World Largest 200-Inch Autostereoscopic Display

Total Page:16

File Type:pdf, Size:1020Kb

World Largest 200-Inch Autostereoscopic Display 2011 NOV No.410 11 Special Issue on Stereoscopic Images 01 World largest 200-inch autostereoscopic display technology Shoichiro Iwasawa 05 Electronic holography -3D display technique in near future- Ryutaro Oi ● Topics 09 NICT Exhibited Research at IBC2011(Amsterdam)at Invitation 10 Memorandum of Understanding on international cooperation between NICT and National ICT Australia was signed Received Certificate of Commendation from the Council of Information Promotion Month - In recognition of our monitoring of Mount Shinmoe using Pi-SAR2 - 11 Public offering of supports for collaborative research activities with a participation of foreign-based researchers for FY2012 Special Issue on Stereoscopic Images World largest 200-inch autostereoscopic display technology Shoichiro Iwasawa Expert Researcher, Ultra-realistic Video Systems Laboratory, Universal Communication Research Institute After completing a doctoral course, Iwasawa served as a visiting researcher at Telecommunications Advancement Organization of Japan (1999–2002) and a full-time researcher at ATR (2002–2009), and then joined NICT in 2009. He has been researching and developing technologies for image processing, CG, and multi-view stereoscopic images presentation. Ph.D. (Engineering) When you hear the words“3D tele- Enjoy true high-definition ― I understand the images I vision,” you may associate them with stereoscopic images on see change as I move, but how dedicated eyeglasses equipped with 200-inch display without does it work? active shutters. In this technique, the having to wear 3D glasses illusion of a three dimensional image ― Now I stand in front of the Iwasawa: The technology to display is created by synchronizing the active 200-inch display and it is really glasses-free 3D images on a 200-inch shutters to the refresh rate of the big. I am actually seeing 3D screen in order to alternately present screen was developed by NICT. This is images on the large screen. the largest screen to which 3D imaging different images to each eye. The technology has ever been applied. method does not cost much because Iwasawa: The 200-inch screen shows The images appear to move as you it uses the technologies of conven- 3D images that can be seen without 3D move because the display is presenting tional 2D televisions. Moreover, the glasses, giving viewers more natural, different images to different locations. method’s great channel separation more realistic viewing experiences. If To achieve a natural stereoscopic effect, performance easily creates a high- you move to either side as you watch the we play multi-view images with slight quality stereoscopic viewing environ- screen, the things hidden behind the changes in the horizontal direction so ment. The social needs for future 3D front objects will come into view, which that the images switch smoothly as the imaging will move toward glasses- gives you stereoscopic experiences close viewer moves laterally. An array of 57 free, high-quality stereoscopy. With a to real-world experiences. projectors sits at the back of the screen. larger screen, stereoscopy in the Each projector projects images with par- future will give viewers more realistic ― That’s true. When I move allax onto the screen via special diffu- sion films and a condenser lens. At the sensations. from side to side watching the 57 different parallax viewpoints, the In this context, NICT has devel- screen, I see things I could not display shows the images at the true oped the world’s first true high- see while standing at the high-definition standard of 1920 × 1080 center. definition autostereoscopic 200-inch pixels. This stereoscopic environment display. Hearing that NICT would has a display frame rate of 60 frames have a booth at CEATEC JAPAN Iwasawa: The different perspective as per second, the same as a television. The 2011, Asia's largest IT and electron- you change locations is one of the viewing width of the stereoscopic effect ics trade show and be allowing features you can enjoy when viewing 3D is 1.3 m and the angle 13.5 degrees at a people to experience the technique, I images on the 200-inch display. A con- distance of 5.5 m. visited the booth. ventional 3D television that provides a I was welcomed by Expert Researcher stereoscopic effect using just the left and Iwasawa, one of the developers of right channels and binocular parallax the 200-inch glasses-free stereo- provides the same images regardless of your position. Strictly speaking, that is scopic display. We spoke about the not real stereoscopy. technical background while viewing the autostereoscopic effect. 1 NICT NEWS 2011. 11 3-dimensional 3-dimensional image image 2-dimensional 2-dimensional image image Image seen from the right Image seen from the left ●The position from which you view the 200-inch display and how it appears ●Observed motion parallax of content The images you see change depending on where you stand. Artificially present parallax to the left and right eyes and use thebrain’s information processing function to create the illusion of a three dimensional image. ― Besides the feature that au- definition stereoscopic images without Realistic autostereoscopy that offers different per- tostereoscopy can provide dif- sacrificing image quality or brightness. spectives depending on ferent perspectives depending The 200-inch size is another feature. We chose the 200-inch size because your position, just as in the on one’s position, is there any people and cars can be shown at actual actual world other feature you want to talk size, which gives viewers a more realis- ― In the demonstration images about? tic simulated experience. of a car, you cannot see the steering wheel from the front Iwasawa: As for glasses-free 3D tele- visions in the marketplace, the flat- because it is behind the open screen type has become mainstream, door, but it comes into sight but, in principle, those types of 3D tele- when you move to the side. visions have limited resolution per view- You can also see that the body point, depending on the number of of the car shines differently de- pixels in the display panel. Therefore, pending on your position, just with two viewpoints, each eye sees half as it would if you were viewing the resolution, and the resolution the actual car. So, how are the decreases as the number of viewpoints 57 viewpoint images con- increases. On the other hand, the trolled? autostereoscopic mechanism that we developed can vividly display high- Iwasawa: As I mentioned before, the autostereoscopic technology (Figure 1) Projector array provides different images according to Display screen the position of the viewer. Special diffu- Projector sion films that shapes a narrower diffu- unit 1 Condenser lens Projector sion angle only in the lateral direction unit 2 are attached to the condenser lens to direct the light coming from the projec- Viewing zone Viewing zone range angle tors. By adjusting with high precision Parallax images from the positioning of the projected images, projector unit 2 Viewer the correct image can be presented to Light control the viewer’s position. (controls the direc- tion of the light from the projectors to the viewer’s position) Special diffusion film Distance between ・Vertical: wide diffusion angle Parallax images from parallax images ・Horizontal: narrow diffusion angle projector unit 1 Figure 1●Principle of autostereoscopy (overhead view) NICT NEWS 2011. 11 2 Special Issue on Stereoscopic Images ― It must have been quite diffi- ity started to deteriorate. The problems an adjustment mechanism to precisely cult to install 57 projectors to included fringe-shaped noise in stereo- tune the axis of the output light. For this create 57 viewpoints. How did scopic images, blurred images, and exhibition, we spent a full day fine- you do that? images that became unnatural as the tuning the projectors. A structure that viewer moved. ensures highly accurate adjustment is To identify the factors behind this one of the features of the projector array. Iwasawa: The key was how to pre- deterioration in image quality on large The analysis results revealed that one cisely install the projectors. We started screens, we applied numerical analysis. of the biggest factors behind the image by prototyping a small stereoscopic The results led us to develop an array of quality deterioration was fringe-shaped display (about 70 inches in size). As we 57 projectors arranged optimally. Each noise between the parallax images. To enlarged the screen size, the image qual- projector in the array is equipped with help reduce the noise, we developed and incorporated a function for accurately adjusting the luminance distribution and color balance inside the projector unit. Display screen By equipping each projector with High-definition projector unit mechanisms for adjusting the installa- tion and the color, we successfully cre- Actual appearance of ated a high-definition viewing environ- autostereoscopic ment with a large screen. images As I mentioned when explaining the ― I believe light control is a Viewer key to the system, but what about the screen? Condenser lens Iwasawa:basic principle, the display Projector array Special diffusion film screen uses special diffusion films and a condenser lens, and the accuracy of light control in the display screen is as impor- tant as it is in the projector array. Light control will greatly affect the resolution of the stereoscopic images and the smoothness of kinematic parallax, so we evaluated diffusion films and designed a condenser lens to achieve optimum light control. The lateral visual range of the diffusion films and the accuracy of the lens curvature are particularly important factors. Using these technologies, the screen External view of the projector array installed successfully displays 57-viewpoint par- in exhibition booth allax images with great density and accuracy, achieving autostereoscopy with high-definition image quality and laterally smooth kinematic parallax.
Recommended publications
  • Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358 Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation Sunita Devi Research Associate, Haryana Space Application Centre (HARSAC), Department of Science & Technology, Government of Haryana, CCS HAU Campus, Hisar – 125 004, India , Abstract: Stereoscope is to deflect normally converging lines of sight, so that each eye views a different image. For deriving maximum benefit from photographs they are normally studied stereoscopically. Instruments in use today for three dimensional studies of aerial photographs. If instead of looking at the original scene, we observe photos of that scene taken from two different viewpoints, we can under suitable conditions, obtain a three dimensional impression from the two dimensional photos. This impression may be very similar to the impression given by the original scene, but in practice this is rarely so. A pair of photograph taken from two cameras station but covering some common area constitutes and stereoscopic pair which when viewed in a certain manner gives an impression as if a three dimensional model of the common area is being seen. Keywords: Remote Sensing (RS), Aerial Photograph, Pocket or Lens Stereoscope, Mirror Stereoscope. Stereopair, Stere. pair’s orientation 1. Introduction characteristics. Two eyes must see two images, which are only slightly different in angle of view, orientation, colour, A stereoscope is a device for viewing a stereoscopic pair of brightness, shape and size. (Figure: 1) Human eyes, fixed on separate images, depicting left-eye and right-eye views of same object provide two points of observation which are the same scene, as a single three-dimensional image.
    [Show full text]
  • The Artistic & Scientific World in 8K Super Hi-Vision
    17th International Display Workshops 2010 (IDW 2010) Fukuoka, Japan 1-3 December 2010 Volume 1 of 3 ISBN: 978-1-61782-701-3 ISSN: 1883-2490 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2010) by the Society for Information Display All rights reserved. Printed by Curran Associates, Inc. (2012) For permission requests, please contact the Society for Information Display at the address below. Society for Information Display 1475 S. Bascom Ave. Suite 114 Campbell, California 95008-4006 Phone: (408) 879-3901 Fax: (408) 879-3833 or (408) 516-8306 [email protected] Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 KEYNOTE ADDRESS The Artistic & Scientific World in 8K Super Hi-Vision.................................................................................................................................1 Yoichiro Kawaguchi INVITED ADDRESS TAOS-TFTs : History and Perspective............................................................................................................................................................5 Hideo Hosono LCT1: PHOTO ALIGNMENT TECHNOLOGY The UV2A Technology for Large Size LCD-TV Panels .................................................................................................................................9
    [Show full text]
  • Interacting with Autostereograms
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336204498 Interacting with Autostereograms Conference Paper · October 2019 DOI: 10.1145/3338286.3340141 CITATIONS READS 0 39 5 authors, including: William Delamare Pourang Irani Kochi University of Technology University of Manitoba 14 PUBLICATIONS 55 CITATIONS 184 PUBLICATIONS 2,641 CITATIONS SEE PROFILE SEE PROFILE Xiangshi Ren Kochi University of Technology 182 PUBLICATIONS 1,280 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Color Perception in Augmented Reality HMDs View project Collaboration Meets Interactive Spaces: A Springer Book View project All content following this page was uploaded by William Delamare on 21 October 2019. The user has requested enhancement of the downloaded file. Interacting with Autostereograms William Delamare∗ Junhyeok Kim Kochi University of Technology University of Waterloo Kochi, Japan Ontario, Canada University of Manitoba University of Manitoba Winnipeg, Canada Winnipeg, Canada [email protected] [email protected] Daichi Harada Pourang Irani Xiangshi Ren Kochi University of Technology University of Manitoba Kochi University of Technology Kochi, Japan Winnipeg, Canada Kochi, Japan [email protected] [email protected] [email protected] Figure 1: Illustrative examples using autostereograms. a) Password input. b) Wearable e-mail notification. c) Private space in collaborative conditions. d) 3D video game. e) Bar gamified special menu. Black elements represent the hidden 3D scene content. ABSTRACT practice. This learning effect transfers across display devices Autostereograms are 2D images that can reveal 3D content (smartphone to desktop screen). when viewed with a specific eye convergence, without using CCS CONCEPTS extra-apparatus.
    [Show full text]
  • Holographic Optics for Thin and Lightweight Virtual Reality
    Holographic Optics for Thin and Lightweight Virtual Reality ANDREW MAIMONE, Facebook Reality Labs JUNREN WANG, Facebook Reality Labs Fig. 1. Left: Photo of full color holographic display in benchtop form factor. Center: Prototype VR display in sunglasses-like form factor with display thickness of 8.9 mm. Driving electronics and light sources are external. Right: Photo of content displayed on prototype in center image. Car scenes by komba/Shutterstock. We present a class of display designs combining holographic optics, direc- small text near the limit of human visual acuity. This use case also tional backlighting, laser illumination, and polarization-based optical folding brings VR out of the home and in to work and public spaces where to achieve thin, lightweight, and high performance near-eye displays for socially acceptable sunglasses and eyeglasses form factors prevail. virtual reality. Several design alternatives are proposed, compared, and ex- VR has made good progress in the past few years, and entirely perimentally validated as prototypes. Using only thin, flat films as optical self-contained head-worn systems are now commercially available. components, we demonstrate VR displays with thicknesses of less than 9 However, current headsets still have box-like form factors and pro- mm, fields of view of over 90◦ horizontally, and form factors approach- ing sunglasses. In a benchtop form factor, we also demonstrate a full color vide only a fraction of the resolution of the human eye. Emerging display using wavelength-multiplexed holographic lenses that uses laser optical design techniques, such as polarization-based optical folding, illumination to provide a large gamut and highly saturated color.
    [Show full text]
  • Dualcad : Intégrer La Réalité Augmentée Et Les Interfaces D'ordinateurs De Bureau Dans Un Contexte De Conception Assistée Par Ordinateur
    ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L’ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L’OBTENTION DE LA MAÎTRISE AVEC MÉMOIRE EN GÉNIE LOGICIEL M. Sc. A. PAR Alexandre MILLETTE DUALCAD : INTÉGRER LA RÉALITÉ AUGMENTÉE ET LES INTERFACES D'ORDINATEURS DE BUREAU DANS UN CONTEXTE DE CONCEPTION ASSISTÉE PAR ORDINATEUR MONTRÉAL, LE 27 AVRIL 2016 Alexandre Millette, 2016 Cette licence Creative Commons signifie qu’il est permis de diffuser, d’imprimer ou de sauvegarder sur un autre support une partie ou la totalité de cette œuvre à condition de mentionner l’auteur, que ces utilisations soient faites à des fins non commerciales et que le contenu de l’œuvre n’ait pas été modifié. PRÉSENTATION DU JURY CE MÉMOIRE A ÉTÉ ÉVALUÉ PAR UN JURY COMPOSÉ DE : M. Michael J. McGuffin, directeur de mémoire Département de génie logiciel et des TI à l’École de technologie supérieure M. Luc Duong, président du jury Département de génie logiciel et des TI à l’École de technologie supérieure M. David Labbé, membre du jury Département de génie logiciel et des TI à l’École de technologie supérieure IL A FAIT L’OBJET D’UNE SOUTENANCE DEVANT JURY ET PUBLIC LE 6 AVRIL 2016 À L’ÉCOLE DE TECHNOLOGIE SUPÉRIEURE AVANT-PROPOS Lorsqu’il m’est venu le temps de choisir si je désirais faire une maîtrise avec ou sans mémoire, les technologies à Réalité Augmentée (RA) étaient encore des embryons de projets, entrepris par des compagnies connues pour leurs innovations, telles que Google avec leur Google Glasses, ou par des compagnies émergentes, telles que META et leur Spaceglasses.
    [Show full text]
  • A Review and Selective Analysis of 3D Display Technologies for Anatomical Education
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 A Review and Selective Analysis of 3D Display Technologies for Anatomical Education Matthew Hackett University of Central Florida Part of the Anatomy Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Hackett, Matthew, "A Review and Selective Analysis of 3D Display Technologies for Anatomical Education" (2018). Electronic Theses and Dissertations, 2004-2019. 6408. https://stars.library.ucf.edu/etd/6408 A REVIEW AND SELECTIVE ANALYSIS OF 3D DISPLAY TECHNOLOGIES FOR ANATOMICAL EDUCATION by: MATTHEW G. HACKETT BSE University of Central Florida 2007, MSE University of Florida 2009, MS University of Central Florida 2012 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Modeling and Simulation program in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2018 Major Professor: Michael Proctor ©2018 Matthew Hackett ii ABSTRACT The study of anatomy is complex and difficult for students in both graduate and undergraduate education. Researchers have attempted to improve anatomical education with the inclusion of three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. However, there is limited research on the relative efficacy of different 3D modalities, including monoscopic, stereoscopic, and autostereoscopic displays.
    [Show full text]
  • Multi-Perspective Stereoscopy from Light Fields
    Multi-Perspective stereoscopy from light fields The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Changil Kim, Alexander Hornung, Simon Heinzle, Wojciech Matusik, and Markus Gross. 2011. Multi-perspective stereoscopy from light fields. ACM Trans. Graph. 30, 6, Article 190 (December 2011), 10 pages. As Published http://dx.doi.org/10.1145/2070781.2024224 Publisher Association for Computing Machinery (ACM) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/73503 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ Multi-Perspective Stereoscopy from Light Fields Changil Kim1,2 Alexander Hornung2 Simon Heinzle2 Wojciech Matusik2,3 Markus Gross1,2 1ETH Zurich 2Disney Research Zurich 3MIT CSAIL v u s c Disney Enterprises, Inc. Input Images 3D Light Field Multi-perspective Cuts Stereoscopic Output Figure 1: We propose a framework for flexible stereoscopic disparity manipulation and content post-production. Our method computes multi-perspective stereoscopic output images from a 3D light field that satisfy arbitrary prescribed disparity constraints. We achieve this by computing piecewise continuous cuts (shown in red) through the light field that enable per-pixel disparity control. In this particular example we employed gradient domain processing to emphasize the depth of the airplane while suppressing disparities in the rest of the scene. Abstract tions of autostereoscopic and multi-view autostereoscopic displays even glasses-free solutions become available to the consumer. This paper addresses stereoscopic view generation from a light field. We present a framework that allows for the generation However, the task of creating convincing yet perceptually pleasing of stereoscopic image pairs with per-pixel control over disparity, stereoscopic content remains difficult.
    [Show full text]
  • Dynamic Accommodative Response to Different Visual Stimuli
    Ophthalmic & Physiological Optics ISSN 0275-5408 Dynamic accommodative response to different visual stimuli (2D vs 3D) while watching television and while playing Nintendo 3DS Console Sı´lvia Oliveira, Jorge Jorge and Jose ´ M Gonza ´ lez-Me ´ ijome Clinical and Experimental Optometry Research Lab, Centre of Physics (Optometry), School of Sciences, University of Minho, Braga, Portugal Citation information: Oliveira S, Jorge J & Gonza ´ lez-Me ´ijome JM. Dynamic accommodative response to different visual stimuli (2D vs 3D) while watching television and while playing Nintendo 3DS Console. Ophthalmic Physiol Opt 2012, 32 , 383–389. doi: 10.1111/j.1475-1313.2012.00934.x Keywords: 3D television, accommodative Abstract response, Nintendo 3DS, three dimensions Purpose: The aim of the present study was to compare the accommodative Correspondence : Sı´lvia Oliveira response to the same visual content presented in two dimensions (2D) and ste- E-mail address: [email protected] reoscopically in three dimensions (3D) while participants were either watching a television (TV) or Nintendo 3DS console. Received: 06 January 2012; Accepted: 18 July Methods: Twenty-two university students, with a mean age of 20.3 ± 2.0 years 2012 (mean ± S.D.), were recruited to participate in the TV experiment and fifteen, with a mean age of 20.1 ± 1.5 years took part in the Nintendo 3DS console study. The accommodative response was measured using a Grand Seiko WAM 5500 autorefractor. In the TV experiment, three conditions were used initially: the film was viewed in 2D mode (TV2D without glasses), the same sequence was watched in 2D whilst shutter-glasses were worn (TV2D with glasses) and the sequence was viewed in 3D mode (TV3D).
    [Show full text]
  • Advance Program 2018 Display Week International Symposium
    ADVANCE PROGRAM 2018 DISPLAY WEEK INTERNATIONAL SYMPOSIUM May 22-25, 2018 (Tuesday – Friday) Los Angeles Convention Center Los Angeles, California, US Session 1: Annual SID Business Meeting Tuesday, May 22 / 8:00 – 8:20 am / Concourse Hall 151-153 Session 2: Opening Remarks / Keynote Addresses Tuesday, May 22 / 8:20 – 10:20 am / Concourse Hall 151-153 Chair: Cheng Chen, Apple, Inc., Cupertino, CA, US 2.1: Keynote Address 1: Deqiang Zhang, Visionox 2.2: Keynote Address 2: Douglas Lanman, Oculus 2.3: Keynote Address 3: Hiroshi Amano, Nagoya University Session 3: AR/VR I: Display Systems (AI and AR & VR / Display Systems / Emerging Technologies and Applications) Tuesday, May 22, 2018 / 11:10 am - 12:30 pm / Room 515A Chair: David Eccles, Rockwell Collins Co-Chair: Vincent Gu, Apple, Inc. 3.1: Invited Paper: VR Standards and Guidelines Matthew Brennesholtz, Brennesholtz Consulting, Pleasantville, NY, US 3.2: Distinguished Paper: An 18 Mpixel 4.3-in. 1443-ppi 120-Hz OLED Display for Wide-Field-of-View High-Acuity Head-Mounted Displays Carlin Vieri, Google LLC, Mountain View, CA, US 3.3: Distinguished Student Paper: Resolution-Enhanced Light-Field Near-to-Eye Display Using E-Shifting with an Birefringent Plate Kuei-En Peng, National Chiao Tung University, Hsinchu, Taiwan, ROC 3.4: Doubling the Pixel Density of Near-to-Eye Displays Tao Zhan, College of Optics and Photonics, University of Central Florida, Orlando, FL, US 3.5: RGB Superluminescent Diodes for AR Microdisplays Marco Rossetti, Exalos AG, Schlieren, Switzerland Session 4: Quantum-Dot
    [Show full text]
  • Dimensional Television Just a Fashion That Comes and Goes Like A
    Broadcasting Has 3D TV come of age? Everyone wants to know: is three- dimensional television just a fashion that comes and goes like a spring clothing collection? Or will it be different this time? The 2010 FIFA World Cup in South Africa and the 2012 Summer Olympic AFP Games in London will include 3D television coverage, heightening the public’s appetite for this new viewing experience. 4 ITU News 2 | 2010 March 2010 Has 3D TV come of age? Broadcasting ITU/V. Martin ITU/V. D. Wood Christoph Dosch David Wood Chairman of ITU–R Chairman of ITU–R Study Group 6 Working Party 6C Has 3D TV come of age? Everyone wants to know: is three-dimensional tel- There are indications that, if ever 3D TV was go- evision (3D TV) just a fashion that comes and goes ing to succeed, now is the time. A confl uence of fac- like a spring clothing collection? That is rather how it tors means that the quality of 3D TV is going to be has been regarded before — more than once. About higher than was ever possible before. But with a his- every 25 years, since the beginning of the twentieth tory of “boom and bust”, and arguably with some century, 3D catches the public (and business) imagi- eye fatigue issues still unresolved, is this the time for nation. Each time its star fades. But each time its se- the viewer or industry to invest in 3D TV? The answer crets are kept alive by enthusiasts. is that no one knows for sure, but success or failure Will it be different this time? Will the technology in agreeing common technical standards will play a be able to permanently win audiences for television, part.
    [Show full text]
  • Multi-User Display Systems, Compendium of the State of the Art
    Multi-user display systems, Compendium of the State of the Art. Juan Sebastian Munoz-Arango; Research Assistant EAC - UA Little Rock; Little Rock, AR, Dirk Reiners; Research Scientist EAC - UA Little Rock; Little Rock, AR Carolina Cruz-Neira; Research Director EAC - UA Little Rock; Little Rock, AR Abstract egories: Spatial Barriers, Optical Filtering, Optical Routing and One of the main shortcomings of most Virtual Reality display sys- Time Multiplexing. tems, be it head-mounted displays or projection based systems like In addition to these categories it is worth mentioning volu- CAVEs, is that they can only provide the correct perspective to a metric displays and light field displays, which are relevant to the single user. This is a significant limitation that reduces the appli- multi user viewing topic even though they achieve multi user per- cability of Virtual Reality approaches for most kinds of group col- spective through a totally different approach. laborative work, which is becoming more and more important in many disciplines. Different approaches have been tried to present Spatial barriers multiple images to different users at the same time, like optical Spatial barriers take advantage of the display’s physical config- barriers, optical filtering, optical routing, time multiplex, volu- uration and user placement to display users’ specific views. Es- metric displays and lightfield displays among others. This paper sentially they form a mechanical barrier that lets each user see a describes, discusses and compares different approaches that have subset of the underlying displays’ pixels. been developed and develop an evaluation approach to identify The spatial barriers approach has been around for a while.
    [Show full text]
  • Exploration of the 3D World on the Internet Using Commodity Virtual Reality Devices
    Multimodal Technologies and Interaction Article Exploration of the 3D World on the Internet Using Commodity Virtual Reality Devices Minh Nguyen *, Huy Tran and Huy Le School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, Auckland Central, Auckland 1010, New Zealand; [email protected] (H.T.); [email protected] (H.L.) * Correspondence: [email protected]; Tel.: +64-211-754-956 Received: 27 April 2017; Accepted: 17 July 2017; Published: 21 July 2017 Abstract: This article describes technical basics and applications of graphically interactive and online Virtual Reality (VR) frameworks. It automatically extracts and displays left and right stereo images from the Internet search engines, e.g., Google Image Search. Within a short waiting time, many 3D related results are returned to the users regarding aligned left and right stereo photos; these results are viewable through VR glasses. The system automatically filters different types of available 3D data from redundant pictorial datasets on the public networks (the Internet). To reduce possible copyright issues, only the search for images that are “labelled for reuse” is performed; meaning that the obtained pictures can be used for any purpose, in any area, without being modified. The system then automatically specifies if the picture is a side-by-side stereo pair, an anaglyph, a stereogram, or just a “normal” 2D image (not optically 3D viewable). The system then generates a stereo pair from the collected dataset, to seamlessly display 3D visualisation on State-of-the-art VR devices such as the low-cost Google Cardboard, Samsung Gear VR or Google Daydream.
    [Show full text]