Coronography at La Silla: High Resolution Imaging of Faint Features Near Bright Objects F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathématiques Et Espace
Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée. -
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis. -
The Brightest Stars Seite 1 Von 9
The Brightest Stars Seite 1 von 9 The Brightest Stars This is a list of the 300 brightest stars made using data from the Hipparcos catalogue. The stellar distances are only fairly accurate for stars well within 1000 light years. 1 2 3 4 5 6 7 8 9 10 11 12 13 No. Star Names Equatorial Galactic Spectral Vis Abs Prllx Err Dist Coordinates Coordinates Type Mag Mag ly RA Dec l° b° 1. Alpha Canis Majoris Sirius 06 45 -16.7 227.2 -8.9 A1V -1.44 1.45 379.21 1.58 9 2. Alpha Carinae Canopus 06 24 -52.7 261.2 -25.3 F0Ib -0.62 -5.53 10.43 0.53 310 3. Alpha Centauri Rigil Kentaurus 14 40 -60.8 315.8 -0.7 G2V+K1V -0.27 4.08 742.12 1.40 4 4. Alpha Boötis Arcturus 14 16 +19.2 15.2 +69.0 K2III -0.05 -0.31 88.85 0.74 37 5. Alpha Lyrae Vega 18 37 +38.8 67.5 +19.2 A0V 0.03 0.58 128.93 0.55 25 6. Alpha Aurigae Capella 05 17 +46.0 162.6 +4.6 G5III+G0III 0.08 -0.48 77.29 0.89 42 7. Beta Orionis Rigel 05 15 -8.2 209.3 -25.1 B8Ia 0.18 -6.69 4.22 0.81 770 8. Alpha Canis Minoris Procyon 07 39 +5.2 213.7 +13.0 F5IV-V 0.40 2.68 285.93 0.88 11 9. Alpha Eridani Achernar 01 38 -57.2 290.7 -58.8 B3V 0.45 -2.77 22.68 0.57 144 10. -
Assaj V1 N6 1925-Nov
~he dournal of tbe .astronomical Societ~ of South .africa. Vol. l. NOVEMBER, 1925. No.6. PRESENT.DAY PROBLEMS OF ASTRONOMY . • (PRESIDENTIAL ADDRESS, SESSION 1924-25.) By J. K. E. HALM, PH.D., F.R.A.S., F.R.S.E. The history of Astronomv during- the last three centuries is a record of continuous progress. Since the clays of Kepler and Newton no period can be pointed out when advance in one or other of its branches was entirelv suspended. But the centre of most rapid progress has shiftecl fronl time to time. It was natural, for instance, that the discovery of the law of gravita tion and its fundamental bearing on the motions of the bodies governed by the attractive force of the sun should lead. in the earlier days, to a concentration of efforts in the direction of establishing the dynamics of our solar system. Here was an inexhaustible field for the mathematician who by ever-increasing refinements in his analytical methods endeavoured ancl succeeded to account for the complex motions of the constituent members of our system as the manifestations of tnat one. still mys.terious, force called gravitation. This branch of astronomical science, as you know, held its sway predominantly up to the middle of last century. .... As an illustration of the state of astronomy in those early days, an introductory address circulated prior to the first meeting of the Royal Astronomical Society in 1820 contains the following paragraph :- "Beyond the limits of our svstem all at present is in obscurity. Some vast and general views on the con;;truc tion of the heaven and the laws which mav regulate the formation of sidereal systems have, it is true. -
The 10 Parsec Sample in the Gaia Era?,?? C
A&A 650, A201 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140985 & c C. Reylé et al. 2021 Astrophysics The 10 parsec sample in the Gaia era?,?? C. Reylé1 , K. Jardine2 , P. Fouqué3 , J. A. Caballero4 , R. L. Smart5 , and A. Sozzetti5 1 Institut UTINAM, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France e-mail: [email protected] 2 Radagast Solutions, Simon Vestdijkpad 24, 2321 WD Leiden, The Netherlands 3 IRAP, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy Received 2 April 2021 / Accepted 23 April 2021 ABSTRACT Context. The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recent data release of the astrometric space mission Gaia and uses its unprecedented high precision parallax measurements to review the census of objects within 10 pc. Aims. The first aim of this work was to compile all stars and brown dwarfs within 10 pc observable by Gaia and compare it with the Gaia Catalogue of Nearby Stars as a quality assurance test. We complement the list to get a full 10 pc census, including bright stars, brown dwarfs, and exoplanets. -
Seeing the Light: the Art and Science of Astronomy
Chapter 1 Seeing the Light: The Art and Science of Astronomy In This Chapter ▶ Understanding the observational nature of astronomy ▶ Focusing on astronomy’s language of light ▶ Weighing in on gravity ▶ Recognizing the movements of objects in space tep outside on a clear night and look at the sky. If you’re a city dweller Sor live in a cramped suburb, you see dozens, maybe hundreds, of twin- kling stars. Depending on the time of the month, you may also see a full Moon and up to five of the eight planets that revolve around the Sun. A shooting star or “meteor” may appear overhead. What you actually see is the flash of light from a tiny piece of comet dust streaking through the upper atmosphere. Another pinpoint of light moves slowly and steadily across the sky. Is it a space satellite, such as the Hubble Space Telescope, or just a high-altitude airliner? If you have a pair of binoculars, you may be able to see the difference. Most air- liners have running lights, and their shapes may be perceptible. If you liveCOPYRIGHTED in the country — on the seashore MATERIAL away from resorts and develop- ments, on the plains, or in the mountains far from any floodlit ski slope — you can see thousands of stars. The Milky Way appears as a beautiful pearly swath across the heavens. What you’re seeing is the cumulative glow from millions of faint stars, individually indistinguishable with the naked eye. At a great observation place, such as Cerro Tololo in the Chilean Andes, you can see even more stars. -
1411 (Created: Wednesday, June 24, 2020 at 12:00:37 AM Eastern Standard Time) - Overview
JWST Proposal 1411 (Created: Wednesday, June 24, 2020 at 12:00:37 AM Eastern Standard Time) - Overview 1411 - Coronagraphy of the Debris Disk Archetype Beta Pictoris Cycle: 1, Proposal Category: GTO INVESTIGATORS Name Institution E-Mail Dr. Christopher C. Stark (PI) Space Telescope Science Institute [email protected] Dr. Laurent Pueyo (CoI) Space Telescope Science Institute [email protected] Dr. Marshall Perrin (CoI) Space Telescope Science Institute [email protected] Dr. Remi Soummer (CoI) Space Telescope Science Institute [email protected] Dr. Matt Mountain (CoI) Space Telescope Science Institute [email protected] Abhijith Rajan (CoI) Space Telescope Science Institute [email protected] Dr. Mark Clampin (CoI) NASA Goddard Space Flight Center [email protected] OBSERVATIONS Folder Observation Label Observing Template Science Target Beta Pic with MIRI coronagraphs 1 Beta Pic - 2300 Lyot R MIRI Coronagraphic Imaging (1) BETA-PIC oll 1 2 Beta Pic - 1550 4QPM MIRI Coronagraphic Imaging (1) BETA-PIC Roll 1 3 Beta Pic - 1550 4QPM MIRI Coronagraphic Imaging (1) BETA-PIC Roll 2 4 Beta Pic - 2300 Lyot R MIRI Coronagraphic Imaging (1) BETA-PIC oll 2 5 Alpha Pic - 2300 Lyot MIRI Coronagraphic Imaging (2) ALPHA-PIC PSF 6 Alpha Pic - 1550 4QP MIRI Coronagraphic Imaging (2) ALPHA-PIC M PSF Beta Pic with NIRCam Coronagraphs 7 Alpha Pic - LW PSF NIRCam Coronagraphic Imaging (2) ALPHA-PIC 1 JWST Proposal 1411 (Created: Wednesday, June 24, 2020 at 12:00:37 AM Eastern Standard Time) - Overview Folder Observation Label Observing Template Science Target 8 Alpha Pic - SW PSF NIRCam Coronagraphic Imaging (2) ALPHA-PIC 10 Beta Pic - SW Roll 1 NIRCam Coronagraphic Imaging (1) BETA-PIC 11 Beta Pic - SW Roll 2 NIRCam Coronagraphic Imaging (1) BETA-PIC 12 Beta Pic - LW Roll 2 NIRCam Coronagraphic Imaging (1) BETA-PIC 13 Beta Pic - LW Roll 1 NIRCam Coronagraphic Imaging (1) BETA-PIC ABSTRACT The famous debris disk around Beta Pic was the first circumstellar disk to be spatially resolved. -
An Unusually Large Gaseous Transit in a Debris Disc
MNRAS 000,1{11 (2019) Preprint 11 October 2019 Compiled using MNRAS LATEX style file v3.0 An unusually large gaseous transit in a debris disc Daniela P. Iglesias1;2?, Johan Olofsson1;2, Amelia Bayo1;2, Sebastian Zieba3, Mat´ıas Montesinos1;2;4, Jonathan Smoker5, Grant M. Kennedy6, Nicol´as Godoy1;2, Blake Pantoja7, Geert Jan Talens8, Zahed Wahhaj5, and Catalina Zamora1;2 1Instituto de F´ısica y Astronom´ıa, Facultad de Ciencias, Universidad de Valpara´ıso, Av. Gran Breta~na 1111, 5030 Casilla, Valpara´ıso, Chile 2N´ucleo Milenio de Formaci´on Planetaria - NPF, Universidad de Valpara´ıso, Av. Gran Breta~na 1111, Valpara´ıso, Chile 3Universit¨at Innsbruck, Institut fur¨ Astro- und Teilchenphysik, Technikerstraße 25, 6020 Innsbruck, Austria 4Chinese Academy of Sciences South America Center for Astronomy, National Astronomical Observatories, CAS, Beijing 100012, China, 5European Southern Observatory, Alonso de C´ordova 3107, Vitacura, Santiago, Chile 6Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 7Departamento de Astronom´ıa, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago, Chile, Casilla 36-D 8Institut de Recherche sur les Exoplan`etes, D´epartement de Physique, Universit´ede Montr´eal, Montr´eal, QC H3C 3J7, Canada Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present the detection of an unusually large transient gas absorption in several ionized species in the debris disc star HD 37306 using high-resolution optical spectra. We have been analysing a large sample of debris discs searching for circumstellar gas absorptions aiming to determine the frequency of gas in debris discs. -
Correlations Between the Stellar, Planetary and Debris Components Of
Astronomy & Astrophysics manuscript no. dunes˙debris˙exoplanets˙v18 c ESO 2018 September 3, 2018 Correlations between the stellar, planetary and debris components of exoplanet systems observed by Herschel Jonathan P. Marshall1,2,⋆, A. Moro-Mart´ın3,4, C. Eiroa1, G. Kennedy5, A. Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10, M.C. Wyatt5, B. Matthews11,12, J. Horner2,13,14, B. Montesinos10, G. Bryden15, C. del Burgo16, J.S. Greaves17, R.J. Ivison18,19, G. Meeus1, G. Olofsson20, G.L. Pilbratt21, and G.J. White22,23 (Affiliations can be found after the references) Received —; accepted — ABSTRACT Context. Stars form surrounded by gas and dust rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own Solar system, with its eight planets and two debris belts is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100 and 160 µm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the Solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis. -
The Messenger
THE MESSENGER ( , New Meteorite Finds At Imilac No. 47 - March 1987 H. PEDERSEN, ESO, and F. GARe/A, elo ESO Introduction hand, depend more on the preserving some 7,500 meteorites were recovered Stones falling from the sky have been conditions of the terrain, and the extent by Japanese and American expeditions. collected since prehistoric times. They to which it allows meteorites to be spot They come from a smaller, but yet un were, until recently, the only source of ted. Most meteorites are found by known number of independent falls. The extraterrestrial material available for chance. Active searching is, in general, meteorites appear where glaciers are laboratory studies and they remain, too time consuming to be of interest. pressed up towards a mountain range, even in our space age, a valuable However, the blue-ice fields of Antarctis allowing the ice to evaporate. Some source for investigation of the solar sys have proven to be a happy hunting have been Iying in the ice for as much as tem's early history. ground. During the last two decades 700,000 years. It is estimated that, on the average, each square kilometre of the Earth's surface is hit once every million years by a meteorite heavier than 500 grammes. Most are lost in the oceans, or fall in sparsely populated regions. As a result, museums around the world receive as few as about 6 meteorites annually from witnessed falls. Others are due to acci dental finds. These have most often fallen in prehistoric times. Each of the two groups, 'falls' and 'finds', consists of material from about one thousand catalogued, individual meteorites. -
Spectrally Resolved Helium Absorption from the Extended Atmosphere of a Warm Neptune-Mass Exoplanet
Title: Spectrally resolved helium absorption from the extended atmosphere of a warm Neptune-mass exoplanet Authors: R. Allart1*, V. Bourrier1, C. Lovis1, D. Ehrenreich1, J.J. Spake2, A. Wyttenbach1,3, L. Pino1,4,5, F. Pepe1, D.K. Sing2,6, A. Lecavelier des Etangs7 Affiliations: 1Observatoire Astronomique de l’Université de Genève, Université de Genève, Chemin des Maillettes 51, 1290 Versoix, SwitZerland. 2 Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK. 3 Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands 4 Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Univ. di Padova, Vicolo dell’Osservatorio 3, Padova I-35122, Italy 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 6Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA. 7Institut d’Astrophysique de Paris, CNRS, UMR 7095, Sorbonne Université, 98 bis boulevard Arago, F-75014, Paris, France *[email protected] 1 Abstract: Stellar heating causes atmospheres of close-in exoplanets to expand and escape. These extended atmospheres are difficult to observe because their main spectral signature – neutral hydrogen at ultraviolet wavelengths – is strongly absorbed by interstellar medium. We report the detection of the near-infrared triplet of neutral helium in the transiting warm Neptune-mass exoplanet HAT-P-11b using ground-based, high-resolution observations. The helium feature is repeatable over two independent transits, with an average absorption depth of 1.08±0.05%. Interpreting absorption spectra with 3D simulations of the planet’s upper atmosphere suggests it extends beyond 5 planetary radii, with a large scale height and a helium mass loss rate ≲ 3´105 g‧s−1.