sustainability Review Impacts of Event-Based Recharge on the Vulnerability of Public Supply Wells Andrew J. Wiebe 1,* , David L. Rudolph 1, Ehsan Pasha 1,2, Jacqueline M. Brook 1,3, Mike Christie 1,4 and Paul G. Menkveld 1,5 1 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
[email protected] (D.L.R.);
[email protected] (E.P.);
[email protected] (J.M.B.);
[email protected] (M.C.);
[email protected] (P.G.M.) 2 Les Services EXP Inc., Montréal, QC H1Z 4J2, Canada 3 Jacobs Engineering Group Inc., Kitchener, ON N2G 4Y9, Canada 4 Hamilton Water, Hamilton, ON L8R 2K3, Canada 5 Golder Associates Ltd., Cambridge, ON N1T 1A8, Canada * Correspondence:
[email protected]; Tel.: +1-5198884567 Abstract: Dynamic recharge events related to extreme rainfall or snowmelt are becoming more common due to climate change. The vulnerability of public supply wells to water quality degradation may temporarily increase during these types of events. The Walkerton, ON, Canada, tragedy (2000) highlighted the threat to human health associated with the rapid transport of microbial pathogens to public supply wells during dynamic recharge events. Field research at the Thornton (Woodstock, ON, Canada) and Mannheim West (Kitchener, ON, Canada) well fields, situated in glacial overburden aquifers, identified a potential increase in vulnerability due to event-based recharge phenomena. Ephemeral surface water flow and local ponding containing microbial pathogen indicator species Citation: Wiebe, A.J.; Rudolph, D.L.; were observed and monitored within the capture zones of public supply wells following heavy rain Pasha, E.; Brook, J.M.; Christie, M.; and/or snowmelt.