - control-station activities for the ECS missions - in-orbit testing of communications satellites.

For the future, although details are not yet finalised, it is expected that Redu will play an important role in the Agency's Payload and Spacecraft Development and Experimentation (PSDE), Data-Relay System (DRS) and Advanced OTS (AOTS) Programmes.

Site facilities The main building houses the operational rooms, namely: - The Station Control Room (SCR), which is the network interface with the Operations Control Centre (OCC) at ESOC in Darmstadt, Germany. The station's general-purpose facilities are monitored and controlled from this room. - The Main Equipment Room (MER), which houses the telemetry, telecommand and ranging baseband racks, the station computers, timing and communications units, and the other necessary facilities (Fig. 1). - The ECS Control Room (Fig. 2) and Computer Room (ECC), from which all ECS satellite operations are conducted. - The Test and Monitoring Room (TMR), from which all the in-orbit testing is carried out (Fig. 3).

In addition, the main building houses the maintenance laboratory and staff offices.

The store of spare parts, consumables and other items is kept in the auxiliary building, which is situated opposite the main building and is currently being extended to house a larger canteen and

56 redu - twenty years on

Figure 4 - Overall view of the Redu Station

a conference room. The power and TMS7) been allocated to Meteosat-P2 for generation and distribution building is - four fixed telemetry terminals (TM1, routine-phase support. In the case of also located close to the main building. TM2, TM3, TM6) ECS-5, operations will be handed over Electricity is supplied to the site by two - one ranging terminal (RG1) from the OCC at ESOC to the dedicated 15 kV lines, configured such that if one - one satellite multi-services terminal ECS Control Centre (ECC) at Redu, from should fail the other is immediately - one radiometer. where the satellite will be controlled switched on-line. Further security is along with the three other ECS satellites provided by two 400 kVA diesel An overall view of the station is shown in already in orbit. generators, which start automatically Figure 4. should there be a power loss. A 300 kVA Back-up functions no-break generator is used to supply all Tracking-station support Redu also provides a VHF back-up computers, electronic equipment, LEOP service should there be a satellite or receivers and transmitters. A second no­ Redu has played a major role in the station problem. If, for example, Marecs­ break generator will be installed during launch and early-orbit phases of all ESA B2 were to lose 'Earth-lock', leading to 1988. geostationary satellites, primarily during loss of the routine-phase narrow­ the phase when the satellite is drifting beamwidth telemetry signal by the The VHF facilities consist of two towards its final orbital location. in Spain, the telecommand terminals (TC1, TC2), two Thereafter, control usually passes to a operations to restore Earth-pointing would telemetry terminals (TM4, TM5) and a station dedicated specifically to the be carried out from the acc at ESOC VHF calibration tower. mission in question. For example, during via Redu, using the latter's broad beam Meteosat-P2's drift-orbit phase, the VHF facilities. Such support can also be The SHF facilities include: satellite will be controlled from the acc provided to the ECS Control Centre - four fixed in-orbit-test terminals (TMS1, in ESOC via Redu; when it is on-station should the need ever arise. TMS4, TMS5, TMS6) and working at S-band frequencies, - four transportable in-orbit-test operations will be performed via the Routine support terminals (TMS3A, TMS3B, TMS3C Odenwald station in Germany, which has OTS-2, which celebrates its tenth

57 • bulletin 54

Figure 5 - Block diagram of the general-purpose and ECS-dedicated facilities at Redu

ECS dedicated facilities

General purpose facilities station computer A Honeywell Bull

station computer B Honeywell Bull

To OCC.fSOC

anniversary in May 1988, is controlled in orbit; one to carry TDMA telephony TM2, TM3 and TM6, which are allocated from the OCC at ESOC via the Redu and telex traffic plus Eurovision television to ECS- 1, ECS-2, ECS-4 and ECS-5, station. The satellite is regularly used with distribution, and the other to act as an in­ respectively. the Redu in-orbit-test facilities to verify orbit spare. However, the upsurge in the new communications tests and for distribution of television programmes The signals are downconverted and calibration purposes. Neither of these throughout Europe subsequently resulted passed via the telemetry pre-processors tasks can be carried out on a satellite in ECS-1 being fully utilised for this type to the Redu X-25 mini-node, and thence carrying operational traffic. of service. Consequently, EUTELSAT to the ECS computer system . The requested ESA to operate three satellites computer system itself is fully redundant Telemetry data is received on a regular in orbit, and shortly thereafter asked for a and uses two Gould 32/67 processors basis from NASA's IMP-8 scientific fourth satellite. The need to control three with 6 M byte memories and six satellite, recorded on magnetic tape, and satellites led to an extension of the Redu Winchester disks each of 260 Mbyte forwarded to Goddard Space Flight ground facilities and the computer capacity. It is also possible to route the Center in the USA for analysis. system. To cope with the subsequent telemetry data direct from the mini-node increase to four satellites, the ECS to the OCC at ESOC. Control-station support for the ECS computer system has been replaced by mission a more powerful system of the same type Unlike telemetry reception, where each Background as that installed in the OCC at ESOC. satellite has an individual antenna, only The Agency's ECS-1, ECS-2 and ECS-4 one antenna is used for the tele­ satellites already controlled from the Facilities commanding of all satellites. This is dedicated ECS Control Centre at Redu, The facilities dedicated to the ECS possible because the frequency used for will be joined by ECS-5 during the mission are illustrated in Figure 5. telecommanding is in the VHF band and second half of 1988. The initial mission Telemetry data is received at SHF the TC1 antenna has a field of view that baseline was to have two ECS satellites frequencies by the four terminals TM1, encompasses the on-station positions of

58 redu - twenty years on

Figure 6 - Example of an ECS Contral­ Room graphical display

all four satellites. The command message recorded. This information is sufficient to payload is switched on and, after a short generated by the computer system allow the orbit of each satellite to be functional commissioning test on the contains all the information needed to set calculated. To ensure that there is no payload, formal acceptance testing up the polarisation, uplink frequency, long-term drift in TMS1 pointing, a begins. address and synchronisation word, and ranging campaign is conducted from the on-board routing automatically. Villafranca approximately once every six Once the satellites have been accepted Comrnands can thus be uplinked to any months. and ownership formally transferred to ECS satellite without the need to EUTELSAT, they enter 'operational reconfigure from one satellite to the Operations service' and all the operations necessary next. During the drift-orbit phase after launch, to keep them functioning correctly are when the satellite is drifting slowly to its conducted from the ECS Control Centre Orbit determination is based on ranging final in-orbit position, and which usually at Redu . and angular tracking data. The RG1 lasts about three weeks, platform ranging terminal is pointed at each commissioning tests are conducted. The The ECS Control Room contains both satellite in turn on a routine basis, and a prime objectives are to check the alphanumeric and graphical displays, series of ranging measurements are performance of the satellite, perform which enable the controllers to monitor taken automatically. Similarly, the TMS1 certain calibrations and measurements, the onboard performances of all of the in-orbit test terminal, which has a 13.5 m and ensure that all redundant units are satellites. Figure 6 shows a typical dish, is locked onto the telemetry beacon functioning correctly. When the ECS graphical display. and an azimuth and elevation reading is satellite is on-station, its communications

59 • bulletin 54

Figure 7 - A TMS1 in-orbit-test terminal (three TMS3 transportable stations and the radiometer can also be seen)

In-orbit testing of communication satellites The design specifications for the ECS satellites are based primarily on the communications-payload performance levels that must be achieved once the satellites are in orbit. Demonstration that these levels are indeed within the pre­ specified limits enables ESA to accept the satellites from the manufacturer, and in turn to demonstrate to EUTELSAT that they are ready for operational use.

Test and monitoring facilities are therefore required to carry out this in-orbit testing, and this is why the TMS1 terminal (Fig. 7) was constructed at Redu, together with the other test equipment necessary. Three transportable TMS3 stations were also built for use within Europe.

Further in-orbit test facilities - TMS4, TMS5 and TMS6 - have since been installed for Olympus, which also uses the test equipment provided for TMS1. An additional transportable station, TMS7, will be maintained at Redu when it is not needed elsewhere. Table 1 - Principal functions of the in-orbit-test terminals

Together, these facilities cover all of the Identifier Frequency Principal functions frequency bands currently used in Europe for fixed communications services Fixed Stations and for direct broadcasting. It is, in fact, TMS1 14-11 GHz Central measurement earth station with fully integrated possible for other organisations that wish instrumentation-control and data·handling facilities working in the to conduct communications tests to make fixed-services frequency band used for the ECS baseline payload arrangements with ESA for full or partial and applicable to other similar satellites. use of these facilities. EUTELSAT and the Swedish Space Corporation are two such TMS4 14-12 GHz Antenna and associated equipment designed to extend the customers. payload test capabilities into the specialised-services frequency band. Figure 8 is a block diagram of the Redu TMS5 18-12 GHz Antenna and associated equipment designed to test satellite in-orbit-test facilities. From this it can be performance in the direct-broadcast frequency band. seen that the system has been designed such that any of the TMS1, TMS4, TMS5 TMS6 30-20 GHz Antenna and associated equipment designed to test the higher or TMS6 terminals may be connected to frequencies of new·generation satellites. the comprehensive test equipment installed in the Test and Monitoring Transportable Stations Room . The principal functions of each terminal are shown in Table 1. TMS3 14/12-11 GHz Air·transportable station which can be located anywhere within the satellite coverage and linked to the central measurement facilities at Redu. Operations The in-orbit performance testing of the TMS7 30-20 GHz A transportable station similar to TMS3, designed to provide payload must be carried out accurately measurements at remote locations in the 30-20 GHz band. and quickly to allow the satellite to be

60 redu - twenty years on

Figure 8 - Block diagram of the in-orbit­ fTMS l test facilities at Redu

1

1 113.5 M

1 L [TMS4 outputs are all in engineering units, which helps the engineer to interpret the 1 data quickly and efficiently. 1 9M 1 Staffing With the addition of the ECS Control 1 Centre and the in-orbit-test facilities, the L number of staff working at Redu has [TMS5 risen from approximately 20 in 1980 to its

1 current level of over 50. The majority are employed by CISET, an Italian company, 1 9M which has been entrusted by ESA with 1 the maintenance and operations tasks at

1 the station. These tasks are carried out in L accordance with network maintenance [TMS6 and operations procedures specified by ESOC's Network Operations Division. 1

1 However, operations specific to the ECS 14M satellites and in-orbit testing are performed under the technical direction 1 of the four ESA engineers at Redu . L Software development and maintenance for the ECS computer system is the responsibility of two SESA software engineers, working under the technical direction of the ESA Computer Department.

Conclusion Transportable stations Over the last ten years, Redu has developed comprehensive facilities and considerable experience in the disciplines of control and in-orbit testing put into commercial service at the redundant units, and in the analysis of of communications satellites. This earliest possible moment. The anomalous behaviour should such an experience will be consolidated in the commissioning and acceptance testing of event occur. next few years with the continuation of ECS-4, for example, lasted just over three the ECS missions and the start of the weeks and involved ESA , EUTELSAT and The Redu in-orbit-test facilities are also Olympus mission. Redu also expects to the ECS Prime Contractor, British used occasionally for EUTELSAT Earth be involved in the Agency's future PSDE, Aerospace. During this period, the Station Verification Activities (ESVA), to DRS and AOTS telecommunications transportable stations were shipped to confirm that new stations entering the programmes which , with their advanced numerous sites, chosen because they EUTELSAT system are up to technology, promise to offer new and were on the edges of the satellite specification. demanding challenges. 0 antenna contours, to measure coverage­ dependent parameters. The measured All payload-measurement operations are data were then passed over normal dial­ conducted from the Redu Test and up telephone lines to Redu for analysis. Monitoring Room (TMR), with test initialisation, execution, data collection The in-orbit-test facilities are also used and display being performed by a during the satellite's operational lifetime to computer system . Test results are also measure key parameters on a routine processed in the TMR and presented to basis, to recheck performance from time the test engineer in a clear and concise to time, to monitor the status of manner by the in-orbit-test computer. The

61 G bulletin 54

Optical Inter-Satellite and Inter-Orbit Links - The Critical Aspects

0. B. Millies-Lacroix & G. Berretta, Directorate of Telecommunications Programmes, ESA, Paris

In the 1990s, the Agency's High-capacity orbital communications communications network, an ISL telecommunications programmes will networks will be a prerequisite for the constitutes a basic tool for enhancing demonstrate experimentally new operation of future low-Earth-orbiting connectivity, coverage, flexibility and satellite communications missions Space Stations, and to support future hence economic return (Fig. 2). That cost involving Inter-Satellite Links (ISLs) manned or automatic deep-space factor is particularly evident when the between satellites in geostationary missions. The various low-Earth-orbiting network configuration is such that orbit, and Inter-Orbit Links (IOLs) elements of the In-Orbit Infrastructure implementation of an ISL allows a major between satellites in geostationary (101) foreseen in the ESA Long-Term reduction in the number of Earth stations and low Earth orbits. These space-to­ Plan (see pages 14-29 of this issue) needed. Its benefits are therefore not space links, which represent the also call for an operational Data-Relay specific to any particular satellite service; latest developments in satellite Satellite (DRS) System (Fig. 1) they apply equally well to fi xed­ communications technology, will play providing wideband 10Ls for the transfer broadcast, mobile or data-relay services. a key role in the further exploration to ground of large volumes of data, and exploitation of space. particularly Earth-observation and Implementation of an ISL between two microgravity data. Such a capability has Data-Relay Satellites, for example, allows been regarded as a 'must' by NASA different system architectures from those since 1972, when the Tracking and Data­ baselined for the TDRSS, DRS or Relay Satellite (TORS) Programme was Japanese DRTS systems to be first formulated. employed. In these three systems, the active space segment consists of two When implemented between two satellites in widely separated orbital satellites in an international positions. The areas in wh ich the ground

Figure 1 - Conceptual drawing of a Data-Relay Satellite (DRS)

62 inter-satellite & inter-orbit links

Figure 2 - Schematic of an Figure 3 - Complete laboratory experimental optical Inter-Satellite and breadboard of an optical, laser-diode­ Inter-Orbit Link (ISUIOL) system based transmit/receive system for space communications (courtesy of Technical University of Vienna)

(b) The information-carrying capacity of optical signals is inherently much greater than that of radio-frequency signals. (c) The optical frequencies employed fall outside the crowded radio­ frequency bands used for most other purposes, making system coordination easier.

For the specific case of ISL, the same rationale is valid, but point (a) becomes particularly important. Indeed while the IOL is the core element of any DRS mission, any additional watt of power consumption or kilogram of additional payload weight involved in the installation of an ISL package on board a geostationary satellite is a penalty to be traded-off against its benefits for the communication system in terms of connectivity, coverage, flexibility and cost. The linking of two geostationary stations of each system can be installed based on three arguments: satellites has never been, and will never are limited by the constraint of (a) Because the wavelength of the be, an end in itself! simultaneous visibility of both orbital optical laser radiation is very short positions from every station in the (about 1 micron), it is possible to The ESA development and ground segment (elevation angle generate extremely narrow experiment programme compatible with required system transmitting beams (typically 5 The Agency actually began development availability and the local statistical microradians) with small-aperture work on optical communication systems propagation characteristics at the chosen telescopes. The optical in 1977. For some years, it concentrated feeder-link frequencies). communication package on board mainly on systems using gas lasers

the satellite can therefore be made (C02) , Since the early eighties, with fibre­ In Europe's case, use of an ISL allows very small and compact. optics technology reaching maturity, one of the two DRS satellites to be located over European territory (e.g. around 1aCE) and the other spaced to the east or west by 145 c. The latter would not be visible from any European station and its full capacity would therefore need to be channeled via the ISL and the satellite located over Europe. This solution not only completely eliminates the existing exclusion zone for spacecraft above 700 km, it also allows signal dissemination to ground stations throughout Europe from a much higher elevation angle than with the present DRS baseline system.

Why optical technologies for IOl and ISl? The rationale for the implementation of Inter-Orbit Links at optical frequencies is

63 (9 bulletin 54

Figure 4 - Concept for an advanced communications spacecraft (PSDE Sat-2) forming part of ESA's Payload and Spacecraft Development and Experimentation Programme

semiconductor laser diodes have gradually become a stronger alternative to CO2 lasers for telecommunications satellite applications. Nowadays, most of ESA development activities in this field rely on system concepts based on the use of GaAlAs or InGaAsP semiconductor laser diodes, with emitting wavelengths in the order of 0.8 and 1.3 microns, respectively. Increasing Spot-4 satellite. The spacecraft to carry between ESA, Eutelsat and I ntelsat. The attention is also being given to the use of the other geostationary-Earth-orbit purpose of the ISL mission is to be as diode-laser-pumped Nd-Yag lasers terminal has still to be identified. representative as possible, from a system (wavelength 1.06 microns) for future point of view, for an optimised applications. Cooperation with operating agencies operational ISL. System criticalities relate Although the Silex mission has essentially not only to the problem of optical The basic R&D activities, essentially at a technological purpose, close transmission, but also to the interface component or equipment level, are cooperation has been established in its between the two ends of the ISL and the funded via the Agency's Advanced definition with the satellite operators transmit and receive sections of the Systems Technology Programme (ASTP) interested in the commercial exploitation payloads hosting the ISL. and Basic Technology Research of optical intersatellite missions. Programme (Basic TRP). These activities Other critical aspects are those related to relate to critical components like high­ The IOL mission, which is of a data-relay the need for satellite systems to follow radiance single-mode laser diodes, nature, has been devised taking into the recommendations of the international wavelength division multiplexers, spectral account the operational requirements of bodies that regulate and standardise the transmiUreceive isolators and pointing the Spot Image company, which is characteristics of the World's and tracking devices. Future activities will responsible for the commercial telecommunications networks. For deal with breadboard development of the exploitation of the Earth-observation instance, regulations on the maximum critical technology involved in optimised products generated by the Spot remote­ transfer delay for a telephone link system design for high-rate optical inter­ sensing satellite. (400 ms) limit the orbital spacing of the satellite links, using advanced two satellites to about 60°. Another technologies such as optical ESA and CNES, which is responsible for example of particular mission heterodyning (Fig. 3). the Spot satellite programme, have requirements is the need for negotiated an agreement covering the organisations like Eutelsat and Intelsat to Experiments are proposed within the preparation of that mission. The mission be able to provide satellite ESA Payload and Spacecraft requirements deal essentially with link communications services compatible with Development and Experimentation capacity, transmission quality, system the quality objectives of the developing (PSDE) Programme, in the 1990-1992 availability, and link setup times. These Integrated Services Digital Networks time frame, for the test demonstration of parameters have been identified in the (ISDN). optical links on the ground or using definition of the IOL experimental link stratospheric balloons. The main core of between Spot-4 and PSDE Sat-2. It has been decided that, as a first step, the optical activities, however, is the most attractive operational application provided by the Semiconductor Laser The experiment will consist of an for an ISL is the connection of two Intersatellite Link Experiment (Silex) asymmetric duplex link of 1 MbiUs satellites located over the rims of the aimed at developing optical terminals capacity in the forward (ground-to-Spot) American and European continents, in that will be flown from 1993 onwards on direction, and 2 x 30 MbiUs in the return order to establish a very wide coverage, two geostationary satellites and on one (Spot-to-ground) direction, with bit error single-hop system for business 6 low-Earth-orbiting spacecraft. Two of the rates of 10 - . Link acquisition time is communications (satellite multi-services/ three satellites to be involved in the in­ specified as 50 s, and the telescope international business services). orbit demonstration of both optical IOL diameters are 20 to 25 cm on both the and ISL have been identified. A terminal Spot and Sat-2 terminals. Critical aspects of optical ISLlIOL with IOL and ISL pointing capability will In the design of systems involving high­ be flown on the Agency's PSDE Sat-2 The ISL mission for telecommunications capacity duplex links for the transmission satellite (Fig. 4), while the low-Earth-orbit applications has been defined in the of either high-data-rate digital or terminal will be embarked on the French framework of tripartite cooperation wideband analogue signals, one has to

64 inter-satellite & inter-orbit links

Figure 5 - Breadboard of tracking actuator subsystem for optical communications (courtesy of ONERA, France)

cope with many technological constraints. These include:

(a) Limited optical transmitter power laser diodes with the requisite optical beam quality and lifetime are currently limited in output power to typically 50 mW. Higher transmitted laser powers are needed to achieve the required link capacities (in the order of several hundred MbiUs) with reasonably sized telescopes. Two possible means of increasing the transmitted laser power are to use power-combining or wavelength-division multiplexing techniques. Wavelength-division multiplexing is the scheme retained for the Silex IOl demonstration, where wavelength-division multiplexing of four channels is the baseline. The Silex payloads will use 0.85 micron semiconductor laser diodes with a 30 mW nominal output power, together with direct optical detection using APDs (Avalanche Photo-Diodes).

(b) Receiver sensitivity The frequency of GaAlAs diode laser transmitters (0.8 micron) corresponds to diode laser. For free-space view optical detector [e.g. using a the high-sensitivity region of silicon. High­ communication, there is also a need for charge-coupled device (eeD) matrix) is performance, space-qualified APDs (Si­ frequency acquisition and Doppler required. The goal is to perform initial APD) are readily available, whereas tracking, calling for wide tunability of the link acquisition in approximately detectors operating in the 1.3 micron local oscillator laser. The Doppler shift for 1 minute. To ensure a good-quality region are less sensitive. Direct-detection ISls is smaller than for IOls, and this communications link with the narrow optical receivers, although would make heterodyning easier for ISl laser beams, very precise beam-steering straightforward in their technical than for IOL. actuators and tracking-signal detectors realisation, may have serious are necessary. shortcomings in terms of crosstalk, (c) Pointing, acquisition and tracking background rejection and wavelength Due to the extremely narrow transmission Conclusion selectivity. beam widths involved, optical systems The various development and have to rely on high-performance beam experimentation programmes that have Improved sensitivity, spectral selectivity steering and tracking arrangements for been outlined should allow the Agency and background rejection could be link acquisition and continuous tracking. to demonstrate the practicality of optical achieved using optical heterodyne In addition, a variable angular offset IOls and ISls fully in the next few years. techniques, whereby the radiation of a (point-ahead) is needed between the Early identification of the requirements of local oscillator laser is added to the transmit and receive optical beams in the commercial satellite operators should received signal such that the sum of order to compensate for the line-of-sight facilitate the ultimate provision of optical these radiation fields falls on the offset resulting from the finite velocity of transmission technologies in space. photodetector . light (Fig. 5) . The requirements on this These technologies will , moreover, profit point-ahead function are, however, less from the extensive R&D efforts taking The implementing of optical heterodyne severe for ISl than for IOl systems. place, particularly at component level, in receivers with semiconductor lasers is, other ground-based industrial sectors. E however, still hampered by the poor For fast acquisition, a strong beacon frequency stability and line width of the laser source together with a wide field-of-

65 G bulletin 54

The Use of Pyrotechnics on Spacecraft

N. Cable, Structures and Mechanisms Division, Mechanical Systems Department, ESTEC, No 0 rdwijk, The Netherlands

Because of their extremely high Introduction additional energy needed to overcome energy-to-volume densities, The mention of explosives usually brings the threshold of the next. Besides explosives are an invaluable tool to mind destruction, but their energy can advantages in construction and testing , aboard spacecraft for single-operation be harnessed and applied for useful this provides the possibility for the functions. Highly reliable and safe purposes. Explosives are the most temporary removal of one stage to actuators have been developed to volume-efficient stores of easily releasable prevent operation until needed. It means, exploit this useful property for a energy, and this is significant where also, that different end-functions may be variety of applications, using only mass and volume are at a premium, chosen according to the application. standard spacecraft supplies and which is especially true for spacecraft. controls. Though explosive-based devices are only The fundamental requirement of the usable once, there are many applications pyrotechnically energised function is that where this is all that is needed and it must occur reliably when commanded where their energy-efficiency is a distinct and must not occur under any other advantage. circumstances. Whilst this places severe requirements upon the hardware, the As is evident in the evolution of rockets products that meet them are highly and fireworks, the harnessing of explosive efficient and rel iable. They have great energy has been attempted over many advantages over other means of centuries. The particular subject of this achieving the same ends, in some cases article, however, will be pyrotechnic enabling otherwise impossible functions actuators, in which the released energy is to be provided. converted into motion of mechanical parts, and contained so that there is no The initiator, cartridge and detonator unwanted physical movement or damage. The common method of ignition is by For single-function mechanical means of an electric current, which is operations, their capability, reliability and easy to achieve on board a spacecraft. speed are without parallel. We will When this current is passed through a examine both their nature and their use. fine wire, the resulting resistance heating is enough to reach the ignition Basic principles temperature of the first explosive, wh ich There are three main products of then produces hot flame for the ignition combustion which are usable: gas, hot of the next stage. Since all pyrotechnic flame and shock waves, each obtainable subsystems need this stage, and to from different explosives. The first is used ensuce consistent properties, it is usual to to pressurise mechanical drives, and the construct a component called the others for the ignition of other explosives. 'initiator' for this purpose.

Although the explosives employed can A large proportion of the properties of release large quantities of energy, they the whole subsystem , related to safety as are chosen to have low sensitivity, so that well as performance, are embodied in their ignition can be controlled. Used in this single element, and this explains why a series of stages, each provides the it is of such importance. A modular

66 pyrotechnics on spacecraft

Figure 1 - The ESA standard initiator Figure 3 - Aeorspatiale miniature pin­ Figure 5 - Aerospatiale normally closed (22 mm long, 14 mm diameter, weight pusher (70 mm long, 15 mm diameter, valve for 6.35 mm diameter pipe (78 mm 12 g) weight 30 g) long, 38 mm diameter, weight 170 g)

Figure 2 - AMO-BA 1EPAW110X Figure 4 - Aerospatiale miniature pin­ cartridge (35 mm long, 14 mm diameter, puller (105 mm long, 16 mm diameter, weight 15 g) weight 45 g)

3

4

2 5

approach allows the necessary control of If pressure is required, a charge of the (only 1.5 J from the supply of a current of its properties, and ensures consistency of appropriate explosive is joined to the only 3.5 A for about 5 ms), and with the item and hence of the subsystem in initiator. The resulting item is usually response times in the order of 5 ms, the which it is used. called a 'cartridge'. To produce a shock capabilities of pyrotechnic actuators are wave, a different explosive is used and impressive. The properties of concern relate to its the component is then called a sensitivity, for it must respond only to the 'detonator'. Typically, as piston actuators, they can desired stimuli, and to no other. push or pull loads of up to 750 N over Prevention of the desired stimuli being To meet the demands of new distances of say 15 mm; as valves, they present at any but the desired firing time applications, ESA has carried out can open or close pipes of up to is a matter of subsystem design, and a assessments of two pyrotechnic 6.35 mm diameter, such as are used in reason why pyrotechnics must be treated substances for use in cartridges. Both propulsion subsystems; as hermetic as a separate subsystem. are able to survive and operate at expansion tubes, they can sever temperatures around 125°C, thus structural metal up to 6 mm thick, and as For safety reasons, the most significant extending the temperature capability of cutters they can cut wires and bolts used properties of pyrotechnics are their ability actuators by some 20°. These are 'TRHA', as launch restraints, commonly up to' to sustain, without firing or degradation, made by NEC in Scotland, and 'HH10' 6 mm diameter and supporting a tonne 1 A or 1 W for 5 min in the firing circuit from PRB in Brussels. Further activities in tension. For this last role, however, up to 100°C, and the discharge from a will test them up to 150°C and there are other actuators which are 500 pF capacitance of 25 000 V DC investigate ageing characteristics to preferable, such as release nuts: these across the short-circuited pins and body. establish their suitability for long-duration open the nut to release a standard bolt Others include insulation resistance, and missions. intact, while containing all their parts, resistance to mechanical disturbances hence giving a much cleaner, like shocks and vibration, high Pyrotechnic actuators debris-free function than the temperature, and various forms of The pyrotechnic actuator is the assembly cutters. radiation. The actuator must also survive that converts the pyrotechnic energy into conditions of high humidity, low- or high useful mechanical work. Incorporating an Whilst they are not mechanisms, it is temperature and high vacuum, to provide initiator-based cartridge or detonator, it worth mentioning that similar chains of sure firing at the desired current level". contains the moving parts necessary to components are employed for igniting use the pressure mechanically, in a body the onboard solid-propellant motors used robust enough to resist damage and with for orbit adjustment. Because of the "For details, see the current ESA Pyrotechnic a sealing system to keep the gases from hazard resulting from inadvertent firing, Initiator Requirement Document (fSM/PYRO/1), the subsystems for these motors have to and its successor, currently in preparation, the escaping and causing damage. ESA Pyrotechnic Requirement Document include 'safe and arm' actuators, which (ESA PSS-03-**). Given the minute input-energy needed disconnect the electrical and pyrotechnic

67 • bulletin 54

Figure 6 - AMO-BA 7CC015PWH cutter Figure 8 - AMO-BA 7CC600PW cutter Figure 10 - AMO-BA pyrotechnic for steel cable or beryllium-copper rod for 6.0 mm beryllium-copper or steel rod detonation cord (49 mm long, 43 mm wide, 15 mm deep, (84 mm long, 39 mm wide, 23 mm deep, weight 95 g) weight 180 g)

Figure 7 - Aerospatiale miniature cutter Figure 9 - Aerospatiale release nut for for 1.6 mm multi-strand stainless-steel hold-down and release of M6 bolt wire (65 mm long, 15 mm diameter, (76 mm long, 42 mm diameter, weight weight 35 g) 300 g)

8 6

required to isolate the initiator until fi ring is imminent, and afterwards to prevent a drain on the power-supply system due to a short-circuit to ground potential , wh ich frequently occurs in initiators. Electrical screening of the electronics and of the wiring, which must be in twisted pairs, has to be provided to prevent electromagnetic radiation from generating currents in the circuit.

The chain of items included specifically for the pyrotechnic actuators must be circuits, and provide visual, mechanical descriptions of these items is published considered as a typical spacecraft and electrical signals regarding their by the Agency under the title 'Catalogue subsystem, with its own components and status. They can be switched remotely by of European Pyrotechnic Devices for Use its own internal and external interfaces. electrical command or locally by manual In Space', with the reference number ESA means. SP-1021. An updated, third edition is For reasons of safety and rel iability, some planned for issue in 1989. components must be duplicated in series The confined-detonation-cord principle, or in parallel , according to defined used in the expansion-tube systems, was The pyrotechnlc subsystem requirements of failure tolerance, wh ich initially developed for transmission of To supply the initial energy step, a chain are particular to the responsibility vested pyrotechnic signals in a system of linked of items is needed to condition and in the functions. To protect the launcher functions, such as that used on launch command the electrical pulse for and its crew, this usually means three vehicles for the separation of stages and application to the initiator bridge-wire. inhibiting stages in series, which require simultaneous actions. Explosive packed Because the current-supply needs are three failures before any unsafe condition into a tube propagates the detonation simple, there is a tendency to assign this is produced. The parallel duplication is to wave at 7 kmls, and by branching this as part of the electrical supply subsystem ensure that functional capability is can be used to operate several functions, of the whole spacecraft; however, the retained in the case of a component with only one electrical signal to initiate catastrophic train of events that could failure. the group. With the growth in satellite result from accidental firing of the size, and the reductions in diameter and pyrotechnic means that much more AppUcatlons weight of the pyro-cord being developed, severe safety requirements apply for this The long booms, large antenna dishes such systems look attractive for future than for any other branch of the power­ and solar arrays that are essential to the spacecraft applications also. distribution subsystem. operation of satellites project too far in their in-orbit configurations to allow the There are many pyrotechnic actuators Special precautions are needed to launcher fairing to enclose them. In any available from manufacturers in Europe prevent a pulse large enough to trigger case, in their deployed state, they could which do fulfil , or are capable of fulfilling, the initiator from appearing in the circuit not withstand the dynamic loads the ESA requirements. A compilation of at any but the desired time. Switches are encountered during the launch phase,

68 pyrotechnics on spacecraft

Figure 11 - The pyrotechnic subsystem divided into functional blocks to show the various interrelationships

between the cabin and the plane's body. These functions, and the switch-on of all the rescue facilities, including beacons, parachutes and flotation system, will INTERFACES need to be effected by pyrotechnics, since nothing else will be fast enough.

Requirements PYROTECHNIC CONTROL UNIT: OTHER SUBSYSTEMS The use of pyrotechnics is governed by INHIBITS, STATUS POWER Requirement Documents established by THERMAL CONTROL the launcher or launch-site authorities, as ELECTRICAL CONNECTORS STRUCTURE TELEMETRY & well as by the user-programme TELECOMMAND authorities. To assist the spacecraft AOCS designers, ESA has had a 'Guide to the ELECTRICAL WIRING ' PROPULSION Use of Pyrotechnics on Spacecraft' GROUND SUPPORT EOUIPMENT prepared to elucidate the plethora of SAFE & ARM CONNECTOR: CAUTION & WARNING requirements from the different sources'. INHIBITS, INSTRUMENTATION Because of the system-level hazard PYROTECHNIC INITIATOR: ENVIRONMENTAL (QUALIFICATION) CONDITIONS associated with any pyrotechnic function, spacecraft incorporating them are closely HUMIDITY examined in safety reviews and, due to MOTOR SAFE & ARM ACTUATOR: VIBRATION INHIBITS, STATUS . SHOCK their depth, this is often assumed to be TEMPERATURE sufficient. This, however, is not so. When EMC,EMI payloads are to be launched by the EXPLOSIVE CHARGE: ELECTROSTATIC CHARGE CARTRIDGE, DETONATOR RADIATION American Space Shuttle, they are ACCELERATION scrutinised by the NASA Safety Review STATIC FORCES & MECHANICAL ACTUATOR Committee to ensure that the payload will TOROUES not endanger either the crew or the Orbiter. Should the payload not require its pyrotechnic function to guarantee this safety, then failure to operate correctly will be immaterial to the Committee. The mission needs will not come into consideration, so it is not possible to use this exercise as the sole criterion upon which to judge the subsystem. In all and so they have to be folded and longer be suitable. Should the retraction cases it rests with the Project Team to secured to the spacecraft structure. They capability be lost, however, emergency satisfy itself of the integrity of the must, however, be completely free to separation systems will be needed to pyrotechnic subsystem. move for their subsequent deployment. remove the appendages in space, and so avoid having to abandon the There is a common belief that use of the Until recently, all ESA's spacecraft were complete spacecraft. It is here that NASA Standard Initiator (NSI) is destined to stay in orbit until the ends of pyrotechnic subsystems will find a obligatory, or that it is much easier to their lifetimes, so pyrotechnic actuators significant new role. pass the NASA Safety Reviews if it is were ideal for the hold-down and release used. This is also not true, however, mechanisms. In the future, however, when The most complex of such systems is especially for European spacecraft. A spacecraft will be brought back to Earth that proposed for the emergency European Standard Initiator (ESI), with for refurbishmenUrepair, their deployed separation of the cabin of the Agency's appendages will have to be retractable Hermes space plane. Not only will the and the hold-down mechanisms re­ structure need to be severed, but also all • Aerospatiale Report NT-2-01(O), August usable. Pyrotechnic actuators will then no the control and supply interfaces 1983.

69 G bulletin 54

Figure 12 - Safety and mission-design considerations

account in the pre-conditioning of all of the test items.

The test programme must be comprehensive and complete: merely firing a few items under given conditions will not be sufficient. The number of test items must be large enough to allow firings under all the various chosen conditions, all items having been pre­ conditioned in the same way. The pre­ conditioning and tests must be carefully planned and strictly applied. The order and content of the programme must be followed precisely, and unplanned activities rigorously excluded as they jeopardise the whole programme. To

MISSION SAFETY make the best of the use of the CONSIDERATIONS CONSIDERATIONS resources required, the qualification testing is performed independently under ESA supervision, using test levels at the limits of the actuator's ability in order to similar properties to those of the NSI , has requirements and carrying out tests, and encompass all anticipated applications. been developed and tested by ESA, and direct access to design details and test NASA has accepted its use on payloads histories is assured. The term 'qualification' has different launched by the Shuttle. meanings for different people, so it is Qualification essential to understand from the outset However, to avoid possible confusion, A fundamental characteristic of the what it means with respect to the use of they are deliberately neither identical nor pyrotechnic element is that it can pyrotechnics on ESA spacecraft. Many interchangeable. Actuator performance is function only once. This may seem to be purchasers of American hardware fall into significantly influenced by that of the a statement of the obvious, but it has the trap of assuming the term means the initiator, so actuator development important implications which govern the same on both sides 'of the Atlantic and demands initiator selection from the very manner in which the whole approach to end up with many expensive problems to start. The actuators developed by ESA pyrotechnics must be handled. Unlike all solve. Despite the common belief that and most others designed in Europe thus other hardware onboard, the pyrotechnic 'off-the-shelf, qualified' pyrotechnics can use the ESA Standard Initiator and not to be used for flight can never be fully be obtained in the USA, apart from the the NSI, since there is no necessity to do tested before it is required to operate in NSI, this is not the case. so. earnest. Confidence can only be generated by the performances of like Frequently, successful operation aboard For European industry there is a items fired for that purpose. a particular US spacecraft is cited by the particular disadvantage in the choice of American supplier as qualification of a the NSI in that this automatically leads to The item may have to work anywhere in certain actuator, but this has not proved the choice of an American-made a wide range of conditions, and as each that the actuator cannot malfunction, and actuator. In the short-term, whilst the NSI is able to demonstrate function only any modification of the actuator needed may be closely scrutinised by NASA, the under a unique set of these conditions, a will nullify its previous status; full actuators are not, and difficulties often large number of samples must be fired in qualif.ication of the new configuration will follow due to erroneous assumptions the test programme. For the results to be then be necessary. about their status. of value, all of these samples must be identical. The performance of the Qualification status can be conferred A large number of properties are actuator is affected not only by upon a pyrotechnic actuator only when it involved in the actuator's behaviour, and conditions at the instant of firing, but also can be shown, for a defined number of all must be fully understood and by those conditions encountered during items from the same production batch : controlled. ESA takes a direct interest in its life until then. The permutations and (a) by reference 10 manufacturing the actuators it uses, laying down combinations of these must be taken into documentation and records, that the

70 pyrotechnics on spacecraft

design and build standard has been Procurement and product assurance the European Standard Initiator for defined and adhered to; As can be appreciated from the Shuttle-launched payloads. Advice and (b) by inspection, that the actuators have foregoing paragraphs, product assurance experience is available from many been correctly made; plays a major role in pyrotechnics. sources to enable both potential and (c) by test and measurement, according Regardless of where the hardware is to current users to achieve successful to the defined test programme, that be procured, it is essential that a detailed subsystems with the minimum of effort those properties given in the Requirement Document be prepared by and risk. Pyrotechnics Requirement are all in the customer, against which any accordance with the defined values candidate product may be assessed. ESA maintains a specialist activity to under the conditions stated after Nobody other than the purchaser is to provide advice and guidance in the use exposure to the defined series of blame if the item, bought on the strength of pyrotechnics, which is available to environmental and loading of the supplier's claims alone, is found to anyone wishing to use it. The author can conditions. be deficient with regard to the user's be reached by telephone on (01719) needs when he finally comes to realise 83829, or by mail at ESTECIYMM , Qualificaton testing is conducted to what they are. Postbus 299, 2200 AG Noordwijk, The establish margins on all the defined Netherlands. You are invited and properties. The exact size of the margin No matter how good the item may encouraged to make use of this service! will be defined by the expected service actually be, nor how many tests it has conditions 9f the particular application. passed, if it cannot be uniquely identified Acknowledgement Though one of the most important and its full history traced, then it is not I wish to thank the pyrotechnics groups activities, it must be appreciated that this possible to use it for flight or to support of CNES in Toulouse, of AMD-BA in is only one part of the overall exercise of qualification. This means that the item Velizy-Villacoublay, and of Aerospatiale in qualification, which is as much a test of must carry indellible marking indicating Les Mureaux for material used in the the production methods as of the its identity, and be supported by preparation of this article. product itself. comprehensive documentation, which is thus an essential part of the pyrotechnic Because of the applications, the testing actuator itself. of pyrotechnics follows the conventional scheme for spacecraft equipment by ESA, through its Pyrotechnics Group in combining performance measurements ESTEC, continues to establish detailed with environmental exposures. But, as the documents that ensure adequate performance can only be measured coverage of the subject. These once, the detailed programme has a documents are not intended to specific form, and employs special discourage the use of pyrotechnics, but precautions and techniques to ensure rather to facilitate their informed, correct that no single item is damaged, as this and safe use with the miniumum of risk, will jeopardise the whole programme. to the benefit of all programmes.

Non-destructive tests have been For those requiring support, there is a developed especially for this purpose. wealth of experience in the choice and They include low-current electrical application of pyrotechnics, from the measurements, thermal-response tests, manufacturers of actuators and helium leak measurements, and X-ray subsystems to the national and and neutron radiography. international space agencies, including CNES and ESA. It is appropriate here to stress that users must make themselves aware of the Conclusion behaviour of any actuator before Pyrotechnic actuators are a highly embarking on the design of the efficient means of performing mechanical mechanism that will incorporate it. The tasks on spacecraft. Used with development and qualification of the understanding, they are both safe and actuator is for a defined range of reliable. European companies make materials, conditions and sizes and so hardware of the required standard, and changes in its use are not possible. moreover NASA has agreed to the use of

71 • bulletin 54

Les procedures et regles de vote dans la Convention de l'Agence et leur pratique

G. Lafferranderie~ Conseiller juridique, ESA, Paris

Le vote revtt une Importance Deux principes fondamentaux sont L'6gallte des Etats membres dans la partlcull6re dans un syst6me coll6glal contenus dans I'article XI de la procedure de vote : une egalite du point de vue technique et du Convention (repris et developpes dans le juridique, temperee par la point de vue polltlque. En etfet, raglement interieur du Conseil): reconnaissance de facto de d'une part le vote met un point final responsabilites inegales. a tout un processus; 11 est (a) L'egalite du poids de vote I'aboutlssement de debata, le point L:egalitll juridique ultlme, crucial, qui Y8 afflrmer les Article XI.6.a. 'Chaque Etat membre .Le droit de vote est un attribut de la positions, Identifier les camps. 11 dispose d'une voix au Conseil. qualite d'Etat membre. Toutefois, dans est d'aut'" part I'acte qui engage, Toutefois, un Etat membre n'a pas certains cas, l'Etat membre peut perdre y comprls celul qui n'a pas vote en droit de vote sur les questions ce droit, et dans d'autres cas, ce droit va faveur, le point de depart d'actlons. interessant exclusivement un appartenir a une autre categorie, ce:lle Aussl, la question des regles de vote programme accepte auquel il ne d'Etat participant. Avant de passer au falt-elle touJours l'obJet de longues participe pas', c'est-a-dire 'Un Etat vote, le President de I'organe deliberant, dlscuaslons lorsqu'lI faut r6dlger un = une voix', ce qui est a I'oppose du assiste de l'Executif, devra donc s'assurer acte constltutlf d'une Organisation vote pondere - 'le payeur est le de qui peut prendre part au Internatlonale ou encore d'un texte decideur'. vote, afin d'eviter que les resultats en d'appllcatlon, comme a l'Agence, une soient ulterieurement contestes Declaration de programme ou un (b) La majorite simple relative comme ou invalides (on fait I'hypothase que le reglement d'executlon. principe de base qui, comme tout quorum requis pour la tenue de la principe, souffre des derogations: reunion est bien sOr atteint) (1). Qui a droit de vote sur telle ou telle question? A quelle regie de maJorlte Article XI.6.d. 'Sauf dispositions Premier cas : un Etat membre n'a pas adopter telle ou telle decision? Les contraires de la presente Convention, droit de vote si I'arriere de ses uns chercheront a evlter un blocage les decisions du Conseil sont prises a contributions a l'Agence au titre de dans le processus, les autres a se la majorite simple des Etats membres I'ensemble des activites et programmes prot6ger. representes et votants.' La Convention auxquels il participe depasse le montant n'est pas chiche en exemples de de ses contributions fixe pour I'exercice decisions qui derogent a ce principe. financier courant. Le m{Jme principe s'applique programme par programme. Dans le cas d'un programme facultatif, Toutefois, les Etats membres (participants) Etat membre s'entend 'Etat participant'. peuvent autoriser l'Etat membre Un Etat non membre, participant, peut (participant) en question a prendre part disposer du droit de vote selon les au vote s'ils estiment 'que le defaut de termes de 1'.Accord de participation. Un observateur dispose d'un droit de parole mais non de vote. (1) 'La presence des delegues d'une majorite des Etats membres est necessaire pour constituer le quorum a toute session du Conseil' (art. 18.1 du reglement interieur). • Les vues exprimees sont personnelles a Dans le cas de programme facultatif, le I'auteur et n'engagent pas l'Organisation a quorum est constitue par la presence d'une laquelle il appartient. majorite des Etats participants.

72 procedures de vote

paiement est dO des circonstances ELDO), seuls les Etats membres de developpement Hermes et Columbus. independantes de sa volonte.' I'ELDO avaient I'exercice du droit de vote. Un premier exemple avait ete donne dans l'Arrangement de 1973 sur le Une telle situation ne s'est jamais La pond6ration programme de satellites de concretement realisee (bien qu'une fois Si la Convention consacre I'egalite telecommunications; les conditions aient ete tres proches juridique des Etats membres, reprenant - pour I'arret d'un programme facultatif d'etre rem plies); on peut penser que les un principe reconnu dans la Charte des (article VI.1). Etats membres feraient usage de la porte Nations Unies (article 2, §1), elle ne de sortie que leur offre la Convention. meconnait pas totalement le vote Dans ces deux cas la Convention prevoit pondere et laisse une certaine marge de la double majorite des deux tiers, deux Deuxieme cas : un Etat membre n'a pas manoeuvre aux Etats participants a tiers des voix representant au moins droit de vote si la question mise aux voix I'occasion de I'adoption de reglements deux tiers des contributions au interesse exclusivement un programme d'execution. Lors des debats du Groupe programme. On trouvera quelques autres auquel il ne participe pas. A titre de travail cree par le Conseil sur exemples de cette majorite double des d'exemple, lorsqlie le Conseil adopte le I'elargissement de l'Agence, a la suite de deux tiers dans certains reglements budget d'un programme facultatif, seuls la demande de la Finlande d'obtenir le d'execution (par exemple, dans celui du les Etats participants ont droit de vote. statut de membre associe, un echange programme Ariane-4 pour la selection de vues a eu lieu sur cette question. des passagers a emporter). Lorsqu'un Conseil directeur de programme, comme celui des satellites La ponderation est un ensemble de Notons que I'absence de vote pondere de telecommunications au celui du techniques selon lesquelles la n'a pas ete a ce jour une gene, que lanceur Ariane, suit plusieurs competence juridique des Etats membres dans la piu part des cas, les programmes facultatifs a la fois, et que la est proportion nee a leurs responsabilites responsabilites des 'grands' pays participation peut differer d'un et au rOle que chacun d'eux entend contributeurs sont de facto reconnues et programme a un autre, le President jouer dans la vie de l'Organisation que le plus souvent, sinon dans tous les veillera a faire proceder au vote internationale, visant a accorder a cas, les decisions ne sont mises aux voix programme apres programme en chaque Etat membre la place et les qu'apres assurance constatee que les s'assurant chaque fois qui a la qualite pouvoirs correspondant a ses 'grands' contributeurs voteront pour d'Etat participant (le recueil des Fiches responsabilites. Plusieurs techniques et (on est alors tres proche de la pratique juridiques sur les programmes facultatifs criteres, sont utilises dans le droit des du consensus). tenu par le Service juridique I'y aidera). Organisations internationales : la Par contre, lorsque le Comite administratif population (Conseil de l'Europe, UIT), le En tout etat de cause, ce systeme ne et financier est amene a emettre un avis, revenu national et la participation aux joue, ne pe ut jouer que pour les par exemple sur un budget de depenses (BIRD, FM I), etc. La regie la programmes facultatifs dans lesquels les programme facultatif, I'ensemble des plus habituellement suivie consiste dans pays membres peuvent, s'ils en sont delegations a droit de vote. la proportionalite du nombre de voix a la d'accord, adopter un bareme de contribution financiere de chaque Etat contributions fonde sur une autre On rappellera, pour memoire, une membre, ce qui favorise les pays les plus approche que celle retenue pour le disposition de circonstance qui n'a existe riches qui auront interet a verser une programme obligatoire (PNB), c'est-a-dire qu'au cours de la periode d'application contribution plus grande pour acquerir un bareme refietant I'interet dans le de facto de la Convention de I'ESA, c'est­ un poids plus fort dans la prise de programme et la repartition a-dire entre la periode d'ouverture a decisions. geographique des travaux. signature, le 31 mai 1975 et la date d'entree en vigueur, le 30 octobre 1980, L'Annexe III de la Convention sur les Lea modes d'expresslon periode au cours de laquelle les programmes facultatifs prevoit deux cas Les delegations ont a leur disposition Conventions du CERS/ESRO et du de vote pondere, dans lesquels le trois attitudes formelles face a une CECLESlELDO servaient de base nombre de voix d'Etats membres est proposition mise aux voix: le vote pour; juridique aux decisions prises par I'ESRO associe au montant des contributions le vote contre; I'abstention. En fait il y a conduisant ses activites sous le nom atteint: aussi d'autres modes d'expression pour d'Agence spatiale europeenne. Pour les signifier son attitude : I'absence , la non­ decisions qui etaient a prendre sur la - pour le passage d'une phase a une participation au vote ou encore le vote base de la Convention de I'ELDO autre (article 11 §2). Cette disposition ad referendum, le vote avec reserves ou (comme par exemple la disposition des est appliquee pour la premiere fois conditions. L'Agence connait d'autres biens realises au titre de programmes dans le cas des programmes de pratiques, comme le vote ouvert ou

73 (9 bulletin 54

dittere; a cote du vote exprime en n'empeche qu'elle affaiblit le soutien dans un sens posit if sans pour autant seance, existe enfin la procedure ecrite. requis pour I'adoption de la proposition avoir au moment du vote les pouvoirs de consideree. le faire, sans pour autant engager encore Dans certains cas, on s'efforcera de ne son gouvernement de fa<;:on definitive. Si pas passer a un vote formel, et de L:effet de I'abstention est finalement le 'ad referendum' est leve, le vote positif conduire le debat aussi loin que fonction de la majorite requise. Si la est repute acquis du jour ou la decision possible, reduisant les divergences une decision requiert la majorite simple ou a ete votee. Mais la delegation a le droit par une jusqu'a ce que les termes d'une celle des deux tiers, elle est sans effet de transformer son vote positif en vote decision proposee ne soulevent plus pratique juridique (mais non politique), negatif qui produit lu i aussi son effet du d'objection d'aucune delegation. C'est notamment dans le cas de majorite jour ou la decision a ete votee. alors le 'consensus ', le mode ultime de relative, c'est-a-dire lorsque seuls sont I'accord parfait qui evite de cristalliser pris en compte les votes exprimes On voit donc I'i nteret et le risque d'un tel des attitudes. (membres presents et votants). Par vote; il permet d'aller de I'avant, de contre, si la decision requiert I'unanimite, considerer la decision comme prise, Dans la pratique des Organisations et I'unanimite de tous les Etats membres, d'appeler par exemple les contributions internationales, on note une evolution ou la majorite absolue (c'est-a-dire mais par ailleurs il constitue une sorte vers la pratique du consensus, vers un lorsque le decompte s'opere a partir de d'epee de Damocles', en particulier certain abandon de ce fait de la pratique tous les Etats membres), I'abstention lorsque la decision requiert I'unanimite ou du vote formel. Si le consensus est (comme I'absence) equivaut a un vote que les voix comptees pour atteindre la egalement recherche a l'Agence, il n'en negatif, et donc a un veto. Ainsi, un Etat majorite requise, majorite simple ou reste pas moins que la pratique du vote membre s'abstenant, etant absent, ou ne majorite des deux tiers, contiennent des reste tres vivace. Le consensus n'est pas prenant pas part au vote, lors de votes ad referendum. Et que dire lorsque un concept juridique mais politique et il I'adoption soit du niveau de ressources, deux delegations emettent des ad est alors mieux adapte a une so it d'un Accord de cooperation avec un referendum pour des raisons qui sont a Organisation a competence Etat non membre, bloque la decision de I'oppose I'une de I'autre! principalement politique ou pour des la meme maniere que s'il votait contre. questions 'politiques'. A un moment ou a Si cette pratique est donc utile, et perm et un autre, il conviendra de trancher et Le vote ad referendum: comme le montre d'eviter un report du vote et d'accroTtre le donc de voter. Proche de cette pratique le document regulierement soumis au soutien a la proposition en cause (au est celle, suivie par le Conseil, qui Conseil, les delegations font un large contraire de I'abstention), il serait consiste a passer au vote formel sans usage de la procedure du vote ad souhaitable qu'elle ne se confonde pas debat prealable (dans le cas ou la referendum. Bien qu'elle ne soit pas avec le vote conditionne ou avec proposition mise aux voix a fait I'objet de expressement prevue par le reglement reserves. recommandation unanime de la part de interieur du Conseil, elle est largement I'organe deliberant consultatif) . pratiquee en droit international; mais elle Le vote positif, condition ne ou avec revet toutefois a l'Agence un caractere reserves n'est pas non plus prevu par le L'absence peut, dans certains cas, etre bien particulier. reglement interieur du Conseil. II porte I'expression d'un mecontentement, d'une en real ite sur la substance de la decision opposition (Iorsque I'organe est considere Bien souvent les delegations font usage et pourrait donc faire partie de son incompetent, etc.). Une delegation de cette procedure pour les motifs les dispositif. Le vote positif peut etre lie a presente, peut au moment de la prise de plus divers: pour obtenir un delai pour un autre vote, distinct, sur une autre decision, demander a etre consideree consulter leurs autorites, pour faire question ou bien marquer les difficultes comme absente ou quitter la salle. approuver ou ratifier la decision en propres a la delegation pour mettre en L:absence a alors I'effet de I'abstention cause, ou pour lier leur vote posit if a la oeuvre la decision (par exemple difficulte (effet examine ci-apres). realisation de conditions etrangeres a la temporaire de verser tout ou partie de la question mise au vote. Le vote ad contribution). L'abstention: la delegation a une attitude referendum est confondu alors avec le partagee. Elle accepte de prendre part vote conditionne ou le vote avec Parfois, la mise en oeuvre est liee a au vote mais elle ne veut, ne sait, reserves. I'achevement d'une procedure interne s'exprimer ni en faveur ni contre la nationale: 'sous reserve de I'achevement proposition mise aux voix. Si elle ne veut Dans la pratique de I'Agence, le vote ad des procedures parlementaires ou pas, dans la piu part des cas, bloquer la referendum est considere comme un gouvernementales'. decision, si elle est indifferente et ne pe ut vote posit if provisoire ('ou i, ad accepter I'un ou I'autre resultat du vote, il referendum'); la delegation desire voter Le vote differe et le vote ouvert: dans le

74 procedures de vote

Figure 1 - Le Conseii en session

premier cas, une delegation demande un sont abstenues ou qui ont vote contre, Une delegation pe ut demander que la delai pour faire connaitre son vote, ce peuvent intervenir pour donner et faire proposition soumise au vote le soit sous qui ne permet pas de tenir compte de inscrire au proces-verbal les motifs qui forme ecrite. Ou bien la proposition peut celui-ci le jour ou le vote a lieu . Dans le ont sous-tendu leurs positions. De telles faire I'objet d'un ou plusieurs deuxieme cas, les delegations acceptent declarations peuvent eviter des amendements. Lamendement est mis de ne pas considerer la procedure de malentendus. aux voix en premier lieu . S'il y a vote comme terminee et les delegations plusieurs amendements, on votera qui ne se sont pas exprimees pourront le La procedure de vote d'abord sur celui que le President estime faire ulterieurement et les resultats seront Le passage au vote formel est un s'eloigner le plus, quant au fond, de la constates lorsque toutes les delegations moment decisif. En effet, une fois le vote proposition iriitiale. Si une delegation le se seront exprimees. Cette procedure a termine, il ne pourra plus etre question demande, il 'peut encore etre vote sur la notamment ete utilisee lors de I'extension de revenir sur la proposition mise aux proposition finale telle qu'amendee a la des programmes preparatoires Hermes voix, avant un delai de douze mois, sauf suite de la procedure precedente. 11 et Columbus. decision de rouvrir le debat a la meme arrive que de tels incidents de procedure majorite que celle requise pour le vote. viennent perturber le bon deroulement Le vote par ecrit: so it une delegation est d'une seance. absente lors du vote, soit il y a urgence Aussi, peut-il etre utile de proceder au a prendre une decision, mais I'organe prealable a un 'tour de table' ou a un Le plus sou vent, les delegations votent, deliberant habilite a la prendre n'est pas 'vote blanc' pour verifier si la majorite simultanement, a main levee, ou en en session et ne le sera que dans un requise sera atteinte. Dans le cas ou il levant les plaques sur lesquelles sont avenir plus ou moins proche. Avec apparaitrait que majorite requise ne serait inscrits les noms de leur pays. Le I'accord du President dudit organe, pas atteinte, il sera preferable de reporter President (ou l'Executif) compte et notamment dans le deuxieme cas, le vote (a moins qu'une delegation ne annonce le resultat (il serait souhaitable, l'Executif procedera a une consultation demande par une motion d'ordre de pour eviter des contestations ulterieures, par ecrit (Iettre, telex) . passer au vote, motion sur laquelle le que le President ou l'Executif annonce a President devra se prononcer - la haute voix les noms des delegations Les expiications de vote: a I'i ssue du decision du President pouvant etre votant pour, contre ou s'abstenant. vote, les resultats etant enregistres, les renversee si la majorite des delegations LAgence ne dispose pas encore de vote delegations, en particulier celles qui se se prononce contre elle). electronique).

75 • bulletin 54

Table 1 - Decisions et majorites du Conseil

Principe general: 'Sauf dispositions contraires de la presente Convention, les decisions du Conseil sont prises a la majorite simple des Etats membres representes et votants.

2/3 Etats Majorite de Matiere Unanimite 2/3 Contributions 2/3 Etats membres tous les Etats

Informations et donnees: regles d'application + Activites operationnelles: conditions + Regles relatives a I'internationalisation des programmes nationaux + Objectifs de politique industrielle autres que ceux vises dans la Convention + Dispositions detaillees des objectifs de politique industrielle + Modalites de mise a disposition des installations de l'Agence + Aide de l'Agence aux Etats membres + Modalites de fourniture des produits develop pes par I'Agence + Approbation activites obligatoires: modification de decision + Niveau des ressources + Recommandations: harmonisation + Acceptation des programmes facultatifs + Budget general + Budget programme + Etats participants Reglement financier + Statut du personnel + Regles de transfert de technologies et produits + Autorisation de vote (circonstances independantes de volonte) + Mandat du SPC + Creation d'organes subsidiaires + Nomination DG + Bar~me de contributions (activites obligatoires) triennal + Reduction contributions (circonstances speciales) + Versement special (Etat non partie ELDO/(ESRO) + Cooperation + Modalites de participation a un programme + Etats participants Modalites d'association + Amendements Annexes Convention + Reglement d'arbitrage + Cessation qualite Etats membres + Adhesion Convention + Definition unite de compte + Commission de verification des comptes + Demarrage phase de programme facultatif + Arr~t d'un programme facultatif + Statut d'observateur +

76 procedures de vote

Si une delegation le demande, le vote se membres representes et votants, les I'objet du vote. fait sur appel nominal. En principe, abstentions ne comptent pas comme I'appel nominal se fait dans I'ordre voix.' (article 18.3 du Reglement interieur Nombre de decisions sont prises a la alphabetique fran~ais des Etats du Conseil). majorite des deux tiers de tous les Etats membres, en commen~ant par la membres notamment toutes les questions delegation qui a demande I'appel Or, les dispositions contraires sont fort financieres comme le vote des budgets nominal. nombreuses et touchent aux questions annuels, les questions portant sur le essentielles; elles sont en particulier fonctionnement de l'Agence, comme Autre fa~on plus habituelle de proceder: enoncees a I'article XI de la Convention I'adoption de divers Reglements et statuts le President appelle d'abord les mais d'autres articles contiennent des (personnel, finances, politique industrielle, delegations qui sont pour - puis celles regles de vote. contrats, transfert de technologies et de qui sont contre - et celles qui produits, creation et competences s'abstiennent; ou encore il procede selon Premiere remarque: les majorites d'organes subsidiaires, etc.). un tour de table demand ant a chaque indiquees sont toutes calculees sur la delegation I'une apres I'autre, de se totalite des Etats membres: que ce so it A la majorite de tous les Etats membres prononcer, pour, contre ou abstention. I'unanimite, la majorite simple ou la sont adoptees d'autres decisions, comme majorite qualifiee (deux tiers ou double I'acceptation de I'execution par l'Agence Le resultat du scrutin est porte au deux tiers). 11 suffit de lire en particulier de programmes facultatifs, I'adoption proces-verbal, notamment au proces­ I'article XI.5 de la Convention qui precise d'Accords entre l'Agence et les Etats verbal sommaire distribue par l'Executif chaque fois que la base du calcul est membres, I'acceptation d'activites immediatement apres la reunion. 'tous les Etats membres'. La Convention operationnelles, etc. du CERS/ESRO n'etait pas toujours aussi Le President peut etre amene a precise et, en outre, contenait des On a releve plus haut les quelques cas recommencer le vote si le premier scrutin divergences entre texte fran~ais et texte de majorite double des deux tiers (un a don ne des resultats non conformes anglais. Ce qu'on appelle la majorite ou tableau des diverses majorites prevues (plus ou moins de voix enregistrees que I'unanimite absolue: depuis le 1er janvier par la Convention figure dans le Recueil le nombre d'Etats ayant droit de vote par 1987, la majorite simple signifie sept des mandats des organes deliberants exemple). delegations votant pour, la majorite des publie par le Service juridique; voir table 1). deux tiers equivaut a neuf 'pour'. Les majorltes· Dans les aut res cas, notamment de Le Conseil (ou I'organe deliberant habilite Deuxieme remarque : le recours a recommandations, la decision pourra etre a prendre la decision en question) vote a I'unanimite de tous les Etats membres est prise a la majorite simple des Etats la majorite prevue dans la Convention tres limite. 11 n'est prevu par la Convention representes et votants, I'abstention ne (y compris ses Annexes) . que dans quelques cas: I'adoption du comptant pas alors comme voix. Cette niveau de ressources quinquennal et decision pourra en outre contenir des Selon l'article XI.6 (d) et (e) de la I'adoption d'un Accord de cooperation votes ad referendum; aussi, arrive-t-il Convention, 'Sauf dispositions contraires avec un Etat non membre (article XIV.1 d'avoir un vote pris avec quelques votes de la presente Convention, les decisions de la Convention), I'adoption positifs et de tres nombreuses du Conseil sont prises a la majorite d'amendements aux Annexes 11, Ill, IV et abstentions, ce qui politiquement simple des Etats membres representes et V de la Convention, I'adhesion d'un demontrera que la decision n'est pas votants' (.... ) et 'Pour determiner nouvel Etat membre, I'adoption de regles encore mOre. I'unanimite ou les majorites prevues dans sur I'i nternationalisation des programmes la presente Convention, il n'est pas tenu spatiaux nationaux. Par ailleurs, les La presence de ces regles, partois compte d'un Etat membre n'ayant pas Declarations de programme retiennent compliquees, est la contrepartie d'un droit de vote'. generalement I'unanimite de tous les systeme collegial et la recherche de Etats participants pour la revision de la I'interet communautaire. C'est leur Par ailleurs 'Iorsqu'une decision doit etre Declaration et de ses Annexes A et B. presence qui pousse vers la realisation prise a la majorite simple des Etats Le recours a I'unanimite signifie que tout d'une solution communautaire, comme la Etat membre (participant) 'petit' ou presence d'une clause d'arbitrage dans 'grand' dispose d'un droit de veto. Ce un Accord ou contrat est le meilleur *l'habitude s'est instauree notamment au sera lors tentant de melanger les gage que les parties feront tout leur niveau du Conseil , de disposer de 'Fiches de possible pour parvenir un accord. • decision' (,decision sheets') qui indiquent la questions et de lier son vote positif a a majorite requise pour I'adoption de la I'obtention d'un avantage sur une autre proposition en cause. question sans lien avec celle qui fait

77 G bulletin 54

The Hermes Safety Advisory Committee (HESAC)

Prof. Reimar Lust, Director General, European Space Agency, Paris

The decisions by the ESA Council to expert opinion on the conclusions arrived independence, into the overall develop a European manned space at internally by the two agencies. This programme management system . vehicle, the HermeS/A.riane-5, represent a committee, the Hermes Safety Advisory significant extension of the current ESA Committee, was convened in January I consider it essential that the safety activities. However, ESA has specific 1987, and is composed of members from element in these areas be given priority experience and expertise related to senior positions in aeronautical, nuclear, attention . manned space flight and launchers from materials-science, medical, and space the Spacel?b programmes and the establishments in Europe. The Committee The challenge before us is to establish, development of the existing Ariane family. has been requested to pay particular within the specified cost and schedule attention to the objectives and envelope, a European spaceplane that is In order to optimise its future methodology of the Hermes and Ariane-5 both safe, from the man-related HermeS/Ariane-5 Programme, the Agency safety approach and to monitor and viewpoint, and reliable, for the missions has established a management evaluate overall development, that have to be executed. infrastructure to accommodate all aspects qualification and flight certification. The of the new programmes. An area of Committee is also permitted to take any I am convinced that the HESAC will help prime importance is the human-safety initiative it feels necessary to facilitate the us to provide the independent aspect of the new space vehicles. execution of its mandate. The next phase assessment of our activities, in the area of the HESAC's activities will cover the of human safety, that recent experiences In the context of preparing the Agency pre-Phase-CID development programme, have proved to be necessary. • for implementing the product-assurance during which the HermeS/Ariane-5 design and safety responsibilities specifically will be defined. allocated to it by Council, the experience and 'lessons learned' on other similar At this time, detailed discussions have programmes have been examined. It will taken place between the HESAC, ESA be recalled that the 'Challenger' Space­ and CNES concerning the conclusions Shuttle accident was investigated by a reached by the Committee after its first Presidential Commission; the year of operation. A number of areas recommendations of the subsequent needing further definition are: Rogers Report have been assessed for their relevance to the ESA programmes. - the design requirements and criteria The overall result of these investigations concerning the selection, qualification has been an extensive updating of the and use of composite materials ESA Product-Assurance and Safety - the design, utilisation and validation of Standards (the ESA PSS specifications), software, and software/hardware which now form the baseline interface aspects requirements for the HermeS/Ariane-5 - aero-thermodynamics vehicle. - characterisation of the capabilities of man, addressing for example the It was also concluded that an predictability and reliability of man's independent high-level committee should performance in critical situations be established reporting to the Directors - the integration of the system-safety General of ESA and CNES, to provide an approach, with the proper degree of

78 hesac

Une annee d'activite du Comite HESAC*

P. Govaerts, President du Comite HESAC

Cree en janvier 1987 par les Directeurs Un rapport final, correspondant a la methodes de calcul en dynamique des gE!neraUX de l'Agence Spatiale premiere annee d'existence du Comite, a fluides. L'HESAC suggere d'examiner si Europeenne et du CNES , le Comite ete depose a la fin fevrier 1988, et ce programme pourrait etre complete HESAC a comme mandat de donner des discute ensuite en presence des par certains essais en vol, dans des avis independants sur tous les aspects Directeurs generaux de I'ESA et du geometries simples, afin d'ajouter des de securite lies aux vols spatiaux CNES au debut avril. Les sujets les plus points de recoupement vis-a-vis des habites. Ce Comite est compose de dix importants sont evoques ci-apres. modeles de calcul et vis-a-vis des essais personnes, choisies en dehors de I'ESA au sol. et du CNES, et d'origines variees. On y L'evolution la plus marquante d'Hermes retrouve en effet des personnes dont en 1987 a sans doute ete I'adoption D'excellentes presentations sur Vulcain et I'experience professionnelle est liee a la d'une cabine ejectable. L'HESAC a sur les propulseurs a poudre ont montre conception, aux essais, au controle ou a reconnu que ce projet etait la solution I'ampleur des etudes de developpement la certification, a I'exploitation, dans des sur laquelle le maximum d'efforts devrait de ces moteurs. Cependant, atteindre les domaines tels que I'aeronautique, les etre porte. 11 a insiste sur la necessite exigences de fiabilite requises pour les engins, les programmes spatiaux, d'inclure dans le plan de developpement vols habites n'est a ce jour pas I' industrie nucleaire, la medecine. des essais de qualification aussi demontre et le programme d'essais, en representatifs que possible, particulier des propulseurs a poudre, L'information a ete fournie au Comite lors eventuellement meme dans le domaine devra et re soigneusement etabli et d'une dizaine de reunions, chacune en hypersonique, au moyen d'objets degager des marges suffisantes pour general de deux jours, au cours aerodynamiquement similaires a la prouver le niveau de fiabilite recherche. desquelles des presentations techniques cabine ejectable. Conscient de ont ete faites par des membres du I'importance des programmes de R et 0 Dans le domaine des materiaux CNES, de I'ESA ou de certains necessaires pour mener a son terme le composites, I'HESAC est d'accord avec contractants importants; une abondance projet d'Hermes, I'HESAC rappelle que le programme de qualification et de documentation a aussi ete transmise. Le pouvoir se rabattre sur des solutions de selection de couples fibres/resines en rythme de travail qui en resulte ne peut rechange devrait etre une regie generale cours. 11 a attire I'attention sur les pratiquement pas etre augmente, car la a adopter; dans le cas de la cabine comportements tres differents entre plupart des membres du Comite sont ejectable, une solution de repli pourrait structures metalliques et structures encore engages dans une vie etre les sieges ejectables encapsules, composites, demandant d'examiner de professionnelle active. dont la faisabilite et le domaine de plus pres les facteurs de charge sOre performances devrait etre evalue. admissibles, les pressions de timbrage Le Comite a rem is un rapport des reservoirs, les temperatures intermediaire, de portee generale, en Enfin I'HESAC souhaite qu'une revue de extremes auxquelles Hermes pourrait aoOt 1987 apres une premiere phase securite du projet de cabine ejectable etre soumis en particulier en position d'apprentissage qui a permis de prendre soit entreprise des que possible, et avant accostee suivant une orientation fixe, les connaissance des projets Ariane-5 et que la conception en soit completement limites d'acceptabilite de defauts et les Hermes, a un moment ou ceux-ci figee. possibilites de detection de ces derniers. subissaient eux-memes de profondes modifications. Dans le domaine hypersonique, un Les lois de commande de vol devront important programme d'acquisition de etre discutees ulterieurement par le donnees experimentales a eM lance, de Comite; a I'heure actuelle, on a note des • Hermes Safety Advisory Committee. meme que le developpement de differences avec les pratiques de

79 • bulletin 54

I'aviation civille quant a la redondance des gouvernes, et I'impossibilite eventuelle de la reconfiguration du controle, ce qui pourrait empecher tout essai en vol de modes degrades.

Assurer I'integrite des calculateurs de bord et des logiciels associes au niveau de fiabilite prescrit pose le probh3me du degre de redondance et aussi de la redondance dissemblable, sujets dont la discussion devra etre poursuivie.

En ce qui concerne le role de I'homme pendant les diverses phases d'une mission d'Hermes, I'analyse des risques et I'analyse des taches a confier aux automatismes ou a I'homme dans les modes nominal ou degrade devraient permettre de mieux objectiver les choix; I'option actuelle d'un premier vol automatique laisse la porte ouverte a toute optimisation ulterieure.

Dans I'approche generale de la securite des vols habites, I'HESAC reconnait qu'un niveau quantifie pour I'objectif de etre interessant d'examiner si de tels precieuse grace au retour d'experience risque par mission est utile au niveau de concepts sont transportables dans le qu 'ils procurent et ces programmes la conception en complement a la domaine spatial. pourront eux-memes beneficier des demarche qualitative, et accepte I'objectif etudes effectuees dans le cadre actuellement envisage. Tout II est aussi reaffirme combien il est Ariane-5/Hermes; I' approfondissement depassement de ce niveau devrait etre necessaire que I'activite de securite soit des connaissances apporte par rapporte aux niveaux adequats de partie integrante de I'activite de I'ensemble de ces programmes sera un responsabilite. conception notamment pour traduire les atout important pour franchir cette principes de securite de maniere nouvelle etape dans la s€curite que Par analogie avec la pratique dans concrete a I'intention des projets et requierent les vols habites. d'autres industries, I'HESAC confirme la assurer les fonctions de rapport et de necessite de definir tres precisement les verification; ainsi les exigences de Au terme de cette premiere annee systemes ou composants lies a la I'analyse de securite peuvent etre d'existence, tous les membres de securite et leurs limites exactes, et sur incorporees avant le gel du projet. I'HESAC ont apprecie I'ouverture, I'esprit I'interet d'y distinguer plusieurs classes, de collaboration et d'estime dans leurs permettant une gradation de la qualite et En conclusion, le Comite a ete rapports avec le CNES et I'ESA et des exigences techniques. impressionne par I'ampleur de la esperent contribuer modestement, dans recherche et du developpement mis en le cadre d'avis et de critique constructive L'HESAC signale I'existence dans le place et par la qualite des etudes en defini par leur mandat, a la reussite de domaine nucleaire de procedures cours; le succes d'Hermes dans les cette grande aventure europeenne que accidentelles basees sur la delais prevus depend essentiellement de sont les vols habites. ~ reconnaissance de I'etat du systeme et I'aboutissement favorable de I'ensemble non sur un scenario preconc;u de ces actions qui doivent faire I'objet d'accident, ainsi que des procedures de d'un suivi constant et disposer des la 'derniere chance' pour le cas tres moyens et du personnel necessaires. improbable oll des evenements non pris en compte lors de la conception se Les enseignements des programmes seraient quand meme produits; il pourrait Ariane-1 a 4 seront aussi une aide

80 advertisement

YOU have helped build EUROPE'S PLACE in SPACE ...... you are entitled to take advantage of technological know- how acquired through years of research and development!

YOU have also helped build EUROPE'S PLACE IN ONLlNE INFORMATION RETRIEVAL ...... ESA-IRS, the European Space Agency's own Information Retrieval Service, was born some 15 years ago to provide Europe with a service badly needed. Due to its R&D orientation in the context of the Agency's mandate, ESA-IRS is already operati ng in the futu re - where others just reached the present!

TO BE A LEADER - USE A LEADER!

Write or call us for more information on • our over 120 databases & databanks • how to use you r PC to access ESA-I RS • our electronic mail service • how to create your own private file • our DOWN LOAD facility • how to order original documents online • our software, our prices, and many other services

.~ Via Galileo Galilei ~ 00044 - FRASCATI (ITALY) -.._ Tel.(39/6)94011 esa I -~ Twx. 610637 E!srin i .european space agency Online Services

81 Professor Bonnet Named Science Personality of the Year At a ceremony held at the ESA Headquarters in Paris on Tuesday 15 March 1988, Prof. Roger Bonnet, ESA's Director of Scientific Programmes, was presented with the 1987 Science In Brief Personality of the Year award.

This international award, made annually in a variety of spheres of activity by an independent panel composed of past recipients, is in recognition of Prof. Bonnet's work for European space science.

Since he joined ESA in 1983, Prof. Bonnet has been heavily involved in the setting up of a large-scale science programme for the years ahead, entitled Prof. Bonnet also played a key role in the 'Space Science: Horizon 2000'. This success of the Giotto spacecraft mission, long-term programme constitutes the whose approach to within 596 km of the frame of reference for all of the nucleus of Halley's Comet in March 1986 European space-science missions yielded such spectacular scientific currently under development. results. ~

New Head of Director Born in Cologne on 15 July 1934, Karl General's Cabinet Reuter graduated in Production Engineering at the Aachen (Aix-Ia­ AppOinted Chapelle) Technical University in 1962. On 5 April 1988, Karl Reuter took up his After some years of research work at the new duties at ESA Headquarters (Paris), Institute for Machine Tools and as Head of the Director General's Production Engineering at Aachen Cabinet. University and the Nuclear Research Centre at Julich, he joined ESRO in 1969. After the creation of ESA in 1975, he was responsible for the Agency's Medium:rerm Planning in the Directorate for Planning and Future Programmes. He left the Agency at the beginning of 1981 to join the Franco-German TV-SatfTDF-1 Programme, returning to ESA again in 1986 to head the Agency's Coordination and Monitoring Office, until taking up his latest appointment. ~

Karl Reuter (right) in discussion with ESA's Director General, Prof. Reimar Liist

82 in brief

Tenth Anniversary of Villafranca Ground Station near Madrid IUE for 8 h per day and from Goddard Space Flight Center in Greenbelt (Maryland) for On 26 January 1988, the Agency's the remaining 16 h. International Ultraviolet Explorer (IUE) satellite had been in orbit for ten years. The IUE telescope has been, and An astronomical satellite that studies continues to be, one of the most ultraviolet radiation, IUE is a cooperative productive astronomical tools ever built, venture involving ESA, the UK Science as witnessed by the steady stream of and Engineering Research Council, and papers appearing in the professional NASA. literature. e

Parked in a geosynchronous orbit over OTS Celebrates Ten the Atlantic, IUE is operated from ESA's Years in Orbit

The Agency's Orbital Test Satellite OTS-2, launch of which marked the beginning of ESA's space telecommunications programme, celebrated ten years in orbit on 12 May 1988. Launched by a Thor­ Delta rocket from Cape Canaveral, (above) OTS-2 has been used for telephone and data applications, as well as for TV distribution by many European countries. The satellite has now been exploited for more than three times its foreseen nominal operational life in orbit.

A detailed technical report on the satellite's performance over the last decade is currently in preparation. If

OTS being prepared for antenna­ alignment testing at MATRA, Toulouse

83 • bulletin 54

ISO Satellite Main ISO will be put into its operational orbit Development Phase with an Ariane-4 launcher in the first half of 1993. The nominal orbit has a 24 h Initiated period with a perigee of 1000 km and an The industrial Phase-CID for the Infrared apogee of 70000 km . The orbit's Space Observatory (ISO), the next inclination to the equator has yet to be satellite project in the Agency's Scientific decided, but it will be between 5° and Programme, started on 15 March. 20~

ISO is a telescope-type observatory ESA plans to supply only one ground designed for making measurements of station, at Villafranca in Spain, which will astronomical objects in the infrared at permit ISO to be operated for the best wavelengths from 2.5 to 200 microns an< 14 h, scientifically speaking, of each with sensitivities close to the limits set by orbit. In order to be able to retrieve an the natural astronomical background. additional 8 h of good-quality data, ESA Four scientific instruments will be carried is seeking to establish an international by ISO: a Camera, a Photopolarimeter, collaboration to provide a second ground and two Spectrometers. station.

The mission requirements dictate that the Being an observatory-type satellite, most infrared detectors of the scientific of ISO's observation time (two-thirds) will instruments must be cooled to near The satellite weighs 2400 kg and is about be offered to the scientific community at absolute zero (-270°C or 3 K) . The 5.3 m long and 2.5 m wide. Its short-term large. Astronomers will be able to obtain satellite therefore has, as its dominating pointing accuracy Uitter) will be about observation time by submitting proposals, feature, a very large superfluid-helium­ 2 arcs. The downlink data rate will be from which a selection will be made by a cooled cryostat, which will cool the 33 kbit/s, of which about 24 kbit/s will be peer-review procedure. The remaining scientific instruments via the slow boil-off dedicated to the scientific instruments. third of the total available observation of helium over the satellite's one and a time is reserved for the groups that are half year lifetime. The satellite is being built by European providing the scientific instruments, the industry, with Aerospatiale in Cannes as mission scientists and the observatory A Sun shield on the side of the the Prime Contractor, leading some 35 operations team, who will handle the spacecraft protects the cryostat from subcontractors. The main subcontractors instruments and define satellite direct solar heating. Solar cells on the are CASA (Service Module Structure, operations. shield provide the necessary electrical Thermal Control and Electrical Harness), power. The service module below the ETCA (Power), Fokker (Attitude and Orbit Control of the satellite (including pointing) cryostat provides all the traditional Control), Laben (Data Handling), MBB and its safety will be the responsibility of spacecraft services, such as power, (Cryostat), MSS (Reaction Control) and ESA's Space Operations Centre, at ESOC attitude control and communications. Selenia (Telecommunications). in Darmstadt, W. Germany. •

First Step Taken Towards International Cooperation on Space Station The eighty-second ESA Council, meeting in Paris on 17 and 18 March, adopted by a unanimous vote the Memorandum of Understanding (MOU) drawn up between ESA and NASA to establish detailed implementing arrangements for the design, development, operation and utilisation for peaceful purposes of the permanently manned International Space Station .

Negotiations on the Inter-Governmental Agreement (IGA) - to be signed by the four 'partners': USA, Canada, Europe and Japan - are very nearly complete, and thereafter each Government involved will begin the process of its approval. It

84 in brief

New Training Facilities vacuum chamber, a small neutral­ training will also take place at other sites for European Astronauts buoyancy facility, and a complete such as Istres (near Marseilles) and HermeS/MTFF composite mock-up. The Kourou (French Guiana). At its eighty-second meeting in Paris on Astronaut Headquarters Complex will 17/18 March, the ESA Council endorsed also include medical facilities, meeting The final phase of Hermes Mission the so-called 'ESA Astronaut Training and lecture rooms, and a gymnasium. Preparation, including final Concept' and approved the setting up of procedures/software validation, will take the associated facilities. A Hermes System and Subsystem place in Toulouse. Training Facility is to be located in A new ESA 'Astronaut Headquarters Toulouse. A large neutral-buoyancy facility for Complex' will be established at Porz­ EVNrelated training will be located in Wahn, near Cologne, in West Germany, A Pilot Training Facility equipped with a Marseilles. under ESA management. The Complex, six-degree-of-freedom motion base flight staffed by ESA personnel (astronauts, simulator for the training of Hermes ESTEC in Noordwijk will be provided with engineers and managers), will be commanders and pilots will be located a specialised Robotics Laboratory and supported for training purposes with near Brussels, in the vicinity of the training facility for the Hermes Robot Arm such technical facilities as system and Sabena training centre. This facility will (HERA). • subsystem mock-Ups for the APM also include the Hermes Training Aircraft, (Attached Pressurised Module) and MTFF which will use Gosselies Airport in (Man-Tended Free Flyer), a man-rated Belgium as a training base, but descent * Extra-Vehicular Activity

Hipparcos Satellite Undergoes Final Ground Testing at ESTEC On 9 March the Agency's Hipparcos satellite (High-Precision Parallax Collecting Satellite) entered the new Large Space Simulator facility at ESTEC for the final ground testing needed to declare this advanced scientific spacecraft 'ready for launch'.

The satellite had arrived at ESTEC on 12 February after its integration at Aeritalia in Turin (I), and dynamic testing at Intespace, Toulouse (F), which had consisted of mass-property, balance, acoustic and vibration tests.

During its final testing in ESTEC's unique new Large Space Simulator facility, the satellite was subjected to the thermal and vacuum conditions that it will experience in space. Proper deployment of the satellite's solar panels and the opening of the telescope's baffles under simulated space conditions were also verified.

The complete flight acceptance-test sequence in the Large Simulator took 16

Hipparcos under test at ESTEC

85 • bulletin 54 days and was the most complex so far conducted in the ESTEC facilities, due mainly to the stringent cleanliness requirements - to avoid any contamination of the satellite's very sensitive optical system - and the need for complete satellite-motion simulation inside the Simulator.

The satellite's formal Flight-Acceptance Review was concluded successfully on 14/15 April.

Hipparcos left ESTEC on 25 April for Aeritalia's premises, where it will be stored under carefully controlled environmental conditions, awaiting its launch by an Ariane-4 vehicle in April 1989. ~

French Space­ The Catalogue, which was handed over Or Catherine Turon (Meudon), leader of Astrometry Pioneer by Dr Catherine Turon of the the Hipparcos Input Catalogue Attends Hipparcos Observatoire de Meudon (Paris), contains Consortium, handing over the operational the positions of more than 100 000 stars. version of the Input Catalogue to ESA's Ceremony It has been built up using both existing Director General Prof. R. Lust star catalogues and newly"acquired At a ceremony held at the Agency's observations made from the ground. Its Space Research and Technology Centre compilation has involved the participation motions of all of the stars contained in (ESTEC) in Noordwijk (NL) on 11 April, in of nearly a hundred astronomers in the the new 'Input Catalogue' to an the presence of Prof. Pierre LacroOte of Agency's Member States over the past unprecedented level of accuracy. This in France, who first proposed a space six years. turn should result in great advances astrometry mission in 1967, Prof. Reimar being made in our knowledge of the LOst, ESA's Director General, officially The Agency's Hipparcos satellite, which structure and evolution of our Galaxy. received a newly-compiled Star will be put into geostationary orbit Catalogue. This Catalogue will be used around the Earth in 1989, will The hand-over ceremony was also both to control the Hipparcos satellite's revolutionise many areas of astronomical attended by Dr E. Hq,g from motion in space and to determine its and astrophysical research, by Copenhagen University Observatory, and scientific observing programmme. determining the distances and space Prof. J. Kovalevsky from the CERGA* Institute in Grasse, France, who lead the scientific groups responsible for the final catalogue compilation, Dr R.M. Bonnet, ESA's Director of Scientific Programmes, ESA Participates in from 22 to 27 March 1988. Contributions Dr H. Hassan, Hipparcos Project 'RIENA '88' to the stand were provided by European Manager, Dr M.C.E. Huber, Head of space industry, and many leading ESA's Space Science Department and The Agency was responsible for the aerospace companies were represented. Mr M. Le Fevre, Director of ESTEC, and coordination of a large pavilion (covering Dr MAC. Perryman, Hipparcos Project 2 more than 1000 m ) presenting Europe's Visitors to the ESA stand were shown Scientist. ~ major space programmes at the 35th displays of the Agency's scientific, International Electronics, Energy and telecommunications, remote-sensing, • CERGA: Centre d'Etudes et de Recherches Space Exhibition (RIENA*), held in Rome Space-Station, space platforms and Geodynamiques et Astronomiques microgravity-research programmes. ~ • Rassegna Internazionale Elettronica Nucleare e Aerospaziale

86 in brief

ESA's Transportable packed by three men in seven working ESA's transportable ground station Ground Station days and redeployed at a new site in ten Comissioned working days. The only site preparation required is a foundation base for the Villafranca to provide general S-Band The ESA Transportable Station is a antenna. At the moment bases exist at support until the former Exosat station complete ground station installed in four Perth in Australia, at the Telespazio site can be configured for general network 6 m ISO standard containers and in Fucino, at ESOC and at Villafranca in support. designed to operate in all climatic zones Spain. Further bases will be constructed except the Arctic/Antarctic. at Redu in Belgium, Odenwald in The first operational use of the station will Germany and Kourou in French Guyana. be for S-Band back-up support of MOP-1 The station consists of a 5.5 m full during the Launch and Early Orbit movement S-band dish attached to a The Stations and Communications Phase. • standard base band system providing Engineering Department at ESOC has telemetry, telecommand and ranging just finished final commissioning and functions to ESA standard. It includes its testing at ESOC and the station will be own no-break diesel generator power dismantled and packed for Three More Spacecraft system. transportation to Villafranca where it will Successfully Launched by be deployed and put into operation by Ariane The station can be dismantled and the end of July. It will remain at On 11 March at 23 h 28 min (UT) an Ariane-3 launcher lifted-off from Kourou (French Guiana) after a perfect count­ Preparing for European Please do NOT send the photographs down to put two spacecraft, T elecom-1 C Space Silver Jubilee (we know how precious they can be) but (F) and Spacenet-IIIR (US), safely into either send a photocopy, or a orbit (injection parameters recorded: As part of the celebration in 1989 of 25 description. We will contact those of you perigee 202.6 km; apogee 36 087 km; years of European Space Cooperation, whose photographs we may be able to and inclination 7.3°). Further details can ESA Publications Division will be use. Please send the information be found on page 53 of this issue. publishing a hardback album of pictures addressed to: illustrating the events over the last two At 02 h 58 min (UT) on Wednesday 18 and a half decades. Head of ESA Publications Division May the Ariane V-23 flight lifted off as (Silver Jubilee) scheduled at the end of the first launch We feel sure that some readers have ESTEC window. The Ariane-2 launcher unique photographs in their possession Keplerlaan 1 successfully placed the international which will enhance the book, and I P.O. Box 299 Intelsat-V spacecraft into geostationary would welcome hearing from you, 2200 AG Noordwijk transfer orbit (parameters: perigee 463.8 especially if you have photographs from The Netherlands km; apogee 35 943 km and inclination the early days of ESRO and ELDO. 8.01°). •

87 (9 bulletin 54 ARIANE 4

On Friday 29 April , the first of the new generation of Ariane-4 launch vehicles was tranported almost one kilometre from the Assembly Dock to the ELA-2 Launch Pad at the Agency's facilities in Kourou, French Guiana. The roll-out operation took just one-hour to complete.

Launch of this first Ariane-4, carrying one meteorological (Meteosat-P2) and two communications (Amsat-IIIC and Pan American Satellite 1) satellites, is currently scheduled for June 10.

1,2. Preparing for roll-out from the Assembly Dock at ELA-2. 3,4. Ariane-4 on its one-kilometre journey to the Launch Gantry. 5. Ariane-4 on the ELA-2 Launch Pad prior to Gantry Closure.

(Photography: S. Vermeer, ESA & D. Parker)

2

88 in brief ROLL-OUT

4

89 • bulletin 54

ESA Journal

The foll owing papers have been pu blished in ESA Journal Vol. 11 NO. 4Nol. 12 No. 1:

MECHANICAL AND ELECTRICAL CHARACTERISTICS OF TIN WHISKERS OUNN B 0

Publications SPACEBORNE DOPPLER WIND LlDARS SALVETTI G

The documents listed have been issued AN OPTICAL MONITOR FOR SPACE since the last publications announcement APPLICATIONS in the Bulletin. Requests for copies BORGHI G ET AL should be made in accordance with the SOME NEW PRODUCTS AVAILABLE ON THE Table and using the Order Form inside METEOSAT DISPLAY CONSOLES the back cover of this issue. BOWEN R A

ESTIMATION DE LA PLUVIOMETRIE PENTADAIRE AU BURKINA FASO PAR L'INDICE DE PRECIPITATION ESOC O/ALLO A A & TURPEINEN 0 M ESA SP-1 091 11 182 PAGES DATA STRUCTURES IN AN INTEGRATED BIORACK ON SPACELAB D1 (FEB 1988) GEOGRAPHICAL INFORMATION SYSTEM LONGOON & OAVIO V (EOS) ANTHONY S J & CORR 0 G ESA SP-1 092 11 73 PAGES THE USE OF SPREAD-SPECTRUM CODING AS A THE HIGH THROUGHPUT X-RAY SPECTROSCOPY FADING COUNTERMEASURE AT 20/30 GHZ MISSION - REPORT OF THE INSTRUMENT HUGHES C 0 & TOMLlNSON M WORKING GROUP (NOV 1987) BRIEL U ET AL ELABORATION OF A CONTINUOUS FUNCTION OF UNIT MASS FOR VIBRATION TESTING ESA SP-1 097 11 78 PAGES GIRARO A & MOREAU 0 THE HIGH-THROUGHPUT X-RAY SPECTROSCOPY MISSION - THE MISSION SCIENCE REPORT LOW-COST RECEPTION OF METEOSAT AND (MAR 1988) OTHER SATELLITE IMAGES USING TERRESTRIAL BA TTRICK B (EO) METEOROLOGICAL BROADCASTS SANDERSON T R

ESA Special Publications ESA Brochures ESA BR-40 1141 PAGES ESA SP-280 11 367 PAGES THE WORLD'S WATER RESOURCES - A MAJOR SPACE & SEA, PROC CONFERENCE, NEGLECT (MAR 1988) MARSEILLES, FRANCE, 24 - 27 NOVEMBER 1987 HERSCHY R W, BARRETT E C & ROOZEKRANS J N (MAR 1988) GUYENNE T 0 & HUNT J J (EOS) ESA BR-41 11 31 PAGES ECS - FOURTH YEAR IN ORBIT (DEC 1987) BASTON 0 W ET AL

ESA BR-42 11 34 PAGES REACHING FOR THE SKIES - THE ARIANE FAM ILY STORY AND BEYOND (UNDATED) LONOGOON N (EO)

ESA BR-49 11 12 PAGES BUSINESS TELECOMMUNICATIONS USING SATELLITE MICROTERMINALS - GAINING THE COMPETITIVE EDGE (MAR 1988) BA TTRICK B & ROLFE E J (EOS)

ESA BR-51 11 32 PAGES SERVING SPACE - SOCIAL REPORT (MAY 1988) LANOEAU J (EO)

ESA Scientific & Technical Memoranda

ESA STM-239 11 37 PAGES SIMULATIONS OF THE ELECTROSTATIC CHARGING OF ESA COMMUNICATIONS SATELLITES (DEC 1987) OALY E J

90 publications

ESA Scientific & Technical Reports ESA CR(P)-2465 11196 PAGES COMPARATIVE INVESTIGATION OF HETERODYNE MIXERS AT 1000 GIGAHERTZ - FINAL REPORT ESA STR-225 11 64 PAGES (APR 1987) UNIFIED INTERCHANGE FORMAT FOR FARRAN TECHNOLOGY L TO. IRELAND COMPUTER DATA (JAN 1988) ERUP L ESA CR(P)-2468 11 427 PAGES I 35 PAGES MULTICARRIER DEMODULATOR DESIGN - VOL 1: FINAL REPORT - VOL 2: EXECUTIVE ESA Procedures, Standards & SUMMARY (DEC 1986) Specifications ITAL SPAZIO. ITALY

ESA PSS-01-70 ISSUE 311 25 PAGES ESA CR(P)-2470 11 170 PAGES MATERIAL AND PROCESS SELECTION AND GALLIUM ARSENIDE MMIC YIELD EVALUATION QUALITY CONTROL FOR ESA SPACE SYSTEMS - FINAL REPORT (APR 1987) AND ASSOCIATED EQUIPMENT (OCT 1987) PLESSEY THREE-FIVE GROUP L TO. UK MA TERIAL & PROCESSES DIVISION. ESTEC ESA CR(P)-2472 11 347 PAGES ESA PSS-01-700 ISSUE 1 1140 PAGES STUDY OF A RADIO RELAY LINK (RRL) FOR THE THE TECHNICAL REPORTING AND APPROVAL CASSINI MISSION - DATA PACKAGE FOR FINAL PROCEDURE FOR MATERIALS & PROCESSES PRESENTATION (UNDATED) (OCT 1987) SELENIA SPAZIO. ITAL Y MA TERIALS & PROCESSES DIVISION. ESTEC ESA CR(P)-2473 11164 PAGES ESA PSS-03-1201 ISSUE 1 11 254 PAGES MBA PAYLOAD TESTING BY CATR - FINAL STRUCTURAL ACOUSTICS DESIGN MANUAL REPORT (OCT 1986) (OCT 1987) ANT NACHRICHTENTECHNIK GMBH. GERMANY STRUCTURES & MECHANISMS DIVISION. ESTEC ESA CR(P)-2488 11 118 PAGES I 146 PAGES ESA CR(P)-2475 11 32 PAGES ASSESSMENT OF OPTICAL COMMUNICATIONS ESTEC MINI COMPACT ANTENNA TEST RANGE SYSTEMS FOR DATA RELAY SATELLITE - VOL 1: - FINAL REPORT (APR 1987) EXECUTIVE SUMMARY - VOL 2: FINAL REPORT ESA Contractor Reports CHRISTlAAN HUYGENSLABORA TORIUM. THE (RIDER) (UNDATED) NETHERLANDS MA TRA ESPACE. FRANCE ESA CR(P)-2454 11 161 PAGES ALLOWABLE G-LEVELS FOR SPACELAB. ESA CR(P)-2477 11 15 PAGES ESA CR(P)-2490 11 61 PAGES COLUMBUS AND EURECA - FINAL REPORT ESTL PROGRESS REPORT FOR 1986 (FEB 1987) PLASMA AND ION ETCHING FOR FAILURE (APR 1987) ESTUUKAEA. UK BA TTELLE. GERMANY ANALYSIS - PART 2: THE ETCHING OF PLASTIC ENCAPSULANT AND OTHER SEMICONDUCTOR ESA CR(P)-2478 11 66 PAGES DEVICE MATERIALS, USING THE TECHNICS GIGA ESA CR(P)-2455 11169 PAGES SEVEN YEAR THERMAL VACUUM REAL LIFE ARIANE LOCALISATION TECHNIQUE BY DRS - ETCH 100-E PLASMA ETCH SYSTEM (APR 1986) TEST OF A MEDIUM SPEED (DESPIN) UKAEA , UK FINAL REPORT (UNDATED) MECHANISM MANUFACTURED BY DORNIER SELENIA SPAZIO. ITALY SYSTEM (MARCH 1987) ESTUUKAEA. UK ESA CR(P)-2491 11 97 PAGES ESA CR(P)-2456 11 26 PAGES STUDY ON LONG-TERM EVOLUTION TOWARDS ORU/COLD PLATE THERMAL INTERFACE STUDY ESA CR(P)-2479 11 126 PAGES EUROPEAN MANNED SPACE FLIGHT FINAL - FINAL REPORT (APR 1987) DOCKING/BERTHING SUBSYSTEM - REPORT - EXECUTIVE SUMMARY (APR 1987) BRITISH AEROSPACE. UK DEVELOPMENT PART 1: LATCHING ANALYSIS­ MBBlERNO, GERMANY FINAL REPORT (JUNE 1987) ESA CR(P)-2458 11 67 PAGES I 81 PAGES DORN/ER SYSTEM. GERMANY ESA CR(P)-2492 11 32 PAGES ETUDE DE L'INTERET DES TRANSPORTEURS STUDY OF RECONFIGURABLE PAY LOADS FOR ROUTIERS POUR UN SYSTEME DE ESA CR(P)-2480 11 182 PAGES DIRECT BROADCAST SATELLITES - SUMMARY COMMUNICATION PAR SATELLITE AVEC LES MICROGRAVITY ISOLATION MOUNT - FINAL REPORT (APR 1987) VEHICULES - RAPPORT FINAL - TOME 1: REPORT (FEB 1987) ALCA TEL ESPACE, FRANCE ANALYSE DE CONCEPT PAR SATEL CONSEIL - UNIVERSITY COLLEGE OF NORTH WALES. UK TOME 2: ETUDES DE MARCHE MENEES PAR I.T.A. (JULY 1987) ESA CR(P)-2481 11 270 PAGES ESA CR(P)-2493 11 10 PAGES SA TEL CONSEIL. FRANCE EXTENDABLE AND RETRACTABLE MAST (ER M) SAFETY PHILOSOPHY, POLICY AND - FINAL REPORT (APR 1987) REQUIREMENTS FOR MANNED SPACE FLIGHT - ESA CR(P)-2460 11 27 PAGES DORN/ER SYSTEM. GERMANY VOLUME I: EXECUTIVE SUMMARY (JAN 1987) PM UTILISATION STIUDY - EXECUTIVE HERNANDEZ ENGINEERING GMBH, GERMANY SUMMARY (JUNE 1987) ESA CR(P)-2484 11186 PAGES AERITALlA. ITALY ADVANCED GYROS IN SPACECRAFT CONTROL ESA CR(P)-2494 11 255 PAGES - DIGITAL CAPTURE LOOPS FOR DRY TUNED ESTEC HARDWARE/SOFTWARE RELIABILITY ESA CR(P)-2461 11 43 PAGES GYROS - FINAL REPORT (MAY 1987) STUDY - FINAL REPORT (JAN 1987) CPLUS - EXECUTIVE SUMMARY (JUNE 1987) LlTEF. GERMANY LOG/CA, UK SENER. SPAIN ESA CR(P)-2485 11 103 PAGES ESA CR(P)-2495 11 121 PAGES /35 PAGES ESA CR(P)-2462 11187 PAGES ESL BATIERY AND MULTI-SEGMENT STUDY OF DUAL-BEAM ANTENNA SYSTEMS FOR RESULTS OF THE LOW-ELEVATION-ANGLE APPLICATIONS (JUNE 1987) THE DATA-RELAY SATELLITE - VOL I: FINAL PROPAGATION EXPERIMENT - FINAL REPORT SALFORD UNIVERSITY BUSINESS SERVICES L TO. REPORT - VOL 11: EXECUTIVE SUMMARY (FEB (MAY 1987) UK 1986) TU. DENMARK TlCRA AlS, DENMARK ESA CR(P)-2487 11119 PAGES ESA CR(P)-2463 11 212 PAGES RENDEZVOUS AND DOCKING - VERIFICATION ESA CR(P)-2496 11 110 PAGES INTEGRATED FOCAL-PLANE STAR SENSOR - AND DEMONSTRATION IN ORBIT - EXECUTIVE THERMAL STRUCTURAL CONTROL MODELLING FINAL REPORT (MARCH 1987) SUMMARY (DEC 1986) TECHNIQUES - FINAL REPORT (JUNE 1986) OFFICINE GALILEO. ITALY MBBlERNO. GERMANY FOKKER, THE NETHERLANDS

91 • bulletin 54

ESA CR(P)-2498 11 273 PAGES ESA CR(P)-2528 11 35 PAGES PROCEDURES FOR UPDATING DYNAMIC DESIGN METHOD FOR ADA PROGRAMS - FINAL MATHEMATICAL MODELS - FINAL REPORT REPORT (JULY 1987) (MAY 1985) C/SI INGENIERIE, FRANCE DORN/ER SYSTEM, GERMANY ESA CR(P)-2531 11 269 PAGES THE GERMAN PROCESSING AND ARCHIVING ESA CR(P)-2499 11 223 PAGES FACILITY FOR ERS-1 - FINAL REPORT (MAY VIBRATION CHARACTERISTICS OF PUMPED 1987) FLUID SYSTEMS - FINAL REPORT (NOV 1986) DFVLR, GERMANY MBBlERNO, GERMANY ESA CR(P)-2533 11 55 PAGES ESA CR(P)-2500 11113 PAGES M.I.A. - MULTICHANNEL FOCAL-PLANE BB - MODEL OF SPACE PLATFORM EMC FINAL REPORT (JULY 1987) CONFIGURATION - FINAL REPORT (JUNE 1987) ELETTRONICA SPA, ITAL Y ERNO, GERMANY ESA CR(P)-2535 11153 PAGES ESA CR(P)-2502 11 369 PAGES INVESTIGATION OF EUROPEAN REMOTE­ DEVELOPMENT OF ISOSTATIC MOUNTS AND SENSING USER NEEDS IN ACCESSING MOS-1 ASSOCIATED GUIDELINES - FINAL REPORT PAYLOAD - FINAL REPORT (JAN 1987) (JUNE 1987) UNIVERSITE CATHOLlQUE DE LOUVAIN, BELGIUM CASA, SPAIN

ESA CR(P)-2503 11 347 PAGES I 269 PAGES I 68 PAGES ESA CR(X)-2457 11 37 PAGES I 303 PAGES ARAMIS PHASE-A STUDY - VOL 1: EXECUTIVE ANALYTICAL INTERACTIVE APPROACH FOR ESA CR(P)-2512 11 66 PAGES SUMMARY - VOL 2: FINAL REPORT (MAR 1987) PHENOMENA INVOLVING STRUCTURES, REALISATION OF AN INSTRUMENT TO MEASURE MARCONI SPACE SYSTEMS, UK THERMAL AND CONTROL ASPECTS - FINAL TEMPERATURE AND CONCENTRATION REPORT - VOL 1: THE THEORY; VOL 2: GRADIENTS IN FLUIDS - FINAL REPORT (FEB TOWARD THE SOLUTION; VOL 3: EXECUTIVE 1987) ESA CR(X)-2459 11 25 PAGES SUMMARY (DEC 1985) C/SE, ITALY EHSIC TECHNOLOGY FOR SPACE APPLICATIONS CONSULENZI GENERALI ROMA, ITALY - FINAL REPORT (APR 1987) ESA CR(P)-2514 11 186 PAGES NORGES TEKN/SKE HOGSKOLE, NORWA Y STUDY ON A DOUBLE REFLECTOR COMPACT ESA CR(P)-2505 11 252 PAGES RANGE - FINAL REPORT (DEC 1985) OPTIMISED APPROACH TO DAMAGE TlCRA. DENMARK ESA CR(X)-2464 11 51 PAGES 1198 PAGES TOLERANCE - FINAL REPORT (MAY 1987) ANTENNA SUBSYSTEM STUDY FOR THE DATA­ FOKKER, THE NETHERLANDS ESA CR(P)-2517 11 85 PAGES RELAY SATE LITE - FINAL REPORT - VOL 1: INTEGRITY CONTROL OF CARBON FIBRE EXECUTIVE SUMMARY - VOL 2: ESA CR(P)-250611113 PAGES REINFORCED PLASTICS STRUCTURAL CONGLOMERATE SUMMARY (JAN 1987) MULTlSURFACE CONTROL MECHANISM FOR A ELEMENTS - EXECUTIVE SUMMARY (UNDATED) MBBlERNO, GERMANY DEPLOYABLE ANTENNA - 'FIRST' MBBlERNO, GERMANY TECHNOLOGICAL STUDY - FINAL REPORT (JAN 1987) ESA CR(P)-2518 11 333 PAGES ESA CR(X)-2466 11 68 PAGES I 7 PAGES DORNIER SYSTEM, GERMANY STUDY OF THE OPTIMISATION OF SATELLITE 12 GIGAHERTZ, 50 TO 100 WAn TRAVELLING SYSTEM DESIGN FOR TRANSFER ORBIT - FINAL WAVE TUBE - VOL 1: FINAL REPORT - VOL 2: REPORT (APR 1983) EXECUTIVE SUMMARY (APR 1987) ESA CR(P)-2507 11 48 PP MBBlERNO, GERMANY THOMSON-CSF, FRANCE POLAR PLATFORM UTILISATION STUDY - EXECUTIVE SUMMARY (JULY 1987) ESA CR(P)-2519 11 220 PAGES BRITISH AEROSPACE, UK ON-BOARD PROCESSING FOR MOBILE/SATELLlTE COMMUNICATIONS - FINAL REPORT (MAY 1985) ESA CR(P)-2508 11 265 PAGES GARDNER RESEARCH COMPANY, USA SOLID EARTH MISSION END-TO-END DATA SYSTEM STUDY - FINAL REPORT (JUNE 1987) ESA CR(P)-2520 11 169 PAGES .!!H?I.lfJ SYSTEMS DESIGNERS SCIENTIFIC, UK STUDY ON LONG-TERM EVOLUTION TOWARDS EUROPEAN AUTONOMOUS MANNED ESA CR(P)-250911 241 PAGES SPACEFLlGHT (STEAMS) - FINAL REPORT (JUNE DEVELOPMENT OF AN OPTICAL DIAGNOSTIC 1987) FINAL REPORT INSTRUMENT - FINAL REPORT - PART 11 : AEROSPA TlALE, FRANCE

INSTRUMENT DEVELOPMENT (JUNE 1987) DEVELOPMENT MANUFACTURING AND TEST NLR, THE NETHERLANDS ESA CR(P)-2521 11 71 PAGES OF AN ENGINEERING MODEL OF A VANNE PYROTECHNIQUE A OUVERTURE - REDUNDANCY MICROWAVE SWITCH RAPPORT FINAL (AUG 1987) ESA CR(P)-2510 11 231 PAGES I 376 PAGES AEROSPA TlALE, FRANCE CORE PAYLOAD FOR EURECA - BOTANY AuthOf G Rull FACILITY - PRE-PHASE CID - FINAL REPORT ESA CR(P)-2522 11 132 PAGES TeldlJ; GmbH. Heldelberg, W. Germany (VOLS 1 & 2) (APR 1988) ESA Techf'llcal Man_gamenl DEVELOPMENT OF AN ENGINEERING MODEL Mr. A. Robmson (Y~M ) MBB/ERNO, GERMANY DYNAMIC COOLER - FINAL REPORT (SEP 1987) FEDERAL AIRCRAFT FACTORY, SWITZERLAND ESTEC/CONTRACT NO $i58/84/NlIAN (Se) ESA CR(P)-2511 11 46 PAGES STUDY ON HISTORY OF TECHNOLOGICAL ESA CR(P)-2526 11 54 PAGES DEVELOPMENTS IN EUROPEAN SPACE SOFTWARE QUALITY ASSURANCE PROJECTS (FEB 1987) WORKSTATION - FINAL REPORT (AUG 1987) MORETON HALL ASS., UK DA TA MA T, ITALY

92 publications

ESA CR(X)-2489 11 130 PAGES FEASIBILITY STUDY CONCERNING THE PRODUCTION OF METAlLlSED AND CONDUCTING FilMS - FINAL REPORT (MAY 1987) MBB/ERNO, GERMANY

ESA CR(X)-2497 11128 PAGES RITA ON EURECA - SUMMARY REPORT OF PHASES 1, 2 AND 3A (MARCH 1985) MBB/ERNO, GERMANY

ESA CR(X)-2501 11 279 PAGES I 254 PAGES lARGE REFLECTOR ASSEMBLY - PHASE III - FINAL REPORT (VOl 1) AND APPENDIX B (VOl 2) (DEC 1986) CASA. SPAIN

ESA CR(X)-250411 131 PAGES DEVELOPMENT, MANUFACTURING AND TEST OF AN ENGINEERING MODEL OF A REDUNDANCY MICROWAVE SWITCH - FINAL REPORT (AUG 1987) TELDIX, GERMANY

ESA CR(X)-2513 11 141 PAGES DESIGN AND DEVELOPMENT OF AN END-ENTRY OMT/POLARISER - FINAL REPORT (JULY 1987) ESA TECHNOLOGY LTD, UK ESA CR(X)-2532 11 331 PAGES ESA CR(X)-2467 11 254 PAGES DESIGN REPORT OF BOTANY FACILITY - STUDY AND DEVELOPMENT OF ERROR­ ESA CR(X)-2515 11 171 PAGES PREDEVElOPMENT PHASE (JUNE 1987) CONTROL TECHNIQUES FOR MOBilE IMPROVED SILICON SOLAR CEll MODULE DORNIER SYSTEM, GERMANY COMMUNICATIONS (OCT 1986) TECHNOLOGY - FINAL REPORT (UNDATED) RACAL-DECCA ADVANCED DEVELOPMENT L TO, AEG, GERMANY UK ESA CR(X)-2534 11 72 PAGES HIGH-POWER MEDIUM-VOLTAGE ELECTRONIC ESA CR(X)-2516 11 268 PAGES ESA CR(X)-2469 11 149 PAGES lOAD - DESIGN MANUAL (JULY 1987) HIGH REFLECTIVE SURFACES FOR MilLIMETRE DEFINITION OF MICROWAVE INTERSATElLlTE ELlN UNION AG, AUSTRIA RF WAVES - PHASE B FINAL REPORT (APR LINKS OPERATING IN CLUSTERS - FINAL 1987) REPORT (UNDATED) ESA CR(X)-2536 11141 PAGES CASA. SPAIN ISl EXPERIMENT - SYSTEM ASSESSMENT OF TELESPAZIO, ITAL Y EXPERIMENTAL OPTICAL INTERSATElLlTE ESA CR(X)-2523 11 222 PAGES lASER LINK PACKAGE - FINAL REPORT (JUNE ESA CR(X)-2471 11 92 PAGES SEMICONDUCTOR lASER INTERSATElLlTE LINK THE DEVELOPMENT AND TESTING OF A 1987) EXPERIMENT (SilEX) - PHASE A2 STUDY - SEAMLESS FLEXIBLE TWISTABLE WAVEGUIDE DORN/ER SYSTEM, GERMANY EXECUTIVE SUMMARY (UNDATED) ASSEMBLY, SIZE R120 - DEVELOPMENT MA TRA , FRANCE REPORT (MARCH 1987) ESA CR(X)-2537 11 135 PAGES GABRIEL MICROWAVE SYSTEMS L TO ., UK SYSTEM ASSESSMENT OF EXPERIMENTAL ESA CR(X)-2524 11 63 PAGES OPTICAL INTERSATElLlTE LINK PACKAGE - STUDY OF IDENTIFICATION OF REQUIREMENTS FINAL REPORT (UNDATED) ESA CR(X)-2474 11 247 PAGES FOR INTERSATElLlTE LINKS - EXECUTIVE MA TRA ESPACE, FRANCE STUDY OF MilLIMETRE WAVE RADIOMETER - SUMMARY (AUG 1987) FINAL REPORT (JULY 1986) TELESPAZIO, ITAL Y ESA CR(X)-2538 11 105 PAGES IST/TUTO DE ELECTRONICA DE SPES EXTENSIONS - MANAGEMENT OF MASS COMMUNICAC/ONES, SPAIN DATA FOR USE OF OPTICAL STORAGE DEVICES ESA CR(X)-2525 11 207 PAGES - FINAL REPORT (AUG 1987) MPD PROPULSION SYSTEM DEVELOPMENT CRISA, SPAIN ESA CR(X)-2476 11 117 PAGES FIRST PHASE - VOl 11 : TECHNICAL REPORT • NEW CONCEPTS IN MUlTIREFlECTOR ANTENNA (NOV 1985) ANALYSIS, IMAGING SYSTEMS. (FEB 1987) SNIA BPD, ITALY TlCRA. DENMARK ESA CR(X)-2527 11 56 PAGES STUDY ON ROBOTIC SIMULATION AND TEST ESA CR(X)-2482 11157 PAGES FACILITY (EUROSIM) DEFINITION AND PLANNING EDUCATION ON DIRECT BROADCAST - FINAL REPORT - VOl I: EXECUTIVE SATELLITES IN EUROPE (APR 1987) SUMMARY (JULY 1987) THE EUROPEAN INSTITUTE FOR THE MEDIA, UK FOKKER, THE NETHERLANDS

ESA CR(X)-2483 11 79 PAGES ESA CR(X)-2529 11 302 PAGES I 196 PAGES ROBOTICS SIMULATION AND TEST (EUROSIM) - WIDE-ANGLE DIGITAL SUN SENSOR - VOl 1: STUDY ON SIMULATION SYSTEM DEFINITION - PHASES I & 11 - VOl 2: PHASE III - FINAL EXECUTIVE SUMMARY (AUG 1987) REPORT (DEC 1985) NLR, THE NETHERLANDS OFFICINE GALILEO, ITAL Y

ESA CR(X)-2486 11 126 PAGES ESA CR(X)-2530 11 215 PAGES HYBRID MICRO-COMPUTER INTERFACE UNIT - IMPROVEMENT OF SILICON CEllS - FINAL FINAL REPORT (JUNE 1987) REPORT (UNDATED) LABEN, ITAL Y AEG, GERMANY

93 • bulletin 54

Experience puts us on the leading edge

TELDIX - your best source for advanced satellite stabilization wheels featuring unequalled reliability. Besides, your space design will benefit from our small- and large-angle antenna pointing mechanisms, bearing and power transfer assemblies (BAPTAs), microwave switches and associated electronics.

TELDIX wheels support major programs such as: SYMPHONIE, OTS, . TV-SAT/TDF-1, ECS/MARECS, ROSAT, DFS, TELE-X, TELECOM, MOS-1, INTELSATV, IRAS, APPLE, PLANET-A, MS-T5, ETS-V.

P.O.BOX 105608' Grenzhofer Wag 36 0-6900 Heidelberg· W.-Germany Phone (06221) 51 2231 . Telex 0461735

CONFERENCE ANNOUNCEMENT

? The Center for Aerospace Sciences at the Univer­ sity of North Dakota, in cooperation with NASA, iiiiiiiiII.2~ FIRS T ESA, NAUSTRG, IEEE/AESS, AIAA, AAS and INTERNA TIONAL other government and professional agencies, will CONFERENCE host the First International Conference on Hyper­ sonic Flight at the University of North Dakota on ON September 20-23, 1988. Conference Committee HYPERSONIC members are: David C. Webb, General Chairman; FLIGHT Jerry Grey, Program Chairman; lan Pryke, Coor­ dinator of European Participation; and Tatsuo fr --\---\-/ IN THE Yamanaka, Coordinator of Japanese Participation. ,'---\,- \ - '1 21 ST CENTURY All aspects of flight in the Mach 2 - Mach 25 regime will be discussed by speakers and panelists from around the world: vehicle designs, propulsion, artificial intelligence, materials, fuels, avionics, economics, markets, scheduling, airspace control issues, international cooperation and competition, environmental issues, human factors, social/legal/political issues, and other in­ terests and concerns.

For registration information contact: Mary Higbea, Box 8216 University Station, Grand Forks, NO 58202-8216; phone (701) 777-3197.

94 publications

Publications Available from ESA Publications Division

PubllClltlon Number of Scope/Contents Availability Source INue. per year

Periodicals ESA Bulletin 4 ESA's magazine Free of charge ESA Publications Division, ESTEC, ESA Journal 4 ESA's learned journal 2200 AG Noordwijk, The Netherlands Earth Observation Quarterly 4 Remote sensing newspaper (English or French) Columbus Logbook 4 Space Station/Columbus newspaper

News & Views 6 ESA Information ESRIN, Via Galileo Galilei, Retrieval Service's newspaper CP64, 00044 Frascati, Italy

Monographs Code Conference Proceedings (SP-xxx) Volumes on specific Conference subjects Prices below ESA Publications Division, ESTEC, ScientificfTechnical Monographs (SP-xxxx) Specific/detailed information on 2200 AG Noordwijk, The Netherlands graduate-level subjects ESA Brochures (BR-xxx) Summary of less than 50 pages on a specific subject ESA Folders (F-xxx) 'Folders' giving short description of a Free of charge ESA Publications Division, ESTEC, subject for the space-interested layman 2200 AG Noordwijk, The Netherlands Scientific & Technical Reports (STR-xxx) Graduate level - reflecting ESA's Prices below position on a given subject Scientific & Technical Memoranda (STM-xxx) Graduate level - latest but not finalised thinking on a given subject Procedures, Standards & Specifications (PSS-xxx) Definitive requirements in support of contracts

Other Publications Contractor Reports (CR-xxx) Study reports from contractors: Prices below ESA Publications Division, ESTEC CR(P) given unlimited distribution 2200 AG Noordwijk, The Netherlands CR(X) confined to certain ESA Member States Technical Translations (TT-xxx) Translations of national space-related Prices from ESRIN ESRIN, Via Galileo Galilei, documents - (Microfiche or CP64, 00044 Frascati, Italy, photocopy only) or ESAlIRS Office, 8-10 Mario Nikis 75738 Paris 15, France

Publlc-reletlon. material General literature, posters ESA Public Relations Service photographs, films, etc. 8-10 rue Mario-Nikis 75738 Paris 15, France

Charge. for prtnted documents EO E1 E2 E3 E4 Number of pages in document: 1-50 51-100 101-200 201-400 401-600 Price (Dutch Guilders) 20 30 40 60 80

t . Cheques to be made payable to: ESA Publications Division 2. Prices subject to change without prior notice 3. Postal charges (non Member States only): Australia Dfl. 25; Canada Dfl. 20; O!her Countries Dfl. 15.

95 (9 bulletin 54

Order Form for ESA Publications

RETURN TO: DISTRIBUTION OFFICE ATTN.: F. DE ZWAAN ESA PUBLICATIONS DIVISION ESTEC, POSTBUS 299 2200 AG NOORDWIJK THE NETHERLANDS

No. of ESA Price per Total Title copies Reference copy, Ofl. Ofl.

Postal charges (non Member States only: Australia Ofl. 25; Canada Ofl. 20; Other countries Ofl. 15):

Total Amount to be Invoiced: Ofl.

SUPPLY IN MICROFICHE IF OUT OF PRINT DO NOT SUPPLY PHOTOCOPY

MAILING AND INVOICING ADDRESS (Print carefully)

Name ......

Function ......

Organisation ......

Mailing Address ......

......

Town & Postal Code ......

Country ......

Customer's Ref...... Signature ......

Date ......

ADDITIONAL INFORMATION 1. Publications are available in printed form (as long as stocks last), in microfiche and as photocopies. 2. Publications in the ESA TT series are not available in printed form .

96 Mechanical requirements - Copy dates Circulation 1 positive offset film (right reading, emulsion side Printing material: Algeria Lebanon down). Andorra Lesotho Argentina Liberia Usable material: Negative, artwork ready for reproduction. All Australia Liechtenstei n production charges are invoiced separately. Austria Libya Bahrain Luxembourg Bangladesh Madagascar Copy date: Ready for printing: 30 days before publication. Belgium Mali (in Noordwijk) Requiring translation or adaptation: 45 days before Benin Malta publication. Bolivia Mauritius Any difficulty in observing these deadlines after Botswana Mexico reservation should be notified immediately Brazil Monaco tlx 39098 - tel. (31) (0) 1719-83794 Bulgaria Mongolia Burkina Faso Morocco Type area: 1i1 page 185/265 mm high (Upper Volta) Mozambique 1/2 page vertical 91/265 mm high Burma Netherlands 1/2 page horizontal 185/131 mm high Burundi New Guinea Canada New Zealand 91/131 mm high 1/4 page vertical Chile Nicaragua 1/4 page horizontal 185/ 65 mm high China (People's Niger Republic) Nigeria Colombia Norway Congo Pakistan Cuba Papua Cyprus New Guinea Issue dates Czechoslovakia Peru Denmark Philippines ESA Bulletin: February, May, August and November Ecuador Poland Egypt Portugal El Salvador Puerto Rico Ethiopia Qatar Falkland Islands Romania Faroe Islands Rwanda Rates in Dutch Guilders Federal Republic of Sao Tome Germany Principe Finland Saudi Arabia 1 x 4x 8x France Senegal French Guiana Sierra Leone 1/1 page BIW 2000.- 1600.- 1200.- Gambia Singapore Gabon South Africa 1/2 page BIW 1200.- 1000.- 800.- German Democratic Soviet Union Republic Spain Ghana Sri Lanka 1/4 page BIW 800.- 700.- 600.- Gibralta Sudan Greece Surinam Extra charge for 4 colour processing: 1 500.- Dutch Guilders. Hong Kong Sweden Loose inserts (by application only) 1/A4 - 3000.-. Hungary Switzerland Iceland Syria India Taiwan Indonesia Tanzania Iran Thailand Iraq Trinidad Ireland Tunisia Advertising Management Israel Turkey Italy Uganda Ivory Coast Uruguay Brigitte Kaldeich Jamaica United Kingdom ESA Publications Division Japan USA ESTEC, Keplerlaan 1 Jordan Venezuela Kenya Yugoslavia 2200 AG Noordwijk, The Netherlands Korea Zaire Tel. (31) (0) 1719-83794 Kuwait Zimbabwe Lagos ilIA european space agency • agence spatiale europeenne

member states etats membres austria aliemagne belgium autriche denmark belgique trance danemark germany espagne ireland trance italy irlande netherlands italie norway norvege spain pays bas sweden royaume-uni switzerland suede united kingdom suisse