Phylogenetic Relationships and Reclassification Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Low Intraspecific Genetic Diversity Indicates Asexuality and Vertical
Fungal Ecology 32 (2018) 57e64 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles * ** L.J.J. van de Peppel a, , D.K. Aanen a, P.H.W. Biedermann b, c, a Laboratory of Genetics Wageningen University, 6700 AH Wageningen, The Netherlands b Max-Planck-Institut for Chemical Ecology, Department of Biochemistry, Hans-Knoll-Strasse€ 8, 07745 Jena, Germany c Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Biocenter, Am Hubland, 97074 Wuerzburg, Germany article info abstract Article history: Ambrosia beetles farm ascomycetous fungi in tunnels within wood. These ambrosia fungi are regarded Received 21 July 2016 asexual, although population genetic proof is missing. Here we explored the intraspecific genetic di- Received in revised form versity of Ambrosiella grosmanniae and Ambrosiella hartigii (Ascomycota: Microascales), the mutualists of 9 November 2017 the beetles Xylosandrus germanus and Anisandrus dispar. By sequencing five markers (ITS, LSU, TEF1a, Accepted 29 November 2017 RPB2, b-tubulin) from several fungal strains, we show that X. germanus cultivates the same two clones of Available online 29 December 2017 A. grosmanniae in the USA and in Europe, whereas A. dispar is associated with a single A. hartigii clone Corresponding Editor: Henrik Hjarvard de across Europe. This low genetic diversity is consistent with predominantly asexual vertical transmission Fine Licht of Ambrosiella cultivars between beetle generations. This clonal agriculture is a remarkable case of convergence with fungus-farming ants, given that both groups have a completely different ecology and Keywords: evolutionary history. -
Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae
Journal of Fungi Article Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae Mohammad Sayari 1,2,*, Magrieta A. van der Nest 1,3, Emma T. Steenkamp 1, Saleh Rahimlou 4 , Almuth Hammerbacher 1 and Brenda D. Wingfield 1 1 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; [email protected] (M.A.v.d.N.); [email protected] (E.T.S.); [email protected] (A.H.); brenda.wingfi[email protected] (B.D.W.) 2 Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada 3 Biotechnology Platform, Agricultural Research Council (ARC), Onderstepoort Campus, Pretoria 0110, South Africa 4 Department of Mycology and Microbiology, University of Tartu, 14A Ravila, 50411 Tartu, Estonia; [email protected] * Correspondence: [email protected]; Fax: +1-204-474-7528 Abstract: Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using Citation: Sayari, M.; van der Nest, a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species M.A.; Steenkamp, E.T.; Rahimlou, S.; of the Ceratocystidaceae were identified. -
Fungi of Raffaelea Genus (Ascomycota: Ophiostomatales) Associated to Platypus Cylindrus (Coleoptera: Platypodidae) in Portugal
FUNGI OF RAFFAELEA GENUS (ASCOMYCOTA: OPHiostomATALES) ASSOCIATED to PLATYPUS CYLINDRUS (COLEOPTERA: PLATYPODIDAE) IN PORTUGAL FUNGOS DO GÉNERO RAFFAELEA (ASCOMYCOTA: OPHiostomATALES) ASSOCIADOS A PLATYPUS CYLINDRUS (COLEOPTERA: PLATYPODIDAE) EM PORTUGAL MARIA LURDES INÁCIO1, JOANA HENRIQUES1, ARLINDO LIMA2, EDMUNDO SOUSA1 ABSTRACT Key-words: Ambrosia beetle, ambrosia fun- gi, cork oak, decline. In the study of the fungi associated to Platypus cylindrus, several fungi were isolated from the insect and its galleries in cork oak, RESUMO among which three species of Raffaelea. Mor- phological and cultural characteristics, sensitiv- No estudo dos fungos associados ao insec- ity to cycloheximide and genetic variability had to xilomicetófago Platypus cylindrus foram been evaluated in a set of isolates of this genus. isolados, a partir do insecto e das suas ga- On this basis R. ambrosiae and R. montetyi were lerias no sobreiro, diversos fungos, entre os identified and a third taxon segregated witch quais três espécies de Raffaelea. Avaliaram-se differs in morphological and molecular charac- características morfológicas e culturais, sensibi- teristics from the previous ones. In this work we lidade à ciclohexamida e variabilidade genética present and discuss the parameters that allow num conjunto de isolados do género. Foram the identification of specimens of the threetaxa . identificados R. ambrosiae e R. montetyi e The role that those ambrosia fungi can have in segregou-se um terceiro táxone que difere the cork oak decline is also discussed taking em características morfológicas e molecula- into account that Ophiostomatales fungi are res dos dois anteriores. No presente trabalho pathogens of great importance in trees, namely são apresentados e discutidos os parâmetros in species of the genus Quercus. -
Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018. -
Novel Species of Huntiella from Naturally-Occurring Forest Trees in Greece and South Africa
A peer-reviewed open-access journal MycoKeys 69: 33–52 (2020) Huntiella species in Greece and South Africa 33 doi: 10.3897/mycokeys.69.53205 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Novel species of Huntiella from naturally-occurring forest trees in Greece and South Africa FeiFei Liu1,2, Seonju Marincowitz1, ShuaiFei Chen1,2, Michael Mbenoun1, Panaghiotis Tsopelas3, Nikoleta Soulioti3, Michael J. Wingfield1 1 Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology In- stitute (FABI), University of Pretoria, Pretoria 0028, South Africa 2 China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China 3 Institute of Mediter- ranean Forest Ecosystems, Terma Alkmanos, 11528 Athens, Greece Corresponding author: ShuaiFei Chen ([email protected]) Academic editor: R. Phookamsak | Received 13 April 2020 | Accepted 4 June 2020 | Published 10 July 2020 Citation: Liu FF, Marincowitz S, Chen SF, Mbenoun M, Tsopelas P, Soulioti N, Wingfield MJ (2020) Novel species of Huntiella from naturally-occurring forest trees in Greece and South Africa. MycoKeys 69: 33–52. https://doi. org/10.3897/mycokeys.69.53205 Abstract Huntiella species are wood-infecting, filamentous ascomycetes that occur in fresh wounds on a wide va- riety of tree species. These fungi are mainly known as saprobes although some have been associated with disease symptoms. Six fungal isolates with typical culture characteristics of Huntiella spp. were collected from wounds on native forest trees in Greece and South Africa. The aim of this study was to identify these isolates, using morphological characters and multigene phylogenies of the rRNA internal transcribed spacer (ITS) region, portions of the β-tubulin (BT1) and translation elongation factor 1α (TEF-1α) genes. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´
Hindawi International Journal of Microbiology Volume 2020, Article ID 6582514, 9 pages https://doi.org/10.1155/2020/6582514 Research Article Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´ Eveleise SamiraMartins Canto ,1,2 Ana Clau´ dia AlvesCortez,3 JosianeSantana Monteiro,4 Flavia Rodrigues Barbosa,5 Steven Zelski ,6 and João Vicente Braga de Souza3 1Programa de Po´s-Graduação da Rede de Biodiversidade e Biotecnologia da Amazoˆnia Legal-Bionorte, Manaus, Amazonas, Brazil 2Universidade Federal do Oeste do Para´, UFOPA, Santare´m, Para´, Brazil 3Instituto Nacional de Pesquisas da Amazoˆnia, INPA, Laborato´rio de Micologia, Manaus, Amazonas, Brazil 4Museu Paraense Emilio Goeldi-MPEG, Bele´m, Para´, Brazil 5Universidade Federal de Mato Grosso, UFMT, Sinop, Mato Grosso, Brazil 6Miami University, Department of Biological Sciences, Middletown, OH, USA Correspondence should be addressed to Eveleise Samira Martins Canto; [email protected] and Steven Zelski; [email protected] Received 25 August 2019; Revised 20 February 2020; Accepted 4 March 2020; Published 9 April 2020 Academic Editor: Giuseppe Comi Copyright © 2020 Eveleise Samira Martins Canto et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aquatic ecosystems in tropical forests have a high diversity of microorganisms, including fungi, which -
REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus Bisporus E DE SUA INTERAÇÃO COM Lecanicillium Fungicola
JANAIRA SANTANA NUNES RIBEIRO REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus bisporus E DE SUA INTERAÇÃO COM Lecanicillium fungicola LAVRAS – MG 2014 JANAIRA SANTANA NUNES RIBEIRO REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus bisporus E DE SUA INTERAÇÃO COM Lecanicillium fungicola Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Microbiologia Agrícola, área de concentração em Microbiologia Agrícola, para a obtenção do título de Doutora. Orientador Dr. Eduardo Alves Co-orientador Dr. Eustáquio Souza Dias Dr. Diego Cunha Zied LAVRAS – MG 2014 Ficha catalográfica JANAIRA SANTANA NUNES RIBEIRO REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus bisporus E DE SUA INTERAÇÃO COM Lecanicillium fungicola Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Microbiologia Agrícola, área de concentração em Microbiologia Agrícola, para a obtenção do título de Doutora. APROVADA em 17 de julho de 2014. Dr. Edson Ampélio Pozza UFLA Dr ª Patrícia Gomes Cardoso UFLA Dr ª Simone Cristina Marques UFLA Dr. Diego Cunha Zied UNESP Dr. Eduardo Alves Orientador Dr. Eustáquio Souza Dias Dr. Diego Cunha Zied Co-orientadores LAVRAS – MG 2014 A todos que contribuíram para a realização desse trabalho. DEDICO AGRADECIMENTOS A Deus que me guia e me dá forças para nunca desistir dos meus objetivos. A minha mãe (Maria Santana), irmãos (Francisco Junior, Edna Maria, Rosália Nunes e Jucélia Nunes) e meu marido (Fernando Barreto) ao apoio e incentivo para minha ascensão pessoal e principalmente pela inesgotável confiança nas minhas capacidades. Ao meu orientador Eduardo Alves e co-orientador Eustáquio Sousa Dias, pela confiança, orientação, paciência e ao conhecimento compartilhado durante a realização desse trabalho. -
Patterns of Coevolution Between Ambrosia Beetle Mycangia and the Ceratocystidaceae, with Five New Fungal Genera and Seven New Species
Persoonia 44, 2020: 41–66 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.02 Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species C.G. Mayers1, T.C. Harrington1, H. Masuya2, B.H. Jordal 3, D.L. McNew1, H.-H. Shih4, F. Roets5, G.J. Kietzka5 Key words Abstract Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called my- cangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central 14 new taxa to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The Microascales fungal family Ceratocystidaceae previously included three ambrosial genera (Ambrosiella, Meredithiella, and Phia Scolytinae lophoropsis), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively symbiosis large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera two new typifications were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe Scolytoplatypodini. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1), a comprehensive phylogeny of the family Ceratocystidaceae was developed, including Inodoromyces interjectus gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the Scolytoplatypodini were associated with ambrosia fungi in three respective clades of Ceratocystidaceae: Wolfgangiella gen. -
Mushroom Recipes: Tianguis and Markets of Hidalgo State, Mexico
Mushroom recipes: tianguis and markets of Hidalgo state, Mexico. Leticia Romero Bautista, Miguel Ángel Islas Santillán, Griselda Pulido Flores y Xanath Valdez Romero Laboratorio de Etnobotánica, Centro de investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo. Carr. Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, México. C. P. 42184. E mail [email protected] INTRODUCTION Mexican cuisine is known for its great variety of dishes, reflecting the biodiversity of our country, in which organisms interact with cultural expressions and traditions of each geographic region, which gives to each a hallmark. The state of Hidalgo ranks third nationally with more than 260 species of wild edible mushrooms (WEM) and the tradition continues in the markets and swap meets of some municipalities (Fig. 1): Acaxochitlán, Huasca, Huejutla, Mineral del Monte Mineral del Chico, Molango, Omitlán, Pachuca, Zacualtipán and Tlanchinol mainly. MATERIALS AND METHODS Go to these sites selling is an enjoyable experience as they become excellent "information centers" of knowledge, which are provided by “hongueros”, they are people who are responsible for collecting and marketing mushrooms. Species, prices and sales units vary according to the region of the state be purchased heaps, sardine, quadroon, bucket, piece or kilogram and prices range according to the species, the highest are for the most requested and / or difficult to find. Fig. 1 y 2. Sale of mushrooms in a tradicional marketplace Mushrooms species included Phylum Clase Subclase Orden Familia Género Especie Agaricaceae Agaricus bisporus Pleurotus albidus Pleurotaceae Pleurotus djamor 1 Pleurotus ostreatus RESULTS Omphalotaceae Lentinula edodes Agaricales Clitocybe gibba Variety of dishes prepared with 24 WEM and 3 cultivated, acquired in these municipalities are Tricholomataceae Tricholoma caligatum Agaricomycetidae Amanita jacksonii presented in this cookbook. -
臺灣紅樹林海洋真菌誌 林 海 Marine Mangrove Fungi 洋 真 of Taiwan 菌 誌 Marine Mangrove Fungimarine of Taiwan
臺 灣 紅 樹 臺灣紅樹林海洋真菌誌 林 海 Marine Mangrove Fungi 洋 真 of Taiwan 菌 誌 Marine Mangrove Fungi of Taiwan of Marine Fungi Mangrove Ka-Lai PANG, Ka-Lai PANG, Ka-Lai PANG Jen-Sheng JHENG E.B. Gareth JONES Jen-Sheng JHENG, E.B. Gareth JONES JHENG, Jen-Sheng 國 立 臺 灣 海 洋 大 G P N : 1010000169 學 售 價 : 900 元 臺灣紅樹林海洋真菌誌 Marine Mangrove Fungi of Taiwan Ka-Lai PANG Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Chilung 20224, Taiwan (R.O.C.) Jen-Sheng JHENG Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Chilung 20224, Taiwan (R.O.C.) E. B. Gareth JONES Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand 國立臺灣海洋大學 National Taiwan Ocean University Chilung January 2011 [Funded by National Science Council, Taiwan (R.O.C.)-NSC 98-2321-B-019-004] Acknowledgements The completion of this book undoubtedly required help from various individuals/parties, without whom, it would not be possible. First of all, we would like to thank the generous financial support from the National Science Council, Taiwan (R.O.C.) and the center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University. Prof. Shean- Shong Tzean (National Taiwan University) and Dr. Sung-Yuan Hsieh (Food Industry Research and Development Institute) are thanked for the advice given at the beginning of this project. Ka-Lai Pang would particularly like to thank Prof. -
Download Full Article in PDF Format
Cryptogamie, Mycologie, 2016, 37 (4): 449-475 © 2016 Adac. Tous droits réservés Fuscosporellales, anew order of aquatic and terrestrial hypocreomycetidae (Sordariomycetes) Jing YANG a, Sajeewa S. N. MAHARACHCHIKUMBURA b,D.Jayarama BHAT c,d, Kevin D. HYDE a,g*,Eric H. C. MCKENZIE e,E.B.Gareth JONES f, Abdullah M. AL-SADI b &Saisamorn LUMYONG g* a Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand b Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University,P.O.Box 34, Al-Khod 123, Oman c Formerly,Department of Botany,Goa University,Goa, India d No. 128/1-J, Azad Housing Society,Curca, P.O. Goa Velha 403108, India e Manaaki Whenua LandcareResearch, Private Bag 92170, Auckland, New Zealand f Department of Botany and Microbiology,College of Science, King Saud University,P.O.Box 2455, Riyadh 11451, Kingdom of Saudi Arabia g Department of Biology,Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Abstract – Five new dematiaceous hyphomycetes isolated from decaying wood submerged in freshwater in northern Thailand are described. Phylogenetic analyses of combined LSU, SSU and RPB2 sequence data place these hitherto unidentified taxa close to Ascotaiwania and Bactrodesmiastrum. Arobust clade containing anew combination Pseudoascotaiwania persoonii, Bactrodesmiastrum species, Plagiascoma frondosum and three new species, are introduced in the new order Fuscosporellales (Hypocreomycetidae, Sordariomycetes). A sister relationship for Fuscosporellales with Conioscyphales, Pleurotheciales and Savoryellales is strongly supported by sequence data. Taxonomic novelties introduced in Fuscosporellales are four monotypic genera, viz. Fuscosporella, Mucispora, Parafuscosporella and Pseudoascotaiwania.Anew taxon in its asexual morph is proposed in Ascotaiwania based on molecular data and cultural characters.