2016. Nationally Threatened Species for Uganda. Unpublished Report

Total Page:16

File Type:pdf, Size:1020Kb

2016. Nationally Threatened Species for Uganda. Unpublished Report August 2016 Ecological Baseline Report for Mabira REPUBLIC OF UGANDA MINISTRY OF WATER AND ENVIRONMENT WATER MANAGEMENT AND DEVELOPMENT PROJECT Updating the Ecological Baseline and the Socio-economic Data for Six Central Forest Reserves (Mabira, Namukupa, Nandagi, Kalagala Falls, Namawanyi and Namananga) and Updating the Management Plan for Mabira Central Forest Reserve ECOLOGICAL BASELINE REPORT FOR MABIRA PROJECT ID NO. P123204 PROC. REF.: MWE/SRVCS/13-14/00285 AUGUST 2017 Joseph Bahati and Associates August 2016 Ecological Baseline Report for Mabira FOREWORD This report is written to update the ecological baseline information for the Mabira ecosystem. Inevitably, the bulk of the ecological baseline data is comprised of biodiversity data. Biodiversity is a word that is now more common than it was at the time of the first Forest Department Biodiversity inventories in the 1990s. It describes the variety of life at all levels of organisation from ecosystems to species/organisms and genes. Whereas the Uganda Forest Department carried out a comprehensive inventory of Uganda’s biodiversity in the 1990’s, there is a realization that the baseline data generated then, needed to be updated. The reasons may range from improvements in methods of inventory of different taxa to the discovery of additional taxa due to more detailed inventories of critical habitats. In addition, the impact of management activities and humans on the different ecological components of the forest reserves needed to be assessed. These tasks have been achieved and the information is presented this report. It is our belief that the ecological information presented in report will benefit many stakeholders within the Mabira area and beyond. i August 2016 Ecological Baseline Report for Mabira ACKNOWLEDGEMENTS We acknowledge the funding for this project from the World Bank funding to the Ministry of Water and Environment for implementing the Water Management and Development Project (ID NO. P123204EU). We also acknowledge the contribution of various people that have contributed in various ways to the success of thia study. The appointed key experts (KE), namely Dr Joseph Bahati (KE – Forest Ecologist), Dr. Gerald Eilu (KE – Taxonomist), Dr. Mary Namaganda (KE – Botanist), and Dr. Robert Kityo (KE – Zoologist). These have been the main personnel in the different components. The field teams are built around these Key Experts.These include mostly field staff of the National Forestry Authority and staff of the Ministry of Water and Environment attached to this work. ii August 2016 Ecological Baseline Report for Mabira TABLE OF CONTENTS FOREWORD ......................................................................................................................................................I ACKNOWLEDGEMENTS ....................................................................................................................................II TABLE OF CONTENTS.......................................................................................................................................III LIST OF ACRONYMS ........................................................................................................................................ V CHAPTER ONE................................................................................................................................................ VI 1.0. SUMMARY.............................................................................................................................................. VI CHAPTER TWO .................................................................................................................................................8 2.0. INTRODUCTION ........................................................................................................................................... 8 2.1. OVERVIEW OF THE WORK ...................................................................................................................... 8 2.2 USE OF BIOLOGICAL INDICATORS.......................................................................................................... 10 2.3 SITE DESCRIPTION .................................................................................................................................11 2.4. CONCLUSION ........................................................................................................................................20 REFERENCES ................................................................................................................................................ 20 CHAPTER THREE.............................................................................................................................................21 3.0. FLORA........................................................................................................................................................ 21 3.1 SUMMARY ............................................................................................................................................. 21 3.2 INTRODUCTION .....................................................................................................................................21 3.3 METHODS.............................................................................................................................................. 22 3.4 RESULTS................................................................................................................................................. 23 3.5. CONCLUSION ........................................................................................................................................26 REFERENCES ................................................................................................................................................ 46 CHAPTER FOUR ..............................................................................................................................................47 4.0. BIRDS......................................................................................................................................................... 47 4.1. SUMMARY ............................................................................................................................................ 47 4.2. INTRODUCTION ....................................................................................................................................47 4.3 METHODS.............................................................................................................................................. 48 4.4 RESULTS................................................................................................................................................. 49 4.5. CONCLUSION ........................................................................................................................................58 REFERENCES ................................................................................................................................................ 58 CHAPTER FIVE ................................................................................................................................................60 5.0. SMALL MAMMALS.....................................................................................................................................60 5.1. SUMMARY ............................................................................................................................................ 60 5.2. INTRODUCTION ....................................................................................................................................60 5.3 METHODS.............................................................................................................................................. 61 5.4 RODENTS AND SHREWS ........................................................................................................................ 62 5.5 BATS ...................................................................................................................................................... 65 5.6 CONCLUSION .........................................................................................................................................66 REFERENCES ................................................................................................................................................ 66 CHAPTER SIX..................................................................................................................................................67 6.0. BUTTERFLIES.............................................................................................................................................. 67 6.1 SUMMARY ............................................................................................................................................. 67 iii August 2016 Ecological6.2 INTRODUCTION Baseline................................ Report for................................ Mabira .....................................................................67 6.3 METHODS.............................................................................................................................................. 67 6.4 RESULTS................................................................................................................................................. 69 6.5. CONCLUSION
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Review of Entomological Research on Sweet Potato in Ethiopia
    Discourse Journal of Agriculture and Food Sciences www.resjournals.org/JAFS Vol. 1(5), pp. 83-92, May 2013 Review of Entomological Research on Sweet Potato in Ethiopia Ermias Shonga, Mesele Gemu, Tesfaye Tadesse and Elias Urage Awassa Agricultural Research Centre, Southern Agricultural Research Institute/SARI,P. O. Box 06. Awassa, SNNPR Email : [email protected] Abstract: Sweet potato is one of the most widely grown root crops in SSA, it is particularly important in countries surrounding the Great Lakes in Eastern and Central Africa, in Angola, Madagascar, Malawi and Mozambique in Southern Africa, Nigeria in West Africa and China being the largest producer worldwide. In Africa, it is grown predominantly in small plots by poorer farmers, and hence known as the “poor man’s food.” However it is among well known and established crops in Southern, Eastern and South western parts of Ethiopia. It is produced annually on over 53 thousand hectares of land with total production over 4,240 tons and average productivity of 8.0 tons per hectare. The production and productivity of the crop is extremely low as compared to other African and Asian countries where it gives more than 18t/ha. The lower productivity of sweet potato is mainly due to the existence of common, major, minor and sporadic insect pests. Sweet potato weevil is known as the most pit fall for production and productivity of the crop followed by viral diseases in the country. In addition, sweet potato butter fly is the most devastating pest in major sweet potato growing zones in the country but its occurrence is sporadic based on agro-ecological condition.
    [Show full text]
  • Régénération Forestière Assistée Avec Millettia Laurentii De Wild. Dans Les Savanes Mises En Défens À Ibi-Village Au Plateau Des Batéké/RDC
    ÉCOLE RÉGIONALE POST-UNIVERSITAIRE D’AMÉNAGEMENT ET DE GESTION INTEGRÉS DES FORÊTS ET TERRITOIRES TROPICAUX -ÉRAIFT- Régénération forestière assistée avec Millettia laurentii De Wild. dans les savanes mises en défens à Ibi-village au plateau des Batéké/RDC Par Ruffin NSIELOLO KITOKO DEA en Sciences de l’Environnement (Université de Kinshasa, 2010) Thèse Présentée et soutenue en vue de l'obtention du titre de Docteur en Aménagement et Gestion Intégrés des Forêts et Territoires Tropicaux Promoteur: Prof. Dr. Ir. Jean LEJOLY/ULB Co-Promoteur: Prof. Dr. Ir. Jules ALONI KOMANDA/UNIKIN 2016 Université de Kinshasa, Commune de Lemba, - B.P. 15.373 - Kinshasa, République Démocratique du Congo : +243(0)998658955 /243(0)998506701/+243(0)814261188- E-mail: [email protected]; Site : www.eraift-rdc.org 2 ÉCOLE RÉGIONALE POST-UNIVERSITAIRE D’AMÉNAGEMENT ET DE GESTION INTEGRÉS DES FORÊTS ET TERRITOIRES TROPICAUX -ÉRAIFT- Régénération forestière assistée avec Millettia laurentii De Wild. dans les savanes mises en défens à Ibi-village au plateau des Batéké/RDC Par Ruffin NSIELOLO KITOKO Thèse Présentée et soutenue en vue de l'obtention du titre de Docteur en Aménagement et Gestion Intégrés des Forêts et Territoires Tropicaux Membres de Jury: 1. 2. 3. 4. 5. 6. 2016 Régénération forestière assistée avec Millettia laurentii dans les savanes mises en défens à Ibi-village, Thèse Nsielolo Kitoko R i REMERCIEMENTS Au terme de ce travail, il nous est agréable d'exprimer nos remerciements à tous ceux qui ont contribué de près ou de loin à l'élaboration et à la réussite de cette thèse. Nos remerciements vont tout particulièrement au Professeur Jean LEJOLY qui a bien voulu assurer l'encadrement de ce travail; c’est un très grand honneur pour nous qu’il ait accepté d'en être le promoteur.
    [Show full text]
  • Evaluation of the Performance of Improved Sweet Potato (Ipomoea Batatas L
    Vol. 8(1), pp. 48-53, January 2014 DOI: 10.5897/AJEST2013. 1572 African Journal of Environmental Science and ISSN 1996-0786 © 2014 Academic Journals http://www.academicjournals.org/AJEST Technology Full Length Research Paper Evaluation of the performance of improved sweet potato (Ipomoea batatas L. LAM) varieties in Bayelsa State, Nigeria C. Wariboko* and I. A. Ogidi Department of Crop Production Technology, Niger Delta University, Bayelsa State, Nigeria. Accepted 11 December, 2013 This study was conducted using randomized complete block design with three replications each in two locations (Amassoma Wilberforce Island and Yenagoa, Bayelsa State) to evaluate the performance of improved sweet potato varieties (Ex-Igbariam, TIS 8164, 199004-2 and TIS 87/0087 including Kukunduku local) from March to June 2010. There were significant differences among varieties at both locations and across locations but locations and location x variety interaction were non-significant for sweet potato root yields. Ex-Igbariam and TIS 87/0087 had higher fresh root yields of 7.39 and 4.17 t ha-1, respectively, than others across locations. Regarding trailing characteristic (soil surface cover), too, varieties were significantly different at both locations and across locations but location and location x variety interaction were non-significant with Ex-Igbariam and TIS 87/0087 having best soil surface cover, and consequently, best weed suppressants. There was incidence of diseases but that of insects was low. For fresh root phenotypic characteristics, Ex-Igbariam and 199004-2 had yellow flesh, indicative of the presence of vitamin A precursor. Since Ex-Igbariam, TIS 87/0087 and a few others showed real promise in yield and carotene content, carrying out a multi-locational trial would, hopefully, enable selection of high - yielding varieties for commercial production to improve farmers’ yields and income in the different agro-ecological zones of Bayelsa State.
    [Show full text]
  • Mothers, Markets and Medicine Hanna Lindh
    Mothers, markets and medicine The role of traditional herbal medicine in primary women and child health care in the Dar es Salaam region, Tanzania Hanna Lindh Degree project in biology, Bachelor of science, 2015 Examensarbete i biologi 15 hp till kandidatexamen, 2015 Biology Education Centre, Uppsala University Supervisors: Sarina Veldman and Hugo de Boer 1 Abstract Traditional medicine is still the most common primary healthcare used in Tanzania, especially among women. The ethnobotanical studies performed in Tanzania have not explored women’s traditional medicine, with the result that we do not know that much about it, including if women’s usage of medicinal plants create a threat against the medicinal flora’s biodiversity or not. Field studies consisting of interviews and collections of medicinal plants were carried out in the Dar es Salaam region in Tanzania before identifying the collected specimens by DNA barcoding, literature and morphology in Uppsala, Sweden. The 33 informants belonged to 15 different ethnic groups and 79% of them had migrated to Dar es Salaam. A total of 249 plant species were mentioned for women’s healthcare and 140 for children’s healthcare. The medicinal plants frequently reported as used for women’s health and childcare during structured interviews and free-listing exercises were Senna occidentalis/ Cassia abbreviata, Zanthoxylum sp., Clausena anisata, Acalypha ornata and Ximenia sp. The most salient uses of medicinal plants by women were during pregnancy, childbirth, menstruation, to induce abortion, and for cleansing infants and treating convulsions in children. Most of the fresh specimens were collected from disturbance vegetation. The informants having most interview answers in common were the market vendors, healers and herbalists and they were the only informants that mentioned species listed as vulnerable on the IUCN Red List of Threatened Species.
    [Show full text]
  • The Genus Acraea (Lepidoptera : Nymphalidae) - Peter Hendry
    The genus Acraea (Lepidoptera : Nymphalidae) - Peter Hendry With the recent migration to Australia of the Tawny Coster (Acraea terpsicore (Linnaeus, 1758)), (see Creature Feature this issue), I thought it might be timely to take a look at the genus worldwide. It must be noted that due to a misidentification A. terpsicore had long been known as A. violae and many references in the literature and on the web refer to it as A. violae. As with much of the Lepidoptera the genus is in a state of flux, and has long been split into the subgenera Acraea (Acraea) and Acraea (Actinote). The genus is placed in the tribe Acraeini and until Harvey (1991) placed it in the subfamily Heliconiinae it was listed in the subfamily Acraeinae. Recent molecular work has made changes and a current listing of the tribe Acraeini, by Niklas Wahlberg, is available at http://www.nymphalidae.net/Classification/Acraeini.htm. It shows members of the old subgenus Acraea (Actinote) being placed in the genus Actinote, and the old subgenus Acraea (Acraea) becoming the genus Acraea with a subgenus Acraea (Bematistes). It also lists several Acraea as unplaced. This may further change as some believe the subgenus Acraea (Bematistes) will move to the genus Bematistes. The genus is primarily Afrotropical with only four species occurring outside this region, these being, Acraea andromacha (Fig. 1) A. meyeri (Fig. 10) A. moluccana and A. terpsicore. A fifth species the Yellow Coster Acraea (Actinote) issoria is now referred to the genus Actinote. Like many of the Nymphalidae the larvae feed on plants which contain cyanogens making the larvae and adults poisonous to predators.
    [Show full text]
  • Check-List of the Butterflies of the Kakamega Forest Nature Reserve in Western Kenya (Lepidoptera: Hesperioidea, Papilionoidea)
    Nachr. entomol. Ver. Apollo, N. F. 25 (4): 161–174 (2004) 161 Check-list of the butterflies of the Kakamega Forest Nature Reserve in western Kenya (Lepidoptera: Hesperioidea, Papilionoidea) Lars Kühne, Steve C. Collins and Wanja Kinuthia1 Lars Kühne, Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, Germany; email: [email protected] Steve C. Collins, African Butterfly Research Institute, P.O. Box 14308, Nairobi, Kenya Dr. Wanja Kinuthia, Department of Invertebrate Zoology, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya Abstract: All species of butterflies recorded from the Kaka- list it was clear that thorough investigation of scientific mega Forest N.R. in western Kenya are listed for the first collections can produce a very sound list of the occur- time. The check-list is based mainly on the collection of ring species in a relatively short time. The information A.B.R.I. (African Butterfly Research Institute, Nairobi). Furthermore records from the collection of the National density is frequently underestimated and collection data Museum of Kenya (Nairobi), the BIOTA-project and from offers a description of species diversity within a local literature were included in this list. In total 491 species or area, in particular with reference to rapid measurement 55 % of approximately 900 Kenyan species could be veri- of biodiversity (Trueman & Cranston 1997, Danks 1998, fied for the area. 31 species were not recorded before from Trojan 2000). Kenyan territory, 9 of them were described as new since the appearance of the book by Larsen (1996). The kind of list being produced here represents an information source for the total species diversity of the Checkliste der Tagfalter des Kakamega-Waldschutzge- Kakamega forest.
    [Show full text]
  • Download Full-Text
    Research in Zoology 2015, 5(2): 32-37 DOI: 10.5923/j.zoology.20150502.02 First Records of Butterfly Diversity on Two Remote Islands on the Volta Lake of Ghana, the Largest Reservoir by Total Surface Area in the World Daniel Opoku Agyemang1, Daniel Acquah-Lamptey1,*, Roger Sigismond Anderson2, Rosina Kyerematen1,2 1Department of Animal Biology and Conservation Science, University of Ghana, Legon, Ghana 2African Regional Postgraduate Programme in Insect Science, University of Ghana, Legon, Ghana Abstract The construction of the Akosombo Dam in Ghana for hydroelectric energy led to the creation of many islands on the Volta Lake. The biological diversity on these islands is unknown and so a rapid assessment was conducted in January 2014 as part as a region wide assessment to determine the butterfly diversity on two of these islands, Biobio and Agbasiagba. Diversity indices were computed for both islands using the Shannon-Weiner index, Margalef’s index for richness and Whittaker’s index for comparison of diversity between the two islands. A total of eight hundred and eighty-one (881) individual butterflies representing forty-five (45) species belonging to eight (8) families were recorded during the study. Thirty-nine (39) species of butterflies were recorded on Biobio island whiles twenty-eight (28) species were recorded on Agbasiagba. This was expected as the larger islands are expected to support more species than smaller ones, with Biobio island being relatively bigger than Agbasiagba. The shared species of butterflies on both islands were twenty-two (22) representing 48.9% of the total species accumulated. Indicator species like Junonia oenone, Danaus chrysippus and Papilio demodocus were also recorded indicating the degraded floral quality of the Islands.
    [Show full text]
  • Vascular Flora Inventory and Plant Diversity of the Ruvubu National Park, Burundi
    Vascular flora inventory and plant diversity of the Ruvubu National Park, Burundi Tatien MASHARABU Marie Josée BIGENDAKO Université du Burundi, Faculté des Sciences, Département de Biologie, B.P. 2700 Bujumbura (Burundi) [email protected] Benoît NZIGIDAHERA Institut national pour l’Environnement et la Conservation de la Nature (INECN), B.P. 2757 Bujumbura (Burundi) Balthazar MPAWENAYO Université du Burundi, Faculté des Sciences, Département de Biologie, B.P. 2700 Bujumbura (Burundi) Jean LEJOLY Université Libre de Bruxelles, Laboratoire d’Écologie végétale et Biogéochimie, case postale 244, boulevard du Triomphe, B-1050 Bruxelles (Belgium) Frédéric BANGIRINAMA École normale supérieure, Département des Sciences Naturelles, B.P. 6983 Bujumbura (Burundi) Jan BOGAERT Université de Liège/Gembloux Agro-Bio Tech., Unité Biodiversité et Paysage, 2 passage des Déportés, B-5030 Gembloux (Belgium) Masharabu T., Bigendako M. J., Nzigidahera B., Mpawenayo B., Lejoly J., Bangirinama F. & Bogaert J. 2012. — Vascular flora inventory and plant diversity of the Ruvubu National Park, Burundi. Adansonia, sér. 3, 34 (1): 155-162. http://dx.doi.org/10.5252/a2012n1a17 ADANSONIA, sér. 3 • 2012 • 34 (1) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. www.adansonia.com 155 Masharabu T. et al. ABSTRACT The Ruvubu National Park, the biggest protected area and biodiversity refuge of the country, is comparatively less studied than western Burundi near Bujum­ bura, the capital. This article reports the results of a botanical inventory of the vascular plants from the protected area, evidences species newly encountered and establishes a comparison of the floristic diversity with the Akagera National Park in Rwanda located in the same phytochorion, in the Lake Victoria regional mosaic.
    [Show full text]
  • The Volta Region
    WILDLIFE DIVISION (FORESTRY COMMISSION) REPUBLIC OF GHANA Wildlife Division Support Project (WDSP) The Butterflies of Kyabobo National Park, Ghana, and those of the Volta Region by Torben B Larsen (WDSP Report No. 64) March 2006 In collaboration with: Butterflies of Kyabobo and Volta Region. WDSP Report no 64 March 2006 TABLE OF CONTENTS EXECUTIVE SUMMARY …………………………………… 4 ACKNOWLEDGEMENTS ………………………………….. 7 1. INTRODUCTION ………………………………………… 8 2. KYABOBO NATIONAL PARK …………………………. 9 2.1 Location and characteristics of Kyabobo National Park …… 9 2.1.1 Habitat types ………………………………………………… 9 2.2 The butterflies of Kyabobo National Park …………………. 10 2.2.1 Material and methods ……………………………………….. 10 2.2.2 Analysis of the Kyabobo butterflies ……………………….... 11 2.2.3 Conservation value of Kyabobo National Park ……..………. 14 2.3 Ecotourism potential ..……………………………………... 14 3. VOLTA REGION – ECOLOGY AND BIOGEOGRAPHY 17 3.1 The Volta Region setting …………………………………… 17 3.2 History of butterfly collecting in the Volta Region ………… 18 3.3 Review of the Volta Region butterfly fauna ………………… 19 3.3.1 Total butterfly fauna …………………………………………… 19 3.3.2 Endemics of Africa west of the Dahomey Gap ……………….. 21 3.3.3 Eastern species not found west of the Volta River ……………. 23 3.4 Biogeographical summary …………………………………… 25 3.5 Conservation priorities in the Volta Region ………...………. 25 3.6 Ecotourism …………………………………………………... 27 4. CONCLUDING REMARKS ……………………………… 29 REFERENCES ……………………………………………. 30 APPENDICES: Appendix 1 The butterflies of the Volta Region, Kyabobo, Wli Falls, and Kalakpa…………….….…………….. 33 Appendix 2 Butterflies recorded by Karsch (1893) from Adeli Mountains, German Togoland …………… 55 2 Butterflies of Kyabobo and Volta Region. WDSP Report no 64 March 2006 LIST OF TABLES: Table 2.2.2.
    [Show full text]