High Efficiency and Low Emissions from a Port-Injected Engine with Neat Alcohol Fuels
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Method of Fuel Testing in a CFR Engine
Scholars' Mine Masters Theses Student Theses and Dissertations 1960 A method of fuel testing in a CFR engine George R. Baumgartner Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Mechanical Engineering Commons Department: Recommended Citation Baumgartner, George R., "A method of fuel testing in a CFR engine" (1960). Masters Theses. 5575. https://scholarsmine.mst.edu/masters_theses/5575 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. A METHOD OF FUEL TESTING IN A CFR ENGINE BY GEORGE R. BAUMGARTNER ----~--- A THESIS submitted to the faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI in partial fulfillment of the work required for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING Rolla, Missouri 1960 _____ .. ____ .. ii ACKNOWLEDGEMENT The author would like to express his appreciation to Dr. A. J• Miles, Chairman of tho Mechanical Engineering Department, and Professor G. L. Scofield, Mechanical Engineering Department, for their guidance and interest in this investigation. Thanks are also dua Mr. Douglas Kline for his constant assistance while conducting the tests. iii TABLE OF CONTENTS Acknowledgement •••••••••••••••••••••••••••••••••••••••••• ii Contents•••••••••••••••••••••••••••••••••••••o•••••••••• -
Diesel Engine Starting Systems Are As Follows: a Diesel Engine Needs to Rotate Between 150 and 250 Rpm
chapter 7 DIESEL ENGINE STARTING SYSTEMS LEARNING OBJECTIVES KEY TERMS After reading this chapter, the student should Armature 220 Hold in 240 be able to: Field coil 220 Starter interlock 234 1. Identify all main components of a diesel engine Brushes 220 Starter relay 225 starting system Commutator 223 Disconnect switch 237 2. Describe the similarities and differences Pull in 240 between air, hydraulic, and electric starting systems 3. Identify all main components of an electric starter motor assembly 4. Describe how electrical current flows through an electric starter motor 5. Explain the purpose of starting systems interlocks 6. Identify the main components of a pneumatic starting system 7. Identify the main components of a hydraulic starting system 8. Describe a step-by-step diagnostic procedure for a slow cranking problem 9. Describe a step-by-step diagnostic procedure for a no crank problem 10. Explain how to test for excessive voltage drop in a starter circuit 216 M07_HEAR3623_01_SE_C07.indd 216 07/01/15 8:26 PM INTRODUCTION able to get the job done. Many large diesel engines will use a 24V starting system for even greater cranking power. ● SEE FIGURE 7–2 for a typical arrangement of a heavy-duty electric SAFETY FIRST Some specific safety concerns related to starter on a diesel engine. diesel engine starting systems are as follows: A diesel engine needs to rotate between 150 and 250 rpm ■ Battery explosion risk to start. The purpose of the starting system is to provide the torque needed to achieve the necessary minimum cranking ■ Burns from high current flow through battery cables speed. -
Calculating Compression Ratio/Engine Displacement Practice Small Power and Equipment Secti
Calculating Compression Ratio/Engine Displacement Practice Small Power and Equipment Section 1 – Compression Ratio Calculate the compression ratio for a small engine given the following information (SHOW ALL WORK!!!): Bore of the cylinder (B) = 105 mm Stroke of the engine (S) = 90 mm Compressed Gasket Thickness (Gt) = 3.5 mm Bore of the gasket (Gb) = 93.5 mm Volume of the combustion chamber in the cylinder head (Vcc) = 50 ml Gross Piston Head Volume (Vphg) = 80 ml Piston Depression (Pd) = 25 mm Item Symbol Formula Formula Result Applied Depression Vdp B x B x Pd x F Volume Net Piston Vph Vphg - Vdp Head Volume Gasket Volume Vg Gb x Gb x Gt x F TDC Volume Vtdc Vcc + Vg + Vph Swept Volum Vsw B x B x S x F e BDC Volume Vbdc Vtdc + Vsw Compression CR Vbdc / Vtdc Ratio Calculating Compression Ratio/Engine Displacement Practice Small Power and Equipment Bore of the cylinder (B) = 110 mm Stroke of the engine (S) = 75 mm Compressed Gasket Thickness (Gt) = 1.5 mm Bore of the gasket (Gb) = 80.5 mm Volume of the combustion chamber in the cylinder head (Vcc) = 50 ml Gross Piston Head Volume (Vphg) = 88 ml Piston Depression (Pd) = 15 mm Item Symbol Formula Formula Result Applied Depression Vdp B x B x Pd x F Volume Net Piston Vph Vphg - Vdp Head Volume Gasket Volume Vg Gb x Gb x Gt x F TDC Volume Vtdc Vcc + Vg + Vph Swept Volum Vsw B x B x S x F e BDC Volume Vbdc Vtdc + Vsw Compression CR Vbdc / Vtdc Ratio Section 2 – Engine Displacement (5 points each = 10 points) Calculate the engine displacement given the following information (SHOW ALL WORK!!!). -
High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology
AMR 2015 NETL/DOE Award No. DE-EE0005981 High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology June 12, 2015 Charles Mendler, ENVERA PD/PI David Yee, EATON Program Manager, PI, Supercharging Scott Brownell, EATON PI, Valvetrain This presentation does not contain any proprietary, confidential, or otherwise restricted information. ENVERA LLC Project ID Los Angeles, California ACE092 Tel. 415 381-0560 File 020408 2 Overview Timeline Barriers & Targets Vehicle-Technology Office Multi-Year Program Plan Start date1 April 11, 2013 End date2 December 31, 2017 Relevant Barriers from VT-Office Program Plan: Percent complete • Lack of effective engine controls to improve MPG Time 37% • Consumer appeal (MPG + Performance) Budget 33% Relevant Targets from VT-Office Program Plan: • Part-load brake thermal efficiency of 31% • Over 25% fuel economy improvement – SI Engines • (Future R&D: Enhanced alternative fuel capability) Budget Partners Total funding $ 2,784,127 Eaton Corporation Government $ 2,212,469 Contributing relevant advanced technology Contractor share $ 571,658 R&D as a cost-share partner Expenditure of Government funds Project Lead Year ending 12/31/14 $733,571 ENVERA LLC 1. Kick-off meeting 2. Includes no-cost time extension 3 Relevance Research and Development Focus Areas: Variable Compression Ratio (VCR) Approx. 8.5:1 to 18:1 Variable Valve Actuation (VVA) Atkinson cycle and Supercharging settings Advanced Supercharging High “launch” torque & low “stand-by” losses Systems integration Objectives 40% better mileage than V8 powered van or pickup truck without compromising performance. GMC Sierra 1500 baseline. Relevance to the VT-Office Program Plan: Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal. -
Design and Assembly of a Throttle for an HCCI Engine
Design and assembly of a throttle for an HCCI engine ÀLEX POYO MUÑOZ Master of Science Thesis Stockholm, Sweden 2009 Design and assembly of a throttle for an HCCI engine Àlex Poyo Muñoz Master of Science Thesis MMK 2009:63 MFM129 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Examensarbete MMK 2009:63 MFM129 Konstruktion och montering av ett gasspjäll för en HCCI-motor. Àlex Poyo Muñoz Godkänt Examinator Handledare 2009-Sept-18 Hans-Erik Ångström Hans-Erik Ångström Uppdragsgivare Kontaktperson KTH Hans-Erik Ångström Sammanfattning Denna rapport handlar om införandet av ett gasspjäll i den HCCI motor som utvecklas på Kungliga Tekniska Högskolan (KTH) i Stockholm. Detta gasspjäll styr effekten och arbetssättet i motorn. Med en gasspjäll är det möjligt att byta från gnistantändning till HCCI-läge. Under projektet har många andra områden förbättrats, till exempel luft- och oljepump. För att dra slutsatser är det nödvändigt att analysera några av motorns data som insamlats under utvecklingen, såsom cylindertryck, insprutningsdata och tändläge. Man analyserade data under olika tidpunkter av motorns utveckling, med olika komponenter, för att uppnå olika prestanda i varje enskilt fall. För att köra motorn i HCCI-läge är det nödvändigt att ha ett lambda-värde mellan 1,5 och 2. Även om resultaten visar att det är bättre att köra i "Pump + Throttle + Intake" kommer pumpen överbelastas på grund av ett extra tryckfall. Av detta skäl kommer är det nödvändigt att arbeta i "Throttle + Pump + Intake" i framtiden. Eftersom det är nödvändigt att minska insprutningstiden, av detta skäl, är det också viktigt att öka luftflödet. -
INTERCOOLING-SUPERCHARGING PRINCIPLE: Part II- High-Pressure High-Performance Internal Combustion Engines with Intercooling-Supercharging
INTERCOOLING-SUPERCHARGING PRINCIPLE: Part II- High-pressure High-Performance Internal Combustion Engines With Intercooling-Supercharging Lin-Shu Wang ABSTRACT generation of industriallutility powerplants and the vehicle Since Brayton, Beau de Rochas, and Otto (1876) first propulsion engines. put forth the importance of compression before igni- tion/combustion, simple cycle internal-combustion engines have evolved into three successful types: gasoline engine, 1. INTRODUCTION diesel engine, and gas turbine. Raising compression ratio In Part 1 (Wang 1995) of this two-part paper. the leads to simultaneous increases in thermal efficiency and original formulation of the intercooling-supercharging engine specific power output. A large part of the continu- principle was introduced as a means for reducing exhaust ous improvement in performance of these three types of enthalpy loss from "simple-cycle" internal con~bustion engines has been achieved with increasing peak cycle engines. The focal point was the thermal efficiency pressure. improvement in engine systems-without requiring high Even designed at optimal peak cycle pressure, however, temperature heat exchanger. significant heat loss remains in the exhaust of internal In reviewing the simulation-study results, it was realized combustion engines. In Part 1 of this two-part paper the that the optimization procedures used were awkward or intercooling-supercharging principle was introduced as a ineffectual. In Part 2 the optimization procedure is means that reduces exhaust heat loss. In Part -
A Study of a Variable Compression Ratio and Displacement Mechanism Using Design of Experiments Methodology
A Study of a Variable Compression Ratio and Displacement Mechanism Using Design of Experiments Methodology Shugang Jiang, Michael H. Smith, Masanobu Takekoshi Abstract Due to the ever increasing requirements for engine performance, variable compression ratio and displacement are drawing great interest, since these features provide further degrees of freedom to optimize engine performance for various operating conditions. Different types of mechanisms are used to realize variable compression ratio and displacement. These mechanisms usually involve relatively complicated mechanical design compared with conventional engines. While the flexibility in these mechanisms introduces additional engine design and control possibilities, it also increases the challenges for the development and optimization, since how the geometry of the mechanisms affects the engine performance is not straightforward, and building prototype engines of various mechanical design parameters takes a long time with high cost. This paper presents a study of a multiple-link mechanism that realizes variable compression ratio and displacement by varying the piston motion, specifically the Top Dead Center (TDC) and Bottom Dead Center (BDC) positions relative to the crankshaft. The study focuses on obtaining desirable behavior for both compression ratio and displacement. It is determined a major requirement for the design of the mechanism is that when the control action changes monotonically over its whole range, the compression ratio and displacement should change in opposite directions monotonically. This paper gives an approach on how to achieve multiple-link mechanism designs that fulfill this requirement. First, a condition is obtained on how the TDC and BDC positions should change with respect to the control action to fulfill the design requirement. -
A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications
Graduate Theses, Dissertations, and Problem Reports 2019 A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications Mahdi Darzi [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Energy Systems Commons Recommended Citation Darzi, Mahdi, "A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications" (2019). Graduate Theses, Dissertations, and Problem Reports. 4019. https://researchrepository.wvu.edu/etd/4019 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Graduate Theses, Dissertations, and Problem Reports 2019 A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications Mahdi Darzi Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Energy Systems Commons A Framework for Energy Optimization of Small, Two-Stroke, Natural Gas Engines for Combined Heat and Power Applications Mahdi Darzi Dissertation submitted to Benjamin M. -
Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine
2007-01-3623 Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine William P. Attard, Steven Konidaris, Ferenc Hamori, Elisa Toulson and Harry C. Watson University of Melbourne Copyright © 2007 SAE International ABSTRACT little information exists on small engines of this scale (~400 cm3), particularly modern four valve, pent roof This paper compares the performance, efficiency, designs. Comparatively, engines found in small emissions and combustion parameters of a prototype 3 passenger vehicles in today’s marketplace are usually two cylinder 430 cm engine which has been tested in a more than twice the cylinder capacity of the test engine. variety of normally aspirated (NA) modes with Hence, whether the previously found performance, compression ratio (CR) variations. Experiments were efficiency and emissions quantitative results due to CR completed using 98-RON pump gasoline with modes variations from larger, lower speed engines hold to small defined by alterations to the induction system, which engines of this scale is questioned. Several important included carburetion and port fuel injection (PFI). differences involving in-cylinder flow, combustion and The results from this paper provide some insight into the frictional/temperature affects may be expected as a CR effects for small NA spark ignition (SI) engines. This result of the reduced bore size and increased engine information provides future direction for the development speed. of smaller engines as engine downsizing grows in Carburetion is explored together with PFI as the majority popularity due to rising oil prices and recent carbon of these small scale engines still operate with the dioxide (CO2) emission regulations. -
The Nature of Heat Release in Gasoline PPCI Engines
The Nature of Heat Release in Gasoline PPCI Engines The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Sang, Wenwen, Wai K. Cheng, and Amir Maria. “The Nature of Heat Release in Gasoline PPCI Engines.” SAE Technical Paper Series (April 1, 2014). As Published http://dx.doi.org/10.4271/2014-01-1295 Publisher SAE International Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/98045 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ 2014-01-1295 The Nature of Heat Release in Gasoline PPCI Engines Author, co-author (Do NOT enter this information. It will be pulled from participant tab in MyTechZone) Affiliation (Do NOT enter this information. It will be pulled from participant tab in MyTechZone) Copyright © 2014 SAE International Abstract such, the combustion phenomena studied here are different from the PPCI work using diesel fuel [5, 6], for which the vaporization and ignition delays are very different; from using The heat release characteristics in terms of the maximum single injection [7], for which the emphasis is not on putting a pressure rise rate (MPRR) and combustion phasing in a pilot fuel over a background nearly homogeneous charge; and partially premixed compression ignition (PPCI) engine are from using dual fuels such as the reactivity controlled studied using a calibration gasoline. Early port fuel injection compression ignition (RCCI) concept [8-10], for which the provides a nearly homogeneous charge, into which a reactivity of the local charge is controlled by using two fuels of secondary fuel pulse is added via direct injection (DI) to different reactivity. -
High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement
High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement PI: John B. Heywood Sloan Automotive Laboratory Massachusetts Institute of Technology June 19, 2014 Project ID FT016 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Barriers • Project start date: 9/01/2011 • Barriers addressed • Project end date: 1/15/2015 – Peak thermal efficiency (LDV) (with no-cost extension) > 45% • Percent complete: 77% – Peak fuel efficiency improvement (LDV) > 25% – Emission control fuel penalty Budget < 1% • Total project funding:$1,203,122 – DOE share: $962,497 Partners – Contractor share: $240,625 • Cummins Inc • Funding received in FY13: • Project lead: MIT $168,748 • Funding for FY14: $167,337 2 Relevance/Objectives • Objectives: – To explore and assess the potential for higher efficiency gasoline engines through use of non-petroleum fuel components that remove existing constraints on such engines while meeting future emissions standards – Investigate the benefits of knock-free SI engines through the use of alcohol blending with gasoline – Substantially improve efficiency through raising the compression ratio, increasing boost (in turbocharged engines), and engine downsizing, enabled by knock-resisting properties of alcohols • FY13-14 goals – Experiments and simulations to demonstrate thermal efficiency improvement of > 25% over drive cycle for LDV – Determine means of decreasing use of high octane fuel 3 Approach/Strategy • Approach: Ethanol’s unique properties -
To Stroke Or Not?
SUMMARY This white paper presents a mathematical analysis of the piston dynamics of three popular versions of the Mitsubishi 4G63 engine, the stock 2.0L, the 2.1L destroked version with an 88mm crankshaft in a 4G64 block, and the stroker with a 100 mm crankshaft in a 4G63 block. Where applicable, charts are included to show the differences between the versions at different RPM’s or different crank angles. The conventional wisdom that strokers make more torque but the 2.0L will rev higher is explained with hard calculations of such factors as piston side loading friction and tension on the rods. The 2.3L stroker has the same side loading friction at 7150 RPM as the 2.0L at 8000 RPM. The conventional wisdom that the vibration from removing balance shafts is less than the effect of mismatched piston weights is challenged and explained with a mathematical analysis. A 2.3L stroker has the same harmonic imbalance at 7040 RPM as the 2.0L at 8000 RPM. The effect of the stroker geometry on camshaft selection is examined and supported with charts of common aftermarket 4G63 cams. The analysis shows that stroker engines are more tolerant of aggressive cams than the stock engine. The intake velocity of a stroker at 7000 RPM is the same as a 2.0L at 8000 RPM. Peak piston velocity of a stroker at 7390 RPM is the same as a 2.0L at 8000 RPM. INTRODUCTION After spending too many hours researching how to make my 1998 AWD Talon even better than new including reading many tuner posts in the DSM forums I decided to create this document as a payback to the DSM community.