James L. Gowans 1924–2020

Total Page:16

File Type:pdf, Size:1020Kb

James L. Gowans 1924–2020 obituary James L. Gowans 1924–2020 rofessor Sir James Gowans, CBE FRS, from the blood. Rare cells that specifically who died on 1 April 2020, was one of recognize the antigen are sequestered Pthe most distinguished members of a from the circulation and replicate and generation of British immunologists who, differentiate into clones of effector cells between the 1950s and 1970s, established and then memory cells that enter the critical groundwork for modern cellular recirculating pool to form the basis of the immunology. With a series of experiments anamnestic immune response. remarkable for their significance, The importance of Gowans’ work was clarity and technical elegance, Gowans’ quickly recognized. In 1962, at age 39, he achievement was to identify the population became the Royal Society’s Henry Dale of hitherto obscure small lymphocytes Research Professor. In 1963 he was elected as the immunologically competent cells FRS, and the Medical Research Council corresponding to the immunological established the Cellular Immunology Unit repertoire required by Macfarlane Burnet’s for him in the Dunn School, thus securing Clonal Selection Theory. his research program, which attracted James Learmonth Gowans was born talented younger scientists and distinguished in Sheffield in 1924. His family moved to Professor Sir James Gowans, Llanberis Pass, sabbatical visitors who brought the lessons South London when Gowans was 4, where Wales, 23 June 1970. Credit: Simon V. Hunt and from studying purified cell types in vivo to he attended Whitgift School in Croydon. the late Bent Rolstad a number of fields, including immunology, In 1940, after three rejections, he was stem cell biology and cancer. finally accepted into King’s College London In 1977, Gowans left his laboratory Medical School. His father was a talented small lymphocytes was shown by Gowans to become the head of the UK’s Medical medical laboratory technician who endowed to be the embodiment of the Burnetian Research Council (MRC), successfully Gowans with respect for laboratory repertoire. In elegant transfer experiments challenging government policy that applied science, which was enhanced by attending using genetic and chromosome markers, purchaser–provider principles to medical the famous Friday Evening Discourses as well as radioactive labels detected research. Under Gowans, the MRC formally at the Royal Institution, including one by autoradiography, he documented in supported in vitro fertilization despite from Howard Florey on penicillin. After lymph nodes the rapid antigen-dependent controversy, leading to its general acceptance graduating and briefly practicing medicine, stimulation of a fraction of small in law and clinical practice, and helped to Gowans was accepted to undertake a DPhil lymphocytes to become dividing cells and lead UK research and public understanding on antibiotics with Florey at the Sir William showed the transient depletion of that through the dawning AIDS crisis. The Human Dunn School of Pathology in Oxford. reactive specificity from the recirculating Frontiers Science Program was inaugurated Staying on for post-doctoral work, Florey pool. The recirculating pool of small in 1987 in a major Japanese initiative, and, suggested Gowans devote his attention to lymphocytes in adult immunized rats in 1989, Gowans was appointed the first the small lymphocyte problem. could transfer antigen-specific memory to secretary general with offices in Strasbourg. In the 1950s, there was no consensus immunologically inert recipients. Likewise, Gowans continued to hold many about the nature of small lymphocytes. thoracic-duct small lymphocytes from trusteeships and adviserships after It was generally believed that they were donors made immunologically tolerant retiring to his home in Oxford and to his short-lived cells generated in lymph nodes of specific antigens reflected the state of cherished library of Darwiniana in 1995. He and sent out through efferent lymphatics to specific immunological tolerance by failing perpetually sought fresh contacts with young fulfil some unknown function and promptly to transfer specific immune competence scientists and maintained conversations with die. Gowans aimed to understand their life only against those antigens to irradiated long-standing colleagues and friends to the history by devising physiological approaches recipients. Gowans was greatly attracted by end. Among other honors, Gowans received to define their numbers and traffic in vivo the conceptual unity between the Burnetian the Royal Medal of the Royal Society in 1976 and, ultimately, their function. repertoire and the pool of small lymphocytes. and shared the Wolf Prize in Medicine in Gowans’ experiments, published from Burnet had proposed and Gowans had 1980 with Leo Sachs and César Milstein. 1957 onwards, unequivocally demonstrated demonstrated that single-antigen-specific He was knighted in 1982. He is survived by that small lymphocytes belonged to a small lymphocytes were the units of in vivo his wife, Moyra, a son and two daughters. ❐ long-lived pool of non-dividing cells, immune responsiveness and, therefore, must continuously recirculating daily from blood possess clonally committed antigen receptors Jonathan C. Howard 1 ✉ and to efferent lymph through morphologically as detectors of self and non-self. Irving L. Weissman 2 specialized endothelial cells of the These beautifully conceived and executed 1Instituto Gulbenkian de Ciência, Oeiras, Portugal. post-capillary venules in the lymph node experiments, in vivo physiological science at 2Stanford Institute of Stem Cell Biology and cortex, and returning to the venous its very best, revealed the essential cellular Regenerative Medicine, Stanford Medicine, circulation via efferent lymphatics and the basis of the immune response, which is still Stanford University, Stanford, CA, USA. thoracic duct. Following the publication how we understand the immune response ✉e-mail: [email protected] of the Clonal Selection Theory in 1959, in today. Antigen is presented in regional which Macfarlane Burnet cited Gowans’ lymph nodes for inspection by a continuous Published online: 26 May 2020 1957 paper, the recirculating pool of stream of small lymphocytes recirculating https://doi.org/10.1038/s41590-020-0696-3 NATURE IMMUNOLOGY | VOL 21 | JUNE 2020 | 595 | www.nature.com/natureimmunology 595.
Recommended publications
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Fleming Vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University
    The Histories Volume 2 | Issue 1 Article 3 Fleming vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University Follow this and additional works at: https://digitalcommons.lasalle.edu/the_histories Part of the History Commons Recommended Citation Hess, Kristin () "Fleming vs. Florey: It All Comes Down to the Mold," The Histories: Vol. 2 : Iss. 1 , Article 3. Available at: https://digitalcommons.lasalle.edu/the_histories/vol2/iss1/3 This Paper is brought to you for free and open access by the Scholarship at La Salle University Digital Commons. It has been accepted for inclusion in The iH stories by an authorized editor of La Salle University Digital Commons. For more information, please contact [email protected]. The Histories, Vol 2, No. 1 Page 3 Fleming vs. Florey: It All Comes Down to the Mold Kristen Hess Without penicillin, the world as it is known today would not exist. Simple infections, earaches, menial operations, and diseases, like syphilis and pneumonia, would possibly all end fatally, shortening the life expectancy of the population, affecting everything from family-size and marriage to retirement plans and insurance policies. So how did this “wonder drug” come into existence and who is behind the development of penicillin? The majority of the population has heard the “Eureka!” story of Alexander Fleming and his famous petri dish with the unusual mold growth, Penicillium notatum. Very few realize that there are not only different variations of the Fleming discovery but that there are also other people who were vitally important to the development of penicillin as an effective drug.
    [Show full text]
  • Howard-Florey-Maker
    _ ....II""lle,st'Ol)' of "Ie lin ~t tlt:Mc 'c y~ successfullY to rmat. pea WIth ~ IJ&. iBfoctiOus'diseases - begins-with &bit Qf IuC AI~ PI tIlil1g, a .S 9itisb ~lientlst.notlcEid In t$!B ftJal mould.,ad l:!"eveAted growth of ~ qerms {bacterial 1., lils ~ the ~In plot 0 me story 1'I0J0IYl1l$ Sr ~pvay Qf penidll 10 ~ years la1er by arl·Aus\ 1;1 Sdetl bam t'!undred s R Y~'89D this year, H'owar~ I: fIotey and h d ~ team's ~ systttma!JQ, detalla wotk "'~ Jl 11_ fJTIed petlicilin from an 53 i[l~1Jlg o~ , nto-a life saver. ' Emma ,au fY 50 IJSOO to tm e teliladll', at t'l'wiMlstral r:Ja • U verslty's JOOf\ CtJrti[l Scbool of Moolaal Rasecll'eh (HQw FJor~ ptayed 8 c roI'a II'l the-est)bllshmflnt at itI& School god ~!lr'S1ty t In h 11M), TIll> !/O"'"_....... ot l!1te.dJ1l1II d1Haie'&."4ICh .. po.~a~1I ~ Erl'1lil"1a's.lile w~!i8Vedby penicillin irllll IIlIaod .. 1111 IIihi' 1111\1:_ tva ~ntil>iol~; 8uI1hft;e phDl Cl(a pauilftl n Get'rJ1art refiJg g mp. tt WQf1d War II. ,1<42 -"ow ho"; b.d thlnP COIH~. Pft_ 1 lind Imagine hO\ she fett any years later. 2 ~ '1M .III~ !It II YOUl1'llll1J1 willi _I J."..,tllltw...... OlIl1dltlicln ,..,_by the tt.iituI t cooid~ blITlping iHlo mtJY wh fa lIay ..fI...boiIJg IIlven penldll" {JItIiJID 3" _ hIld ~ woriled- the man who made tile shown .~"in.IH",p"'-.ntIIIf tbll JIIII!Ilt dllly g~pIy mpooicillin ~bte.
    [Show full text]
  • Sir Howard Florey - Biography
    Sir Howard Florey - Biography Sir Howard Florey – Biography The Nobel Prize in Physiology or Medicine Sir Howard Walter Florey was 1945 born on September 24, 1898, at Presentation Speech Adelaide, South Australia, the son Educational of Joseph and Bertha Mary Florey. His early education was at St. Sir Alexander Fleming Peter's Collegiate School, Adelaide, Biography Nobel Lecture following which he went on to Banquet Speech Adelaide University where he Documentary graduated M.B., B.S. in 1921. He Other Resources was awarded a Rhodes Scholarship to Magdalen College, Oxford, Ernst B. Chain leading to the degrees of B.Sc. and Biography M.A. (1924). He then went to Nobel Lecture Cambridge as a John Lucas Walker Banquet Speech Student. In 1925 he visited the United States on a Rockefeller Other Resources Travelling Fellowship for a year, returning in 1926 to a Fellowship at Gonville and Caius College, Cambridge, receiving Sir Howard Florey here his Ph.D. in 1927. He also held at this time the Freedom Biography Research Fellowship at the London Hospital. In 1927 he was Nobel Lecture appointed Huddersfield Lecturer in Special Pathology at Banquet Speech Cambridge. In 1931 he succeeded to the Joseph Hunter Chair of Pathology at the University of Sheffield. 1944 1946 Leaving Sheffield in 1935 he became Professor of Pathology and a Fellow of Lincoln College, Oxford. He was made an The 1945 Prize in: Physics Honorary Fellow of Gonville and Caius College, Cambridge in Chemistry 1946 and an Honorary Fellow of Magdalen College, Oxford in Physiology or Medicine 1952. In 1962 he was made Provost of The Queen's College, Literature Oxford.
    [Show full text]
  • Penicillin: World War II Infections and Howard Florey
    In Focus Penicillin: World War II infections and Howard Florey The results were dramatic – the control mice rapidly succumbed, while all of the treated mice survived. These results attracted great interest from the scientific and military communities because, if Ian Gust replicated in humans, the drug had the potential to influence the Department of Microbiology and outcome of WWII. Immunology University of Melbourne It took Florey and 16 colleagues several months to produce suffi- Parkville, Vic. 3010, Australia Tel: +61 3 8344 3963 cient material to treat a handful of patients. The team worked under Fax: +61 3 8344 6552 fi fi Email: [email protected] dif cult circumstances with a lack of funding and equipment; at rst penicillin was made using old dairy equipment. Hospital bedpans were later used to grow the mould and the liquid containing fi Howard Florey is celebrated for his major contributions to penicillin drained from beneath the growing mould and ltered the large-scale production of the fungal product, penicillin, through parachute silk. during World War II (WWII), leading to life-saving outcomes The first patient they treated was a policeman, in whom an infected for many more than those with war wounds. scratch had developed into a life threatening infection. He was given Howard Florey was born in South Australia in 1898. After studying penicillin, and within a day began to recover. Unfortunately Florey’s medicine at the University of Adelaide he was awarded a Rhodes team only had sufficient drug for 5 days of treatment and when Scholarship to work in Oxford under Sir Charles Sherrington.
    [Show full text]
  • Illustrations from the Wellcome Institute Library the Chain Papers*
    Medical History, 1983, 27:434-435 ILLUSTRATIONS FROM THE WELLCOME INSTITUTE LIBRARY THE CHAIN PAPERS* THE three men who shared the Nobel Prize in October 1945 for their work on penicillin could scarcely have differed more in their backgrounds and characters. Fleming was sixty-four years old by then; the son of a Scottish farmer, he was a retiring man, not given to conversation. By contrast, Florey, then aged forty-seven, was the son of a wealthy Australian boot and shoe manufacturer; aggressively ambitious, his achievements and intellect were later to secure him the Presidency of the Royal Society. Then there was Chain - a mere thirty-nine years old - a Jewish refugee of Russian origin, who still had major work on penicillin ahead of him; his ambition was mixed with an independence and volubility that was to lead him into conflict with the scientific/medical establishment. Fleming has been the subject of many biographies, mostly hagiographical. Florey's role in the penicillin story was recently reassessed in Gwyn Macfarlane's excellent Howard Florey. The making ofa great scientist (Oxford University Press, 1979). Sir Ernst Boris Chain died in 1979, and his biography is being written by Ronald W. Clark. This, together with future research on Chain's papers, will enable a fuller assessment to be made of the role and character of the youngest of the three scientists. The Chain papers, recently given by Lady Chain to the Contemporary Medical Archives Centre, form an extensive collection of some sixty-nine boxes, comprising material from Chain's personal and professional life.
    [Show full text]
  • Speaker's Manuscript
    Nobel Prize Lessons 2018 Speaker’s manuscript – the 2018 Medicine Prize The Nobel Prize in Physiology or Medicine • The Nobel Prize in Physiology or Medicine is one of the five prizes founded by Alfred Nobel and awarded on December 10 every year. Before Alfred Nobel died on December 10, 1896, he wrote in his will that the largest part of his fortune should be placed in a fund. The yearly interest on this fund would pay for a prize given to “those who, during the preceding year, shall have conferred the greatest benefit to humankind.” Who is rewarded with the Medicine Prize? • The Nobel Prize in Physiology or Medicine is thus awarded to people who have either made a discovery about how organisms work or have helped find a cure for a disease. • This is May-Britt Moser, 2014 Nobel Laureate in Medicine. In 2005 she and Edvard Moser discovered a type of cell in the brain that is important for determining one's position. They also found that those cells cooperate with different nerve cells in the brain that help us to navigate. You can say that the Laureates discovered and explained a kind of GPS system in the brain. • Other Medicine Laureates include: • Francis Crick, James Watson and Maurice Wilkins, who received the 1962 Prize for their discoveries and descriptions about the structure of DNA molecules. • Alexander Fleming, Ernst Chain and Howard Florey, who received the 1945 Prize for the discovery of penicillin and its curative effects on bacterial diseases. Medicine Prize 2018 • The 2018 Nobel Prize is about a new way of treating cancer.
    [Show full text]
  • All Living Organisms Are Organised Into Large Groups Called Kingdoms. Fungi Were Orig
    What are fungi and how important are they? All living organisms are organised into large groups called Kingdoms. Fungi were originally placed in the Plant Kingdom then, scientists learned that fungi were more closely related to animals than to plants. Then scientists decided that fungi were not sufficiently similar to animals to be placed in the animal kingdom and so today fungi have their own Kingdom – the Fungal Kingdom. There are thought to be around up to 3.8 million species of fungi, of which only 120,000 have been named. The fungal kingdom is largely hidden from our view and we usually only see the “fruit” of a fungus. The living body of a fungus is called a mycelium and is made up of a branching network of filaments known as hyphae. Fungal mycelia are usually hidden in a food source like wood and we only know they are there when they develop mushrooms or other fruiting bodies. Some fungi only produce microscopic fruiting bodies and we never notice them. Fungi feed by absorbing nutrients from the organic material that they live in. They digest their food before they absorb it by secreting acids and enzymes. Different fungi have evolved to live on various types of organic matter, some live on plants (Magneportha grisea – the rice blast fungus), some on animals (Trichophyton rubrum - the athlete’s foot fungus) and some even live on insects (Cordyceps australis). Helpful fungi Most of us use fungi every day without even knowing it. We eat mushrooms and Quorn, but we also prepare many other foods using fungi.
    [Show full text]
  • EDITORIAL Year's Comments for 2005
    EDITORIAL INTERNATIONAL MICROBIOLOGY (2005) 8:231-234 Year’s comments for 2005 Ricardo Guerrero Editor-in-Chief, INT. MICROBIOL. E-mail: [email protected] For several years, new sequences of microbial genomes have dogma. Conclusive evidence for a pathogenic role of H. pylori been the highlights of microbiology and a major topic of our came from trials showing that elimination of the bacterium dra- yearly comments. But sequencing has become “routine” and, at matically changed the clinical course of ulcer. This finding was the time this editorial is being written, the complete sequences confirmed by Marshall, who swallowed a broth of H. pylori and of 284 prokaryotic genomes and 40 eukaryotic genomes have soon thereafter developed gastritis, the prelude to ulcers. He been published. This allows us to focus our comments on those recovered from the disease after treatment with antibiotics. events from 2005 that have attracted the attention of both (Warren could not join him in the experiment because he already researchers and the media. These include the Nobel Prize in suffered from peptic ulcer.) Subsequently, the two investigators Physiology or Medicine, which was awarded for the discovery successfully treated other people suffering from ulcers, in the of the role of Helicobacter pylori as the causal agent of gastric process clearly identifying the bacterium as the culprit. In 1994, ulcers; the worldwide effort to fight malaria, a disease that main- H. pylori was the first bacterium, and the second infectious ly affects developing countries; and the global spread of avian organism after hepatitis B virus, to be classified as a class I car- influenza, which is becoming a panzootic.
    [Show full text]
  • Timeline of Immunology
    TIMELINE OF IMMUNOLOGY 1549 – The earliest account of inoculation of smallpox (variolation) occurs in Wan Quan's (1499–1582) 1718 – Smallpox inoculation in Ottoman Empire realized by West. Lady Mary Wortley Montagu, the wife of the British ambassador to Constantinople, observed the positive effects of variolation on the native population and had the technique performed on her own children. 1796 – First demonstration of smallpox vaccination (Edward Jenner) 1837 – Description of the role of microbes in putrefaction and fermentation (Theodore Schwann) 1838 – Confirmation of the role of yeast in fermentation of sugar to alcohol (Charles Cagniard-Latour) 1840 – Proposal of the germ theory of disease (Jakob Henle) 1850 – Demonstration of the contagious nature of puerperal fever (childbed fever) (Ignaz Semmelweis) 1857–1870 – Confirmation of the role of microbes in fermentation (Louis Pasteur) 1862 – Phagocytosis (Ernst Haeckel) 1867 – Aseptic practice in surgery using carbolic acid (Joseph Lister) 1876 – Demonstration that microbes can cause disease-anthrax (Robert Koch) 1877 – Mast cells (Paul Ehrlich) 1878 – Confirmation and popularization of the germ theory of disease (Louis Pasteur) 1880 – 1881 -Theory that bacterial virulence could be attenuated by culture in vitro and used as vaccines. Proposed that live attenuated microbes produced immunity by depleting host of vital trace nutrients. Used to make chicken cholera and anthrax "vaccines" (Louis Pasteur) 1883 – 1905 – Cellular theory of immunity via phagocytosis by macrophages and microphages (polymorhonuclear leukocytes) (Elie Metchnikoff) 1885 – Introduction of concept of a "therapeutic vaccination". Report of a live "attenuated" vaccine for rabies (Louis Pasteur and Pierre Paul Émile Roux). 1888 – Identification of bacterial toxins (diphtheria bacillus) (Pierre Roux and Alexandre Yersin) 1888 – Bactericidal action of blood (George Nuttall) 1890 – Demonstration of antibody activity against diphtheria and tetanus toxins.
    [Show full text]
  • Francis Crick Personal Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt1k40250c No online items Francis Crick Personal Papers Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2007, 2016 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html Francis Crick Personal Papers MSS 0660 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: Francis Crick Personal Papers Creator: Crick, Francis Identifier/Call Number: MSS 0660 Physical Description: 14.6 Linear feet(32 archives boxes, 4 card file boxes, 2 oversize folders, 4 map case folders, and digital files) Physical Description: 2.04 Gigabytes Date (inclusive): 1935-2007 Abstract: Personal papers of British scientist and Nobel Prize winner Francis Harry Compton Crick, who co-discovered the helical structure of DNA with James D. Watson. The papers document Crick's family, social and personal life from 1938 until his death in 2004, and include letters from friends and professional colleagues, family members and organizations. The papers also contain photographs of Crick and his circle; notebooks and numerous appointment books (1946-2004); writings of Crick and others; film and television projects; miscellaneous certificates and awards; materials relating to his wife, Odile Crick; and collected memorabilia. Scope and Content of Collection Personal papers of Francis Crick, the British molecular biologist, biophysicist, neuroscientist, and Nobel Prize winner who co-discovered the helical structure of DNA with James D. Watson. The papers provide a glimpse of his social life and relationships with family, friends and colleagues.
    [Show full text]
  • Lasker Interactive Research Nom'18.Indd
    THE 2018 LASKER MEDICAL RESEARCH AWARDS Nomination Packet albert and mary lasker foundation November 1, 2017 Greetings: On behalf of the Albert and Mary Lasker Foundation, I invite you to submit a nomination for the 2018 Lasker Medical Research Awards. Since 1945, the Lasker Awards have recognized the contributions of scientists, physicians, and public citizens who have made major advances in the understanding, diagnosis, treatment, cure, and prevention of disease. The Medical Research Awards will be offered in three categories in 2018: Basic Research, Clinical Research, and Special Achievement. The Lasker Foundation seeks nominations of outstanding scientists; nominations of women and minorities are encouraged. Nominations that have been made in previous years are not automatically reconsidered. Please see the Nomination Requirements section of this booklet for instructions on updating and resubmitting a nomination. The Foundation accepts electronic submissions. For information on submitting an electronic nomination, please visit www.laskerfoundation.org. Lasker Awards often presage future recognition of the Nobel committee, and they have become known popularly as “America’s Nobels.” Eighty-seven Lasker laureates have received the Nobel Prize, including 40 in the last three decades. Additional information on the Awards Program and on Lasker laureates can be found on our website, www.laskerfoundation.org. A distinguished panel of jurors will select the scientists to be honored with Lasker Medical Research Awards. The 2018 Awards will
    [Show full text]