Gasoline Engines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
January/February 2010 Volume 19 Number 1 Issue
January/February 2010wVolume 19wNumber 1wIssue 115 SAMPLE You may notice that this issue of Fiero would like to see in the pages of Fiero Focus seems a bit heavier than usual. Focus, or ideas for articles you can sub- Well, starting in 2010, we have decided to mit, please let me know and the Fiero expand Fiero Focus from 16 to 20 pages. Focus Magazine Team will be happy to Doing this will allow us to print more review your ideas. We hope you enjoy pictures, add more regular features, and your newly expanded issues of Fiero provide you with more Fiero related Focus. information than any other publication. Pontiac Tribute Day will be held on Some of the new features you will Tuesday, June 1, 2010. Yes it is January, begin to see include a Fiero parts seg- but we need your help in getting the ment entitled Paul’s Product Review word out far and wide about a day NIFE authored by our Membership Director, and the Midwest Fiero Clubs (MWFC) Northern Illinois Paul Vargyas as well as the addition of have set aside to celebrate the excite- Fiero Enthusiasts, Inc. segments dedicated to Fiero events from ment that GM has provided to us since President: Jim Hallman across the nation. As 50% to 60% of our 1926 when the Pontiac name badge was 630-305-9806, [email protected] membership base is from outside of the formed. Through forums and websites Club Secretary : Larry Hall Illinois area, we decided to feed the need on the Internet, through magazines 630-231-3214, [email protected] to provide you with more details about you read and through Pontiacs you see Membership Director: Paul Vargyas Fiero activities taking place outside of around town – we need your help to get 630-983-6434, [email protected] our club’s immediate area. -
Specialty Tools Brake Tools
Specialty Tools SPECIALTY TOOLS • Includes sizes T-40, T-45, T-50. • All Torxbits are made of heat-treated alloy steel. 27740 - 3 pc. set includes T-40, T-45, T-50 sizes BRAKE TOOLS for servicing disc brakes fitting GM and Ford brake caliper Torx bolts. • 3-Stone Hone Fits Cylinders to 2" (21.4-50.8mm). • Available Individually: 26620 T-40 3/8" drive, 26630 T-45 3/8" drive, 26640 T-50 3/8" drive • Controlled pressure makes it possible to polish or hone with just one stone grit. Square ends of stones hone to the end in Lisle Brake Caliper Torx Bit Set LST 27740 step-cut and blind-end cylinders. 240 grit stones are 1 1/8" long. Flexible driver. • # 10050 Replacement Stones • Hardened alloy steel bits. Lisle Brake Cylinder Hone LST 10000 • Professional sand finish. • Sizes: T40, T45 & T50. Performance Tool 3 Pc Brake Caliper Star Bit Set • 2-Stone Hone Fits Cylinders 11/16" to 2 1/2" (17.4 - 63.5mm). WIL W1337 • Controlled pressure makes it possible to polish or hone with just one stone grit. Square ends of stones hone to the end in step-cut and blind-end cylinders. 240 grit stones are • Hangs the Disc Brake Caliper Out of the Way During Service While 1-1/8" long. Flexible driver. Keeping Tension Off the Brake Line. • # 10550 Replacement Stones • Helps prevent damage to calipers and lines when servicing brakes, Lisle Brake Cylinder Hone LST 10500 suspension, hubs and more. • Overall length of 9" for hanging the disc brake caliper out of the way while keeping tension off the brake line. -
High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology
AMR 2015 NETL/DOE Award No. DE-EE0005981 High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology June 12, 2015 Charles Mendler, ENVERA PD/PI David Yee, EATON Program Manager, PI, Supercharging Scott Brownell, EATON PI, Valvetrain This presentation does not contain any proprietary, confidential, or otherwise restricted information. ENVERA LLC Project ID Los Angeles, California ACE092 Tel. 415 381-0560 File 020408 2 Overview Timeline Barriers & Targets Vehicle-Technology Office Multi-Year Program Plan Start date1 April 11, 2013 End date2 December 31, 2017 Relevant Barriers from VT-Office Program Plan: Percent complete • Lack of effective engine controls to improve MPG Time 37% • Consumer appeal (MPG + Performance) Budget 33% Relevant Targets from VT-Office Program Plan: • Part-load brake thermal efficiency of 31% • Over 25% fuel economy improvement – SI Engines • (Future R&D: Enhanced alternative fuel capability) Budget Partners Total funding $ 2,784,127 Eaton Corporation Government $ 2,212,469 Contributing relevant advanced technology Contractor share $ 571,658 R&D as a cost-share partner Expenditure of Government funds Project Lead Year ending 12/31/14 $733,571 ENVERA LLC 1. Kick-off meeting 2. Includes no-cost time extension 3 Relevance Research and Development Focus Areas: Variable Compression Ratio (VCR) Approx. 8.5:1 to 18:1 Variable Valve Actuation (VVA) Atkinson cycle and Supercharging settings Advanced Supercharging High “launch” torque & low “stand-by” losses Systems integration Objectives 40% better mileage than V8 powered van or pickup truck without compromising performance. GMC Sierra 1500 baseline. Relevance to the VT-Office Program Plan: Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal. -
Report: Review of the Technology Costs and Effectiveness Utilized In
Review of the Technology Costs and Effectiveness Utilized in the Proposed SAFE Rule Final Report Prepared for: California Dept. of Justice Sacramento, CA Prepared by: H-D Systems Washington, DC October 2018 i Biography of Report Author – K. Gopal Duleep Mr. Duleep is President of H-D Systems, a Washington based consulting firm specializing in automotive technology, emissions and fuels. He has been involved with automotive fuel economy issues for over thirty years, for clients in the public and private sector. He has extensive experience with issues surrounding automotive technology cost analysis and is an internationally known expert on automobile fuel economy technology. Mr. Duleep has directed several studies for public and private sector clients in the US, Canada, European Union (EU), Australia and Mexico evaluating new technologies for vehicular engine and fuel combinations (including methanol, natural gas and other alternative fueled vehicles) as well as high octane fuels in the US and the EU. These studies have compared technical feasibility, economics, performance, maintenance, and air emissions impacts. In 2007, Mr. Duleep served as the lead witness on automotive technology issues for the states of California and Vermont in their defense of the California greenhouse gas emission standards for light vehicles. The court ruled in California’s favor and found Mr. Duleep’s analysis more credible than those of the plaintiffs in every single area of challenge. He has been a consultant to several National Academy of Sciences Committees in their study of light vehicle fuel economy potential to 2030 and beyond. His work on fuel economy and GHG reduction technology for light-duty vehicles has been cited extensively around the world, and he has testified on transportation technology issues for the U.S. -
INTERCOOLING-SUPERCHARGING PRINCIPLE: Part II- High-Pressure High-Performance Internal Combustion Engines with Intercooling-Supercharging
INTERCOOLING-SUPERCHARGING PRINCIPLE: Part II- High-pressure High-Performance Internal Combustion Engines With Intercooling-Supercharging Lin-Shu Wang ABSTRACT generation of industriallutility powerplants and the vehicle Since Brayton, Beau de Rochas, and Otto (1876) first propulsion engines. put forth the importance of compression before igni- tion/combustion, simple cycle internal-combustion engines have evolved into three successful types: gasoline engine, 1. INTRODUCTION diesel engine, and gas turbine. Raising compression ratio In Part 1 (Wang 1995) of this two-part paper. the leads to simultaneous increases in thermal efficiency and original formulation of the intercooling-supercharging engine specific power output. A large part of the continu- principle was introduced as a means for reducing exhaust ous improvement in performance of these three types of enthalpy loss from "simple-cycle" internal con~bustion engines has been achieved with increasing peak cycle engines. The focal point was the thermal efficiency pressure. improvement in engine systems-without requiring high Even designed at optimal peak cycle pressure, however, temperature heat exchanger. significant heat loss remains in the exhaust of internal In reviewing the simulation-study results, it was realized combustion engines. In Part 1 of this two-part paper the that the optimization procedures used were awkward or intercooling-supercharging principle was introduced as a ineffectual. In Part 2 the optimization procedure is means that reduces exhaust heat loss. In Part -
A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications
Graduate Theses, Dissertations, and Problem Reports 2019 A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications Mahdi Darzi [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Energy Systems Commons Recommended Citation Darzi, Mahdi, "A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications" (2019). Graduate Theses, Dissertations, and Problem Reports. 4019. https://researchrepository.wvu.edu/etd/4019 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Graduate Theses, Dissertations, and Problem Reports 2019 A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications Mahdi Darzi Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Energy Systems Commons A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications Mahdi Darzi Dissertation submitted to Benjamin M. -
Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine
2007-01-3623 Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine William P. Attard, Steven Konidaris, Ferenc Hamori, Elisa Toulson and Harry C. Watson University of Melbourne Copyright © 2007 SAE International ABSTRACT little information exists on small engines of this scale (~400 cm3), particularly modern four valve, pent roof This paper compares the performance, efficiency, designs. Comparatively, engines found in small emissions and combustion parameters of a prototype 3 passenger vehicles in today’s marketplace are usually two cylinder 430 cm engine which has been tested in a more than twice the cylinder capacity of the test engine. variety of normally aspirated (NA) modes with Hence, whether the previously found performance, compression ratio (CR) variations. Experiments were efficiency and emissions quantitative results due to CR completed using 98-RON pump gasoline with modes variations from larger, lower speed engines hold to small defined by alterations to the induction system, which engines of this scale is questioned. Several important included carburetion and port fuel injection (PFI). differences involving in-cylinder flow, combustion and The results from this paper provide some insight into the frictional/temperature affects may be expected as a CR effects for small NA spark ignition (SI) engines. This result of the reduced bore size and increased engine information provides future direction for the development speed. of smaller engines as engine downsizing grows in Carburetion is explored together with PFI as the majority popularity due to rising oil prices and recent carbon of these small scale engines still operate with the dioxide (CO2) emission regulations. -
To Stroke Or Not?
SUMMARY This white paper presents a mathematical analysis of the piston dynamics of three popular versions of the Mitsubishi 4G63 engine, the stock 2.0L, the 2.1L destroked version with an 88mm crankshaft in a 4G64 block, and the stroker with a 100 mm crankshaft in a 4G63 block. Where applicable, charts are included to show the differences between the versions at different RPM’s or different crank angles. The conventional wisdom that strokers make more torque but the 2.0L will rev higher is explained with hard calculations of such factors as piston side loading friction and tension on the rods. The 2.3L stroker has the same side loading friction at 7150 RPM as the 2.0L at 8000 RPM. The conventional wisdom that the vibration from removing balance shafts is less than the effect of mismatched piston weights is challenged and explained with a mathematical analysis. A 2.3L stroker has the same harmonic imbalance at 7040 RPM as the 2.0L at 8000 RPM. The effect of the stroker geometry on camshaft selection is examined and supported with charts of common aftermarket 4G63 cams. The analysis shows that stroker engines are more tolerant of aggressive cams than the stock engine. The intake velocity of a stroker at 7000 RPM is the same as a 2.0L at 8000 RPM. Peak piston velocity of a stroker at 7390 RPM is the same as a 2.0L at 8000 RPM. INTRODUCTION After spending too many hours researching how to make my 1998 AWD Talon even better than new including reading many tuner posts in the DSM forums I decided to create this document as a payback to the DSM community. -
CATS) Design, Development and Demonstration Program
BKM Report No. 990002 BKM, Inc. Date: 28 August, 1998 FinalFinal Report Report Clean Air Two-Stroke (CATS) Design, Development and Demonstration Program Submitted to: CATS Consortium Funding Partners Prepared By: BKM, Inc. 5141 Santa Fe Street San Diego, CA 92109 USA William P. Johnson Voice: (619) 270-6760 Fax: (619) 272-0337 e-mail: [email protected] Table of Contents 1. Introduction ........................................................................................................1 1.1. Scope and Purpose ........................................................................................1 1.2. Background.....................................................................................................1 1.3. Technical Approach ........................................................................................4 1.3.1. Injector Operation ........................................................................................4 2. Prototype Development .....................................................................................7 2.1. Bench Test and Development of Major Components .....................................8 2.1.1. Fuel Injection System ..................................................................................8 2.1.2. High Speed Solenoid Valve .........................................................................11 2.1.3. Lubrication System ......................................................................................13 2.1.4. Electronic Control Unit (ECU) ......................................................................13 -
Sportsman Ecotec Race Engine
n GM SPORT COMPACT Performance Build Book — 3rd Edition i CONTENTS INTRODUCTION ...............................1 CYLINDER HEAD GASKET .......................36 GENERAL INFORMATION ........................1 VALVE SPRINGS AND RETAINERS ..................36 PROGRAM HISTORY ...........................1 VALVES AND KEEPERS ........................36 WHY WE RACE .............................2 ROCKERS AND LIFTERS ........................37 LEGAL INFORMATION ..........................2 CAMSHAFTS ..............................37 ORDERING PARTS IN THIS BOOK ...................3 MECHANICAL TIMING CHAIN TENSIONER ..............38 BASE ENGINE OVERVIEW ........................3 TIMING CHAIN GUIDE ........................39 SPORTSMAN ECOTEC RACE ENGINE ................5 FLYWHEEL AND FLYWHEEL BOLTS ..................39 ADJUSTABLE CAM GEARS .......................6 FRONT HUB ..............................39 SUPERCHARGER .............................6 COOLING SYSTEM ...........................39 NITROUS OXIDE SYSTEMS .......................6 OIL PUMP (WET SUMP) .......................40 TURBOCHARGERS ............................6 OIL PUMP (DRY SUMP) .......................40 CONNECTING RODS ...........................7 INTAKE MANIFOLD ..........................41 PISTONS .................................7 EXHAUST HEADER ...........................41 INTAKE MANIFOLD ...........................7 PROFESSIONAL ECOTEC PARTS LIST .................42 HEAD GASKET AND HEAD BOLTS ...................8 ECOTEC RACE ENGINE CONTROL SYSTEMS ..........45 VALVE SPRINGS AND -
Piston Motion Basics
Piston Motion Basics The crankshaft, connecting rods, wristpins and pistons in an engine comprise the mechanism which captures a portion of the energy released by combustion and converts that energy into useful rotary motion which has the ability to do work. This page describes the characteristics of the reciprocating motion which the crankshaft and connecting rod assembly imparts to the pistons. A crankshaft contains two or more centrally-located coaxial cylindrical ("main") journals and one or more offset cylindrical crankpin ("rod") journals. The V8 crankshaft pictured in Figure 1 has five main journals and four rod journals. Figure 1 The crankshaft main journals rotate in a set of supporting bearings ("main bearings"), causing the offset rod journals to rotate in a circular path around the main journal centers, the diameter of which is twice the offset of the rod journals. The diameter of that path is the engine "stroke", which is the distance the piston moves from one end to the other end of its cylinder. The big ends of the connecting rods ("conrods") contain bearings ("rod bearings") which ride on the offset rod journals. ( For details on the operation of crankshaft bearings, Click Here; For details on crankshaft design and implementation, Click Here ) The small end of the conrod is attached to the piston by means of a floating cylindrical pin ("wristpin", or in British, "gudgeon pin"). The rotation of the big end of the conrod on the rod journal causes the small end, which is constrained by the piston to be coincident with the cylinder axis, to move the piston up and down the cylinder axis. -
Advances in the Design of Two-Stroke, High Speed, Compression Ignition Engines
Chapter 5 Advances in The Design of Two-Stroke, High Speed, Compression Ignition Engines Enrico Mattarelli, Giuseppe Cantore and Carlo Alberto Rinaldini Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54204 1. Introduction The most difficult challenge for modern 4-Stroke high speed Diesel engines is the limitation of pollutant emissions without penalizing performance, overall dimensions and production costs, the last ones being already higher than those of the correspondent S.I. engines. An interesting concept in order to meet the conflicting requirements mentioned above is the 2-Stroke cycle combined to Compression Ignition. Such a concept is widely applied to large bore engines, on steady or naval power-plants, where the advantages versus the 4-Stroke cycle in terms of power density and fuel conversion efficiency (in some cases higher than 50% [1]) are well known. In fact, the double cycle frequency allows the de‐ signer to either downsize (i.e. reduce the displacement, for a given power target) or “down-speed” (i.e. reduce engine speed, for a given power target) the 2-stroke engine. Furthermore, mechanical efficiency can be strongly improved, for 2 reasons: i) the gas ex‐ change process can be completed with piston controlled ports, without the losses associ‐ ated to a valve-train; ii) the mechanical power lost in one cycle is about halved, in comparison to a 4-Stroke engine of same design and size, while the indicated power can be the same: as a result, the weight of mechanical losses is lower. Unfortunately, the 2-Stroke technology used on steady or naval power-plants cannot be sim‐ ply “scaled” on small bore engines, for a number of reasons.