2020

virtual guide MICROWAVE WEEK IMS2020 Table of Contents Click to access page content. IS ALL ABOUT CONNECTIONS… IMS2020 Steering Committee ...... 2 From social media to downloading papers Technical Program Review Committee (TPRC) ...... 3 in real time — we’ve got you covered! Live Events JOIN THE CONVERSATION: Three Minute Thesis ...... 7 Make sure you’re engaging with IMS2020 Amateur (HAM) Radio Social ...... 8 on our social channels: RFIC Plenary Session ...... 9 RFIC Industry Showcase ...... 11 t Follow us on : http://twitter.com/MTT_IMS RFIC Student Paper Award Finalists ...... 12 I Follow us on Instagram: http://instagram.com/mtt_ims IMS Plenary Session ...... 15 fo Like us on : IMS/RFIC Panel Session ...... 16 http://www.facebook.com/IEEE.MTTS.IMS Who needs RF when we can digitize at the antenna? i Engage with fellow attendees on LinkedIn: 5G Summit ...... 18 https://www.linkedin.com/groups/2375668/ Young Professionals Panel ...... 19 (Group Name: IEEE MTT-S International Microwave IMS Panel Session ...... 21 Symposium (IMS)) Connecting the Unconnected Enabled by Wireless Broadband Technologies i https://www.linkedin.com/company/ieee-mtt-s- Women in Microwaves ...... 22 international-microwave-symposium-ims/ IMS Closing Session ...... 23 Yo Follow us on YouTube: IMS Student Paper Competition ...... 24 – 25 http://www.youtube.com/user/mttims Advanced Practice and Industry Paper Competitions ...... 26 – 27 Don’t forget to use the official IMS hashtag: #ims2020 Exhibiting Companies ...... 29 For the most up to date information visit: Sponsors ...... 30 ims-ieee.org/mobile-apps-and-social-media Pre-Recorded Content IMS MICROWAVE WEEK: RFIC Technical Sessions ...... 32 – 37 There’s an app for that! IMS Technical Sessions ...... 38 – 56 Download papers in real time! ARFTG ...... 57 – 58 The IMS Microwave Week app is able to download the technical content Technical Lectures ...... 59 now available in the Apple App that you registered for, e.g., IMS and/ MicroApps ...... 61 – 63 Store and Google Play store. Install or RFIC papers, workshop notes; as the app on your Android or iOS well as locate exhibitors and explore Industry Workshops ...... 64 device to view the full schedule of everything that Boston has to offer! Save the Date for IMS2021 ...... 65 Workshops; Short Courses; IMS, The app now includes an opt-in Social RFIC, and ARFTG Technical Sessions; Networking Feature that let's you Panel Sessions; Social Events; search for fellow attendees who and Exhibition Information. On-site opted-in to be contacted for net­ during Microwave Week, you will be working. Download the app today! To download the app, search for ‘IMS Microwave Week’ on the app store for your device. For assistance, please email [email protected].

1 IMS2020

STEERING COMMITTEE

EXECUTIVE COMMITTEE General Chair Timothy Lee Local Arrangements/ General Vice-Chair Jon Hacker Operations Co-Chair Andy Morishita Plenary Session Jon Hacker General Vice-Chair Mike Delisio Plenary Session Mike Delisio TPC Chair Gabriel Rebeiz Conference Manager Elsie Vega TPC Co-Chair Jim Buckwalter Exhibition Manager Lee Wood Finance Chair Sherry Hess Registration/EPMS Manager Kevin Lepine Marketing and Publications Chair Kevin Miyashiro Marketing and Publications Manager Amanda Local Arrangements/ Scacchitti Operations Co-Chair Carolyn Kitamura

SENIOR ADVISORS AND AUXILIARY Student Paper Competition (Chair) Chip Moyer LOCAL ARRANGEMENTS OPERATIONS CONFERENCE CHAIRS/LIAISONS Student Paper Competition Adam Young COMMITTEE Senior Advisor JK McKinney Student Paper Competition Laya Mohammadi Chair Carolyn Kitamura Calantoc Senior Advistor Kevin Miyashiro Student Paper Competition Adrian Tang Co-Chair Andy Morishita IMS2019 General Chair Larry Kushner Student Design Competitions Micheal Thornburn Conference Management Elsie Vega IMS2021 General Chair Steve Kenney Student Demonstrations Hossein Hashemi Conference Management Dillian Waldon IMS2022 General Chair Ron Ginley Advanced Practice Competition Jim Sowers Entertainment Carolyn Kitamura Calantoc RFIC (Chair) Waleed Khalil Three Minute Thesis (Sunday Workshop) Entertainment Andy Morishita John Bandler RFIC (TPC Chair) Brian Floyd Entertainment (Welcome/Awards) Katie Allen Three Minute Thesis (Sunday Workshop) RFIC (TPC Co-Chair) Osama Shanaa Finance (Chair) Sherry Hess Erin Kiley ARFTG (Chair) Jon Martin Finance (Co-Chair) JK McKinney MicroApps Janet O’Neil Treasurer Robert Alongi MicroApps James Weiler TECHNICAL PROGRAM COMMITTEE Registration (Chair) Takao Inoue Industry Workshops Charlie Jackson TPC Co-Chair Gabriel Rebeiz Registration Manager Nannette Jordan Industry Workshops Kevin Geary TPC Co-Chair Jim Buckwalter Registration/EPMS Manager Kevin Lepine Historical Exhibit Terry Cisco TPC Senior Advisor Tim Hancock Visa Support Zaher Bardai Historical Exhibit Robert Dengler European Liason Juergen Hasch Student Volunteer Coordination (Chair) European Liason Frank Van Fliet MARKETING AND PUBLICATIONS Cristina Felicitas European Liason Pierre Blondy COMMITTEE (MP3) Student Volunteer Coordination (Co-Chair) Asian Liason (China) Ke Wu Reyn Mukai Chair Kevin Miyashiro Asian Liason (Korea) Jae-sung Rieh Guest Lounge Dillian Waldron Co-Chair Janet Nguyen Electronic Paper Management System LA Events Guide Book Coleson Costales MP3 Management Amanda Scacchitti Sandy Owens Web Liaison Peter Song Content Editor Wayne Shiroma EPMS Manager Kevin Lepine Young Professionals (Chair) Caitlyn Cooke IMS Ambassador Janet O’Neil Workshops (Chair) Ethan Wang Young Professionals (Co-Chair) Chad Patterson IMS Ambassador John Kuno Workshops Payam Heydari Women in Microwaves Helen Fung Microwave Magazine (Guest Co-Editor) Workshops Jeremy Dunworth Women in Microwaves Claudia Wong Zoya Popovic Workshops - RFIC Danilo Manstretta STEM Program (Co-Chair) Bronson Edralin Microwave Magazine, IMS Issue, Editor 5G Summit Walid Ali-Ahmad Madhu Gupta STEM Program (Co-Chair) Nancy Whann 5G Summit Tim LaRocca Mobile App Patrick Bell Project Connect (Co-Co-Chair) Spencer Pace Short Courses Hasan Sharifi Program Book Janet Nguyen Project Connect (Co-Chair) Andy Pham Short Courses Joe Bardin Social Media Steven Turner Project Connect (Chair) Darcy Bibb RF Boot Camp (Chair) Larry Dunleavy Website Editor Peter Song Project Connect Rhonda Franklin RF Boot Camp Joanne Mistler Co-Content Editor Coleson Costales Project Connect Rashaunda Henderson Panel Sessions (Chair) Fred Schindler Co-Content Editor Kaita Tsuchiya Project Connect Tom Weller Panel Sessions John Wood Amateur Ham Radio (Chair) Steven Vaughn Focus/Special Sessions Julio Navarro Amateur Ham Radio (Co-Chair) Dylon Mutz Focus/Special Sessions Gayle Collins Focus/Special Sessions Mona Jarahi Interactive Forum Zaher Bardai 2 IMS2020

IMS2020 TECHNICAL PROGRAM REVIEW COMMITTEE (TPRC)

Alessandro Galli Liang Zhou Frederick Raab Rudy Emrick Dominique Schreurs David Jackson Roberto Gomez-Garcia David Brown Markus Gardill Hung-Wei Wu Dan Jiao Xun Gong Ali Darwish Kamran Ghorbani Malgorzata Celuch Jan Machac Julien Lintignat Edward Niehenke Jose-Maria Munoz-Ferreras Guglielmo d Inzeo Francisco Mesa Xiaoguang Liu Philipp Pahl Jeffrey Nanzer Rashaunda Henderson Vladimir Okhmatovski Raafat Mansour Anh-Vu Pham Natalia Nikolova James Hwang TAPAN SARKAR Eric Naglich Ruediger Quay Chris Rodenbeck Pawel Kopyt Werner Thiel Sanghoon Shin Michael Roberg Jacquelyn Vitaz Arnaud Pothier John Bandler Hjalti Sigmarsson Mark van der Heijden Martin Vossiek Vadim Yakovlev Zhizhang David Chen Tao Yang Peter Asbeck Zaher Bardai Victor Lubecke Erin Kiley Pierre Blondy Steven Bowers Kenneth Barnett Kenneth Mays Slawomir Koziel John Ebel Debasis Dawn Tumay Kanar Fred Schindler Michel Nakhla Songbin Gong Nathalie Deltimple Kwang-Jin Koh Marco Pirola Amelie Hagelauer Sushil Kumar Byung-Wook Min James Rautio Brice Ivira Laya Mohammadi Julio Navarro Jose Rayas-Sanchez Amir Mortazawi Joe Qiu David Ricketts Costas Sarris Steven Stitzer Kaushik Sengupta Chintan Thakkar Vikas Shilimkar Guoan Wang Paul Sheehy Yuanxun Ethan Wang Sherif Ahmed Robert Weigel Joseph Staudinger Volker Ziegler Marcus DaSilva Dominique Baillargeat Richard Campbell Slim Boumaiza Leonard Hayden Rhonda Franklin Morgan Chen Erick Djoumessi Jon Martens Florian Herrault Leo de Vreede Christian Fager Nate Orloff Telesphor Kamgaing Paul Draxler Kenneth Kolodziej Tibault Reveyrand Valentina Palazzi Wolfgang Heinrich Timothy Lee Alfred Riddle John Papapolymerou Al Katz Arnaldo Oliveira Andrej Rumiantsev Kamal Samanta Gregor Lasser Gent Paparisto Peter Aaen Manos Tentzeris Rui Ma Kate Remley Rob Jones Maciej Wojnowski John Wood Ian GRESHAM Jianguo Ma Baljit Chandhoke Jonmei Yan Jasmin Grosinger Shahed Reza Julio Costa Farshid Aryanfar Changzhan Gu Paul Tasker Amin Ezzeddine SungWon Chung Etienne Perret Douglas Teeter Patrick Fay Jeremy Dunworth Lora Schulwitz Qijun Zhang Tony Ivanov Cynthia Hang Thomas Ussmueller Fabrizio Bonani Nicholas Kolias Ozgur Inac Andreas Weisshaar Subrata Halder Peter Magnee Arvind Keerti Kazuya Yamamoto Roni Khazaka Dimitris Pavlidis Donald LaFrance Seungyoung Ahn Jose Pedro Cheng P. Wen Sriram Muralidharan Nuno Carvalho Christopher Silva Joseph Bardin Munkyo Seo Alessandra Costanzo Almudena Suarez Roee Ben-Yishay Sorin Voinigescu Marco Dionigi Anding Zhu Luciano Boglione Irfan Ashiq Shigeo Kawasaki Maurizio Bozzi Terry Cisco William Deal Jenshan Lin Jun Choi George Duh Payam Heydari Paolo Mezzanotte Christian Damm Pekka Kangaslahti Vadim Issakov Kenjiro Nishikawa Tatsuo Itoh Fatih Kocer Sanggeun Jeon Smail Tedjini Weichiang Lee Chinchun Meng Dietmar Kissinger Olga Boric-Lubecke Tzyh-Ghuang Ma James Whelehan Imran Mehdi Chia-Chan Chang Jason Soric Emery Chen Joachim Oberhammer J-C Chiao Ke Wu Murat Demirkan Theodore Reck Souvik Dubey Bayaner Arigong Edward Gebara Adrian Tang Changzhi Li Thomas Lingel Deukhyoun Heo Huei Wang Xun Luo H. John Kuno Samet Zihir Fabian Lurz Stephen Maas Herbert Zirath Holger Maune Brad Nelson Firooz Aflatouni Bo Pan Hiroshi Okazaki Tibor Berceli Luca Perregrini Nils Pohl david Harame Hualiang Zhang Hermann Boss Mona Jarrahi Stephane Bila Christian Carlowitz Tadao Nagatsuma Wenquan Che Srinivasan Gopal Luca Pierantoni Christopher Galbraith Lance Kuo Jianping Yao Alexander Koelpin Isar Mostafanezhad Goutam Chattopadhyay Juseop Lee Koichi Murata Jonathan Comeau Haiwen Liu Ramon Beltran Aly Fathy Dimitra Psychogiou Vittorio Camarchia Jose Luis Gonzalez-Jimenez Magdalena Salazar Palma Charles Campbell Glenn Hopkins Simone Bastioli Robert Caverly Hasan Sharifi Miguel Laso Wenhua Chen Frank van Vliet Giuseppe Macchiarella Gayle Collins Roberto Vincenti Gatti Richard Snyder Marc Franco Christian Waldschmidt Weimin Sun Damon Holmes Adam Young Cristiano Tomassoni Youngwoo Kwon Mohamed Abouzahra Ming Yu Zoya Popovic Danny Elad

3 3 IMS2020

Live Events

4 IMS2020 TUESDAY, 4 AUGUST 2020

Tuesday

5 We Help the World Stay Connected. Providing Millimeter Wave Solutions for 5G Including Small Footprint Surface Mountable (SMD) Filters.

Dimensions: 0.275" x 0.080" x 0.075"

Home Button Dimensions: 0.393"

5G sample kits now available for n257, n258, n260 and n261 frequency bands.

knowlescapacitors.com

6 IMS2020

THREE MINUTE THESIS 09:00 – 13:00 TUESDAY, 4 AUGUST 2020 (3MT®) COMPETITION

ORGANIZERS/CO-CHAIRS: John Bandler, McMaster University; Erin Kiley, MCLA MASTER OF CEREMONIES: Sherry Hess, Product Marketing Group Director, Cadence THIS YEAR’S FINALISTS ARE: Making 5G Devices Multilingual Tu3C A Pocket-Sized Microwave Detector Tu3D Eduardo Vilela Pinto dos Anjos, KU Leuven Elif Kaya, Texas A&M University Shaping and Steering Electromagnetic Beams for Pennies on A Truly Connected World We1F the Dollar Th2G Ifrah Jaffri, University of Waterloo Fatemeh Akbar, University of Michigan IoT: Interacting with Low-Power Devices Tu2A Magical Antenna Array without the Rainbow Effect Tu4A Chung-Ching Lin, Washington State University Minning Zhu, Rutgers University Adaptable Wireless Sensor Networks: The Backbone of Future Smart Textiles for Recycling Radio Waste Th1E Smart Cities Mo2C Mahmoud Wagih, University of Southampton Jay Sheth, University of Virginia Improving 5G Cell Towers’ Power Efficiency Using Signal Enhancing Weather Predictions and Downloads with Microwave Processing We1F Tu1A Ahmed Ben Ayed, University of Waterloo Sunil Rao, Georgia Institute of Technology Journey towards Energy-Saving Electronic Ecosystems Th2D Make Low-Voltage RF Systems Possible Tu1D Aditya Dave, University of Minnesota, Twin Cities Bowen Wang, Tsinghua University Thriving Beyond Copper for 5G Tu4A Interference-Canceling 5G Devices Mo3A Renuka Bowrothu, University of Florida Arun Paidimarri, IBM T.J. Watson Research Center Silent, But We Can Hear You! We3D 5G Signals Can See the World While Delivering Your Data Mo3A Li Wen, Shanghai Jiao Tong University Bodhisatwa Sadhu, IBM T. J. Watson Research Center Finding the Musical Notes of Material Properties Tu4D The Human Body: A Wire for Wireless Communications Mo2A Nikita Mahjabeen, University of Texas at Dallas Baibhab Chatterjee, Purdue University No Ambiguity at All! We2B Silicon of Stars Tu2B Wei Xu, Shanghai Jiao Tong University Yun Wang, Tokyo Institute of Technology Redefining Electronics through PrintingTu1G Empowering 5G Antenna Measurements ARFTG Shuai Yang, King Abdullah University of Science and Technology Mohammadreza Ranjbar Naeini, University of Wisconsin Be Gone, Diabetes! Microwave Is In The House! Th2E July 8, 2020 Dieff Vital, Florida International University Improving and Enabling Future Generations of Wireless Com- munications: the Grandparent Factor WEIF1 Abdessamad Boulmirat, Université Grenoble Alpes - CEA, LETI

7 IMS2020

AMATEUR (HAM) 13:00 – 15:00 TUESDAY, 4 AUGUST 2020 RADIO SOCIAL he IEEE Microwave Theory and Techniques Society (MTT-S) 2020 International Microwave Symposium (IMS2020) is hosting an Tamateur radio social event in , on Tuesday, 4 August, 1-3 p.m. Due to the pandemic and recent COVID-19 social distancing requirements the event will be virtual live streaming with on-line chat. The chat room will be moderated by Steve Vaughn WA7LKP and Dylon Mutz KK6OTK. Jerry Buxton AMSAT The keynote speech will be delivered by Jerry Buxton N0JY, Vice President of engineering for Radio Amateur Satellite Corpo- ration AMSAT. Mr. Buxton will be presenting the current and future technology trends in the exciting area of communications. San Bernardino Microwave Society Mr. Buxton became involved in amateur radio satellites with AO-7 and Founded in 1955 the San Bernardino Microwave Society (SBMS) is a joined AMSAT in April 1983. He was the FOX-1 project systems engineer non-profit technical organization that is dedicated to the advancement of and was elected AMSAT V.P. of engineering in April 2014. Jerry was a communications above 1GHz. The resourceful and technically competent driving force behind securing funding and implementation of the GOLF 3U club members have put together some great microwave Ham gear and Cubesat program which includes the GOLF-TEE and GOLF-1. These exciting logged some record setting contacts. This will be the second appearance programs explore solar “wing” design, radiation upset tolerant IHU, 3 axis of the SBMS at our event and we look forward to their presentations and attitude control, SDR capabilities with 1.2 GHz, 2.4 GHz, and 5 GHz band hardware demos. This year the topics include: uplink to a 10 GHz downlink two way amateur radio communications, hosting student STEM education imaging device. Amateur microwave radio system structure — Brian Thorson AF6NA He currently holds an Extra Class License and is also licensed in Colom- Amateur 10 GHz and 24 GHz Transverters — Courtney Duncan N5BF bia, S.A. as HK5JY. An active amateur, Jerry was number 3 in the world for Frequency Stability in Amateur microwave systems — Dr. Doug Millar the number of telemetry frames copied from ARISSat-1. He is also active K6JEY on terrestrial HF through 1.2 GHz. Amateur 10 GHz radio demonstration — Dave Laag W6DL Morse Code Challenge To add to the already informative and fun filled event we will be having a Morse code challenge! Practice your CW skills by copying from 15WPM and 30WPM message rounds. The challenge will take place virtually between presentations and is open to all skill levels. Participants will need a text editor as well as email to send in their decoded message. Scores will be posted at the end of the social!

8 8 IMS2020

RFIC PLENARY SESSION 16:00 – 17:30 TUESDAY, 4 AUGUST 2020

PLENARY SPEAKER 1 Is the Third Wave Coming in CMOS RF? Dr. Thomas Byunghak Cho, EVP Samsung Semiconductor ABSTRACT: n the late 90’s, academia’s active research on CMOS RF, combined with the industry’s increasing need for compact and low-cost mobile devices, had triggered a succession of waves in CMOS RF, making the rapid deployment and I widespread commercialization of CMOS RFICs. Of course, there were many technical challenges and concerns in using CMOS for RF for the first time, such as substrate noise, lack of good RF models, etc. However, they weren’t big enough to stop those waves. In fact, CMOS scaling for digital and increasing digital signal processing capabilities added extra momentum to the waves. As a result, CMOS RF has played a key role in enabling many generations of modern solutions for a variety of wireless applications such as Cellular, WiFi, BT, GPS, IoT, etc. Now, we are in 2020. The market is still hot. It demands even more mobile performance than before. New applications such as 5G, Automotive, AR/VR, etc. are on the rise. However, for RFIC designers, the situation is even more challenging than before. RF perfor- mance gain from scaling has slowed down. Sub-6GHz spectrum is quite busy and crowded, pushing new standards to higher frequency. Low power consumption is ever important. In this complex situation, several questions arise. Is the third wave coming in CMOS RF? If so, what are the winds that will create the new wave? Is the wave big enough to enable new applications? In this talk, we will briefly go over the past two decades of CMOS RF history and examine these questions to gain insights into the future.

PLENARY SPEAKER 2 The Flexible Future of RF Prof. Ali Hajimiri, Bren Prof. of Elect. Eng. and Medical Eng., Caltech ABSTRACT: ver the last quarter of a century, RF and mm-wave CMOS integrated circuits have gone from the realm of exotic research to becoming the only realistic way to implement almost all commercial communication and sensing O systems. The ability to reliably integrate a large number of active and passive components operating at RF and mm-wave frequencies continues to enable an unlimited number of new applications and design approaches previously not practical or economical. Wireless power transfer at a distance is an example of an emerging third prong of novel use cases for RF and mm-waves integrated circuits. Despite these major advances, such RF and microwave systems remain relatively small, static, and rigid, thereby limiting their ability to be used in many novel applications ranging from wearable fabric, to easily deployable large-scale arrays in various environments. Such systems can provide significant additional utilization of the unprecedented IC fabrication capacity of the silicon foundries and enable yet another wave of new domains of use. Flexible lightweight collapsible active electromagnetic surfaces enabled by an array of CMOS RFICs with the dynamic ability to compensat e and correct for mechanical changes in the real time can open the door to a breadth of new applications from RF active fabric for clothing to communication and wireless power transfer systems that can be rapidly deployed on the ground and in space to enable a truly wireless ecosystem of the future.

9 9 10 IMS2020

RFIC INDUSTRY SHOWCASE TUESDAY, 4 AUGUST 2020

The RFIC Industry Showcase Session, held concurrently with the plenary reception, will highlight a total of 10 outstanding paper finalists listed below, submitted by authors from the industry. In this interactive session, authors will present their innovative work in poster format. These 10 paper finalists were nominated this year by the RFIC Technical Program Committee to enter the final contest. A committee of eleven TPC judges have selected the top three Industry Papers after rigorous reviews and discussions. The top three will be announced during the RFIC Plenary Session on Tuesday, 4 August 2020. This year’s Industry Paper Award finalists are:

3D Imaging Using mmWave 5G Signals | RMo3A-1 High Resolution CMOS IR-UWB for Non-Contact Human Junfeng Guan, Arun Paidimarri, Alberto Valdes-Garcia, Vital Signs Detection | RMo1B-3 Bodhisatwa Sadhu Sang Gyun Kim, In Chang Ko, Seung Hwan Jung IBM T.J. Watson Research Center, USA GRIT Custom-IC, Korea Spatio-Temporal Filtering: Precise Beam Control Using Fast Beam Parasitic Model to Describe Breakdown in Stacked-FET Switching | RMo4A-2 | SOI Switches | RMo2D-3 Arun Paidimarri, Bodhisatwa Sadhu Kathleen Muhonen1, Scott Parker1, Kaushik Annam2 IBM T.J. Watson Research Center, USA 1Qorvo, USA, 2University of Dayton, USA A 77GHz 8RX3TX Transceiver for 250m Long Range Automotive 77GHz CMOS Built-In Self-Test with 72dB C/N and Less Radar in 40nm CMOS Technology | RMo1B-2 Than 1ppm Frequency Tolerance for a Multi-Channel Radar Tatsunori Usugi, Tomotoshi Murakami, Yoshiyuki Utagawa, Application RMo1B-5 Shuya Kishimoto, Masato Kohtani, Ikuma Ando, Masato Kohtani, Tomotoshi Murakami, Yoshiyuki Utagawa, Kazuhiro Matsunaga, Chihiro Arai, Tomoyuki Arai, Shinji Yamaura Tomoyuki Arai, Shinji Yamaura DENSO, Japan DENSO, Japan A 1.2V, 5.5GHz Low-Noise Amplifier with 60dB On-Chip Selectivity A Reconfigurable SOI CMOS Doherty Power Amplifier for Uplink Carrier Aggregation and 1.3dB NF | RTu2C-2 0 Module for Broadband LTE High-Power User Equipment Daniel Schrögendorfer, Thomas Leitner Applications | RMo2A-2 Infineon Technologies, Austria A. Serhan1, D. Parat1, P. Reynier1, M. Pezzin1, R. Mourot1, F. Chaix1, R. Berro1, P. Indirayanti2, C. De Ranter2, K. Han2, M. Borremans2, A D-Band Radio-on-Glass Module for Spectrally-Efficient and 1 1 Low-Cost Wireless Backhaul | RMo2B-3 E. Mercier , A. Giry 1 2 Amit Singh, Mustafa Sayginer, Michael J. Holyoak, Joseph Weiner, CEA-Leti, France, Huawei Technologies, Belgium John Kimionis, Mohamed Elkhouly, Yves Baeyens, Industry Paper Contest Eligibility: The first author must have an Shahriar Shahramian affiliation from industry. The first author must also be the lead author Nokia Bell Labs, USA of the paper and must present the paper at the Symposium. Fully Autonomous System-on-Board with Complex Permittivity Sensors and 60GHz Transmitter for Biomedical Implant Applications | RMo3A-4 Issakov1, C. Heine1, V. Lammert1, J. Stoegmueller1, M. Meindl2, U. Stubenrauch1, C. Geissler1 1Infineon Technologies, , 2eesy-IC, Germany

11 IMS2020 RFIC STUDENT PAPER AWARD FINALISTS

The RFIC Symposium’s Student Paper Award is devised to both encourage student paper submissions to the conference as well as give the authors of the finalists’ papers a chance to promote their research work with the conference attendees after the plenary session during reception time. A total of thirteen outstanding student paper finalists were nominated this year by the RFIC Technical Program Committee to enter the final contest. A committee of ten TPC judges have selected the top-three papers after rigorous reviews and discussions. All finalists benefit from a complimentary RFIC registration. The top-three Student Papers will be announced during the RFIC Plenary Session onTuesday, 4 August 2020 in Los Angeles. Each winner will receive an honorarium and a plaque. This year’s Student Paper Award finalists are: Ultra Compact, Ultra Wideband, DC-1GHz CMOS Circulator Based on A Wideband True-Time-Delay Phase Shifter with 100% Fractional Quasi-Electrostatic Wave Propagation in Commutated Switched Bandwidth Using 28nm CMOS | RMo1D-1 Capacitor Networks | RMo1C-5 Minjae Jung, Hong-Jib Yoon, Byung-Wook Min, Yonsei University, Aravind Nagulu1, Mykhailo Tymchenko2, Andrea Alù2, Harish Korea 1 Krishnaswamy A 16-Element Fully Integrated 28GHz Digital Beamformer with 1Columbia University, USA, 2University of Texas at Austin, USA In-Package 4×4 Patch Antenna Array and 64 Continuous-Time A 66.97pJ/Bit, 0.0413mm2 Self-Aligned PLL-Calibrated Harmonic- Band-Pass Delta-Sigma Sub-ADCs | RTu2B-1 Injection-Locked TX with >62dBc Spur Suppression for IoT Applica- Rundao Lu, Christine Weston, Daniel Weyer, Fred Buhler, tions Michael P. Flynn, RTu2A-1 University of Michigan, USA Chung-Ching Lin, Huan Hu, Subhanshu Gupta, Washington State A Dual-Core 8–17GHz LC VCO with Enhanced Tuning Switch-Less Tertiary University, USA Winding and 208.8dBc/Hz Peak FoMT in 22nm FDSOI | RMo4C-4 A Scalable 60GHz 4-Element MIMO Transmitter with a Frequency- Omar El-Aassar, Gabriel M. Rebeiz, University of , Domain-Multiplexing Single-Wire Interface and Harmonic-Rejec- San Diego, USA tion-Based De-Multiplexing | RMo3B-3 A 7.4dBm EIRP, 20.2% DC-EIRP Efficiency 148GHz Coupled Loop 1 1, 1 Ali Binaie , Sohail Ahasan Armagan Dascurcu , Mahmood Baraani Oscillator with Multi-Feed Antenna in 22nm FD-SOI | RTu1A-5 Dastjerdi1, Robin Garg2, Manoj Johnson2, Arman Galioglu1, Arun Muhammad Waleed Mansha, Mona Hella, Rensselaer Polytechnic Natarajan2, Harish Krishnaswamy1 Institute, USA 1Columbia University, USA, 2Oregon State University, USA Characterization of Partially Overlapped Inductors for Compact Layout A SiGe Millimeter-Wave Front-End for Remote Sensing and Imaging Design in 130nm RFCMOS and 22nm FinFET Processes | RMo2D-2 | RMo4B-3 Xuanyi Dong, Andreas Weisshaar, Oregon State University, USA Milad Frounchi, John D. Cressler, Georgia Tech, USA A Hybrid-Integrated Artificial Mechanoreceptor in 180nm CMOS | A 1.5–3GHz Quadrature Balanced Switched-Capacitor CMOS RMo3A-3 Transmitter for Full Duplex and Half Duplex Wireless Systems | Han Hao, Lin Du, Andrew G. Richardson, Timothy H. Lucas, RMo2C-1 Mark G. Allen, Jan Van der Spiegel, Firooz Aflatouni, University 1 2 1 Nimrod Ginzberg , Dror Regev , Emanuel Cohen of , USA 1Technion, Israel, 2Toga Networks, Israel Student Paper Contest Eligibility: The student must have been A Dual-Mode V-Band 2/4-Way Non-Uniform Power-Combining PA a full-time student (9 hours/term graduate, 12 hours/term unde­ with +17.9-dBm Psat and 26.5-% PAE in 16-nm FinFET CMOS | rgraduate) during the time the work was performed. The student RMo3C-1 must also be the lead author of the paper and must present the 1 2 3 1 Kun-Da Chu , Steven Callender , Yanjie Wang , Jacques C. Rudell , paper at the Symposium. Stefano Pellerano2, Christopher Hull2 1University of Washington, USA, 2Intel, USA, 3USA A DC to 43-GHz SPST Switch with Minimum 50-dB Isolation and +19.6-dBm Large-Signal Power Handling in 45-nm SOI-CMOS | RMo1D-2 Ayman Eltaliawy1, John R. Long1, Ned Cahoon2 1University of Waterloo, , 2GLOBALFOUNDRIES, USA

12 RF Globalnet Connects The RF and Microwave World

TIMELY, INDUSTRY SPECIFIC NEWS

ORIGINAL EDITORIAL CONTENT

RELEVANT PRODUCT LISTINGS

TECHNICAL INSIGHT FROM INDUSTRY EXPERTS

Visit us at www.rfglobalnet.com to sign up for our free email newsletter.

13 www.rfglobalnet.com | (724) 940-7555 | [email protected]

rf-globalnet_ims2017.indd 1 3/29/17 1:05 PM IMS2020 WEDNESDAY, 5 AUGUST 2020

Wednesday

14 IMS2020

IMS PLENARY SESSION 09:00 – 11:30 WEDNESDAY, 5 AUGUST 2020 PLENARY SPEAKER 1 Can Digital Technologies Really Change the World? Doreen Bogdan-Martin, Director, Telecommunication Development, International Telecommunication Union

ABSTRACT: alf the planet is now online. Great news – at least for those who can connect. But what of the rest? 3.6 billion people remain totally cut-off from a world the rest of us take for granted. Like no other technology before, digital Hdevices, platforms and apps have unprecedented power to overcome traditional development barriers. They can bring education where there are no teachers, health advice where there are no doctors, financial services where there are no banks, libraries where there are no books. The Internet has changed our world. But its transformational potential will be magnified 1,000 times in the hands of people held back for generations through lack of access to the power of information. Digital is the transformational force that will enable us to meet the 17 UN Sustainable Development Goals by the target date of 2030. In short, the UN pledge to ‘Leave No-one Behind’ will mean getting everyone online. How do we make that happen in markets where incomes are low, infrastructure is lacking, and literacy and digital skills are in short supply? In Africa alone, connecting the continent will mean bringing 220 million new people online and an estimated US$9 billion in investment. The situation can look bleak, but sometimes a simple paradigm shift can dramatically change the picture. The interrelatedness of the SDGs provides a great opportunity for common approaches and integration within and across institutions. Coupled with policy approaches that prioritize digital skills and promote access and affordability, the power of digital could just turn out to be the power to change the world.

PLENARY SPEAKER 2 “The Broadband Space Race—What Does the Future Look Like?” Mark Dankberg, Chairman of the Board and Chief Executive Officer, Viasat, Inc.

ABSTRACT: pace-based internet access will grow enormously over the next decade. There are already over 2 million homes served in the U.S., Europe and Latin America - with satellite internet speeds of 100 Mbps in some areas. Satellite Sbroadband connects ships at sea, and airplanes in flight. Several airlines offer free satellite Wi-Fi, including video streaming. With individual satellites poised to deliver multiple Terabits per second, satellite will help connect the four billion people without internet access. Satellite broadband is like millimeter wave point-to-multipoint– but with towers orbiting earth. Architectural alternatives offer a rich and complex trade space. As with terrestrial networks, trade-offs include: geographic coverage, peak speeds, peak system throughput, latency, required capital investments, operating costs, bandwidth geographic density and bandwidth geographic distribution. The International Telecommunication Union has evolved regulations for cooperatively sharing orbital trajectories and spectrum over decades. But, conventions are being shattered by aggressive proposed “mega-constellations” of small, cheap satellites. Unregulated mega-constellations can generate space “pollution” with orbital debris, cause intolerable risks of space collisions, or even leave wide orbital regions inaccessible for decades. They also can preclude equitable access to spectrum by others. This keynote provides a framework for considering the performance, economics, regulatory and environmental impacts of space broadband networks. We consider theoretical constraints, orbital dynamics, and underlying global bandwidth demand profiles to evaluate alternative architectures. Finally, we’ll consider regulatory implications to maintain safe, fair, global competition for space-based communications, navigation/positioning, earth sensing, and the emerging near-earth space economy.

15 IMS2020

IMS/RFIC PANEL SESSION 11:30 – 13:00 WEDNESDAY, 5 AUGUST 2020

Who needs RF when we can digitize at the antenna?

PANEL ORGANIZERS AND MODERATORS: Larry Kushner, Raytheon Technologies

PANELISTS: Tim Hancock, DARPA Microelectronics Technology Office; Pete Delos, Analog Deviceso; Craig Hornbuckle, Jariet Technologies; Chris Rudell, University of Washington; Harold Pratt, Raytheon Technologies; Boris Murmann, Stanford University

ABSTRACT: ith the advent of GS-s data converters driven by Moore’s law and advances in converter architectures, it is now possible to digitize directly at RF. The question is, should we? On the one hand, eliminating mixers, filters, amplifiers, and local oscillators reduces RF W complexity and allows more flexible, multi-function designs. On the other hand, do we really want to digitize the entire spectrum from DC to daylight and process 10’s of GS-s of data if the information BW we care about is orders of magnitude lower? In the context of phased arrays, element-level digital beamforming allows simultaneous beams with different beamwidths and pointing angles, but may be more susceptible than analog-beam-formed arrays to interferers since spatial filtering occurs after the analog-to-digital conversion. What is the right approach? Our distinguished panel will debate the pros and cons of competing system architectures and the audience will be engaged to judge who is right.

16 16 SIX DAYS THREE CONFERENCES THREE FORUMS ONE EXHIBITION

EUROPE’S PREMIER MICROWAVE, RF, WIRELESS AND RADAR EVENT

The European Microwave Exhibition (12th - 14th January 2021) • 10,000 sqm of gross exhibition space • Around 5,000 attendees • 1,700 - 2,000 Conference delegates • In excess of 300 international exhibitors (including Asia and US as well as Europe)

INTERESTED IN EXHIBITING? For International Sales: Richard Vaughan, International Sales Manager E: [email protected] Tel: +44 20 7596 8742 or visit www.eumweek.com IMS2020

5G SUMMIT 13:00 – 17:00 WEDNESDAY, 5 AUGUST 2020

he technologies and systems for 5G are now pushing for commercial deployment with focus on Stand Alone (SA) networks, mass market for 5G devices, and global adoption of mmWave in premium devices and for small cell enhancement and fixed wireless access (FWA). T Furthermore and looking beyond 5G, technology research and development needs to focus on MIMO enhancement, V2X and IoT evolution, integration of 5G with Non-Terrestrial Network, and new FR3 & FR4 spectrum development. To bring all this into focus, the IEEE Microwave Theory and Techniques Society (MTT-S) is organizing a 5G Summit at the 2020 MTT-S International Microwave Symposium (IMS2020), with speakers at the leadership level from different companies and industries to discuss 5G related topics, including foundries, standards, mobile networks, MIMO and millimeter-wave systems, RFIC, and RFFE. SPEAKERS LIST: Dr. Bami Bastani, Senior Vice President, RF Business Unit, GLOBALFOUNDRIES Talk title: “Differentiated end to end silicon solutions for the new 5G reality” Dr. James Chen, Associate Vice President, MediaTek Talk title: “5G – Evolution or Revolution” Dr. Chih-Lin I, China Mobile Chief Scientist, Wireless Technology, China Mobile Talk title: “The Myths and Facts of O-RAN Whitebox” Dr. David Pehlke, Senior Director of Systems Engineering, Skyworks Talk title: “RF Front-End Evolution from 4G to 5G” Dr. Naveen Yanduru, Vice President and General Manager, Renesas Electronics Talk title: “Sub-6GHz and mmWave RFICs for 5G Wireless Infrastructure RF Front Ends” Dr. Shahriar Shahramian, Director, Bell Labs Talk title: “The 5G Quest: System, Deployment & Application Challenges” Dr. Ir. Michael Peeters, Program Director Connectivity, IMEC Talk title: “FR 1,2,3,4,… PA and FEM technology approaches for 5G and beyond”

5G Summit Co-Sponsor: 5G Summit Co-Sponsor: 5G Summit Media Sponsor:

18 18 IMS2020

YOUNG 16:30 – 18:00 WEDNESDAY, 5 AUGUST 2020 PROFESSIONALS

lease join us for the 2020 International Microwave Symposium’s Young Professionals Panel Session. The theme of this year’s session is “Evolution of a Young Professional.” The purpose of this interactive session is to showcase and highlight Young Professionals in different P stages of their careers. Each panelist represents varying career paths, including defense, government, academia, and private industry. Every Young Professional will be able to connect with these hard working and inspirational young leaders, and receive advice for the next steps in their own careers. Due to the COVID-19 pandemic this year’s session will be held by means of a live video stream. Panelists will have the opportunity to introduce themselves and present their career paths. This will be followed by a live audience question and answer session, focused on career development and professional advisement. This session will showcase four panel members and a moderator, all representing the many potential career paths of a successful Young Professional: Dr. Mario Milicevic (MaxLinear) Prof. Asimina Kiourti (The Ohio State University) Jared Lucy (Microwave Instrument and Technology Branch, NASA Goddard Space Flight Center) Dr. Bo Marr (Fellow of the National Science Foundation) Dr. Caitlyn Cooke (NGC)

19 IMS2020 THURSDAY, 6 AUGUST 2020

Thursday

20 IMS2020

IMS PANEL SESSION 11:30 – 13:00 THURSDAY, 6 AUGUST 2020

Connecting the Unconnected Enabled by Wireless Broadband Technologies

PANEL ORGANIZERS AND MODERATORS: Timothy Lee, Boeing; Kartik Kulkarni, Oracle

PANELISTS: Alan Mickelson, University of Colorado, Boulder; Vincent Kaabunga, IEEE Africa Committee, Chair; Constantinos Karachalios, IEEE Standards Association; Jin Bains, Facebook Connectivity Lab; Mei-Lin Fung, People-Centered Internet

ABSTRACT: he major theme of IMS2020 is “Connectivity Matters.” Connectivity is vital to addressing many of the UN Sustainable Development Goals (SDGs) that provides a shared blueprint for peace and prosperity for people and the planet, now and into the future. At its heart are the T 17 Sustainable Development Goals (SDGs), which are an urgent call for action by all countries - developed and developing - in a global partnership. They recognize that ending poverty and other deprivations must go hand-in-hand with strategies that improve health and education, reduce inequality, and spur economic growth – all while tackling climate change and working to preserve our oceans and forests. The question is: what the microwave engineering community should be doing to advance the use of our technology to solving some of the world&r- squo;s toughest problems. In two words: CONNECTIVITY MATTERS. This Panel bring together global experts from the technical and policy communities to address the challenge and progress for digital inclusion to the 4 billion people who are unconnected. We are now seeing the emergence of new technology like 5G or low-earth orbit (LEO) satellites. How can the changing landscape, enabled by mobile carriers, equipment makers and individual engineers, be reached?

21 21 IMS2020

WOMEN IN 13:30 – 15:00 THURSDAY, 6 AUGUST 2020 MICROWAVES uring the COVID-19 global pandemic the IMS2020 theme “Connectivity Matters” has meant more to everyone than ever before. Please join us for the Women in Microwaves live virtual panel event with women who are the leaders and pioneers in technologies D that enable these important connections and keep the world moving. PANELISTS INCLUDE: Debabani Choudhury (Intel) Rachelle Radpour (Boeing) Trang Thai (Anokiwave) Melissa Allen (Boeing) Our panelists will be asked questions concerning 5G, satellites, IoT, and more. Time will be allotted for questions from the audience. We hope their achievements will inspire you to contribute and engage in an ever more connected world. All are welcome to participate!

22 IMS2020

IMS CLOSING SESSION 16:00 – 17:30 THURSDAY, 6 AUGUST 2020

The Road Ahead for Quantum Computing Hartmut Neven, Engineering Director, Quantum Artificial Intelligence Lab, Google ABSTRACT: he demonstration of quantum supremacy established a proof of principle that quantum can outperform classical ones on certain computational tasks. T Since achieving this milestone the Google AI Quantum team has been pursuing two development threads, one is to increase the computational volume afforded by a quantum and the other is to make good use of the computational volume available. To increase the computational volume, i.e. the number of gate operations that can be performed while still maintaining high output fidelity, we will need to implement quantum error correction. In this talk I will describe the sequence of milestones we hope to achieve en route to a fully error corrected quantum computer. Arguably the question that is the least answered for our community is whether there are commercially or scientifically interesting algorithms beyond the reach of classical machines that can be executed prior to implement- ing error correction. I will report on first examples.

23 IMS2020 IMS STUDENT PAPER COMPETITION

High Output Power Ultra-Wideband Distributed Amplifier using Diamond Heat A 19 GHz Lithium Niobate Acoustic Filter with FBW of 2.4% | Tu3E Spreader in InP DHBT Technology | Tu4F Student Finalists: Liuqing Gao, Yansong Yang, Songbin Gong, Univ. of Illinois at Student Finalists: Md Tanjil Shivan, Maruf Hossain, Ralf Doerner, Ksenia Nosaeva, Urbana, Champaign Hady Yacoub, Ferdinand-Braun-Institut; Tom K Johansen, Technical Univ. of Denmark; Advisor: Songbin Gong, University of Illinois at Urbana, Champaign, Wolfgang Heinrich, Ferdinand-Braun-Institut; Viktor Krozer, Ferdinand-Braun-Institut A High-Sensitivity Low-Power Vital Sign Radar Sensor Based on Super-Regenera- Advisor: Professor Viktor Krozer, Ferdinand-Braun-Institut / Johann Wolfgang tive Oscillator Architecture | We2D Goethe-Universität Frankfurt am Main, Student Finalists: Yichao Yuan, Rutgers Univ., Austin Ying, Kuang Chen, California High-Sensitivity Plasmonic Photoconductive Terahertz Detector Driven by a Fem- State Univ., Northridge, Chung-Tse (Michael) Wu, Rutgers Univ. tosecond Ytterbium-Doped Fiber Laser | Tu2E Advisor: Chung-Tse (Michael) Wu, Rutgers University Student Finalists: Deniz Turan, Nezih Tolga Yardimci, Mona Jarrahi, Polylithic Integration for RF/MM-Wave Chiplets using Stitch-Chips: Modeling, Univ. of California, Los Angeles Fabrication, and Characterization | Th1D Advisor: Mona Jarrahi, University of California, Los Angeles Student Finalists: Ting Zheng, Paul K. Jo, Sreejith Kochupurackal Rajan, Negative Group Delay Enabled Artificial Transmission Line Exhibiting Muhannad S. Bakir, Georgia Institute of Technology Squint-Free, Dominant Mode, Backward Leaky-Wave Radiation | Tu4A Advisor: Muhannad S. Bakir, Georgia Institute of Technology Student Finalists: Minning Zhu, Chung-Tse (Michael) Wu, Rutgers Univ. Impact of Input Nonlinearity on Efficiency, Power, and Linearity Performance Advisor: Chung-Tse Michael Wu, Rutgers University of GaN RF Power Amplifiers | Tu3H A 1 mW Cryogenic LNA Exploiting Optimized SiGe HBTs to Achieve an Student Finalists: Sagar Dahr and Fadhel M. Ghannouchi , University of Calgary Average Noise Temperature of 3.2 K from 4–8 GHz | Tu3B Advisor: Prof. Fadhel M. Ghannouchi, University of Calgary Student Finalists: Wei-Ting Wong, Mohsen Hosseini, Univ. of Massachusetts, Noncontact High-Linear Motion Sensing Based on A Modified Amherst, Holger Rücker, IHP GmbH, Joseph Bardin, Univ. of Massachusetts, Amherst Differentiate and Cross-Multiply Algorithm | We2B Advisor: Joseph Bardin, Univ. of Massachusetts, Amherst Student Finalists: Wei Xu, Changzhan Gu, Shanghai Jiao Tong Univ. Load Modulated Balanced mm-Wave CMOS PA with Integrated Linearity Advisor: Prof. Changzhan Gu, Shanghai Jiao Tong University, Shanghai Enhancement for 5G applications | Th1G A 162 GHz Ring Resonator based High Resolution Dielectric Sensor | Tu3D Student Finalists: Chandrakanth R. Chappidi, Princeton Univ., Tushar Student Finalists: Hai Yu, Bo Yu, Skyworks Solutions, Inc., Xuan Ding, Sebastian Sharma, NXP Semiconductors, Zheng Liu, Kaushik Sengupta, Princeton Univ. Gomez-Diaz, Jane Gu, Univ. of California, Davis, Advisor: Kaushik Sengupta, Princeton Univ. Advisor: Qun Jane Gu, University of California, Davis Miniaturized 28 GHz PCM-Based 4-bit Latching Variable Attenuator | Tu1G A Feasibility Study on the Use of Microwave Imaging for In-Vivo Screening of Student Finalists: Tejinder Singh, Raafat Mansour, Univ. of Waterloo Knee Prostheses | We2D Advisor: Raafat R. Mansour, Centre for Integrated RF Engineering, Univ. of Waterloo Student Finalists: Konstantin Root, Martin Vossiek,Friedrich-Alexander- Transmit-Receive Cross-Modulation Distortion Correction in a 5-6GHz Full Duplex Universität Erlangen-Nürnberg Quadrature Balanced CMOS RF Front-End | Th2F Advisor: Martin Vossiek, Friedrich-Alexander-Universität Erlangen-Nürnberg, Student Finalists: Nimrod Ginzberg, Technion - Israel Institute of Technology, Tomer Localization and Tracking Bees Using a Battery-less Transmitter and an Autono- Gidoni, Tel-Aviv University, Dror Regev, Huawei Technologies Co., Ltd., Emauel Cohen, mous Unmanned Aerial Vehicle | Th3C Technion - Israel Institute of Technology Student Finalists: Jake Shearwood, Sam Williams, Nawaf Aldabashi, Paul Cross, Advisor: Professor Emanuel Cohen, Technion - Israel Institute of Technology Bangor Univ., Breno M. Freitas, Federal University of Ceará, Chaochun Zhang, China Gate Bias Incorporation into Cardiff Behavioural Modelling Agricultral University, Cristiano Palego, Bangor Univ. Formulation | Tu4H Advisor: Cristiano Palego, Bangor University Student Finalists: Ehsan M. Azad, James J. Bell, Roberto Quaglia, Jorge J. Closed-Loop Sign Algorithms for Low-Complexity Digital Predistortion | We3G Moreno Rubio, Paul J. Tasker, Cardiff University Student Finalists: Pablo Pascual Campo, Vesa Lampu, Tampere University, Lauri Advisor: Roberto Quaglia, Cardiff University Anttila, Alberto Brihuega, Tampere Univ. of Technology, Markus Allén, Mikko Valkama, A Compact Reconfigurable N-Path Low-Pass Filter Based on Negative Tampere University Trans-Resistance with <1dB Loss and >21dB Out-of-Band Rejection | We3E Advisor: Mikko Valkama, Tampere University Student Finalists: Mohammad Khorshidian, Columbia Univ., Negar InP HBT Oscillators Operating up to 682 GHz with Coupled-Line Load Reiskarimian, Massachusetts Institute of Technology, Harish Krishnaswamy, for Improved Efficiency and Output Power |We3C Columbia Univ. Student Finalists: Jungsoo Kim, Heekang Son, Doyoon Kim, Kiryong Song, Advisor: Prof. Harish Krishnaswamy, Columbia University Junghwan Yoo, Jae Sung Rieh, Korea Univ. A Compact Bandpass Filter with Wide Stopband and Low Radiation Loss Using Advisor: Jae-Sung Rieh, Korea University, [email protected] Substrate Integrated Defected Ground Structure | We2E A Low Power 60 GHz 6 V CMOS Peak Detector | Th3G Student Finalists: Deshan Tang, Changxuan Han, Zhixian Deng, Huizhen J. Qian, Student Finalists: Zoltán Tibenszky, Corrado Carta, Frank Ellinger, Technische Univ. Xun Luo, Univ. of Electronic Science and Technology of China Dresden Advisor: Xun Luo, University of Electronic Science and Technology of China Advisor: Dr. Frank Ellinger, Technische Univ. Dresden Dual-Octave-Bandwidth RF-Input Pseudo-Doherty Load Modulated Balanced Concurrent Dual-Band Microstrip Line Hilbert Transformer for Spectrum Amplifier with≥ 10-dB Power Back-off Range | We2G Aggregation Real-Time Analog Signal Processing | WEIF1 Student Finalists: Yuchen Cao, Kenle Chen, Univ. of Central Florida Student Finalists: Rakibul Islam, Md Hedayatullah Maktoomi, Washington State Advisor: Kenle Chen, Univ. of Central Florida Univ., Yixin Gu, Univ. of Texas at Arlington, Bayaner Arigong, Washington State Univ. An Enhanced Large-Power S-band Injection-Locked Magnetron with Advisor: Bayaner Arigong, Washington State University Anode Voltage Ripple Inhibition | Tu1F Phase Recovery in Sensor Networks based on incoherent Repeater Student Finalists: Xiaojie Chen, Xiang Zhao, Sichuan Univ., Bo Yang, Elements | Th2C Naoki Shinohara, Kyoto Univ., Changjun Liu, Sichuan Univ. Student Finalists: David Werbunat, Benedikt Meinecke, Maximilian Steiner, Advisor: Changjun Liu, School of Electronics and Information Engineering, Christian Waldschmidt, Ulm Univ. Sichuan University, China Advisor: Christian Waldschmidt,Ulm University

24 IMS2020

SPC FINALISTS CONTINUED: In-Situ Self-Test and Self-Calibration of Dual-Polarized 5G TRX, Phased Arrays Octave Frequency Range Triple-band Low Phase Noise K/Ka-Band VCO with Leveraging Orthogonal-Polarization Antenna Couplings | Th1F a New Dual-path Inductor, , | Tu4C Student Finalists: Ahmed Nafe, Abdurrahman H. Aljuhani, Univ. of California, San Student Finalists: Md Aminul Hoque, Mohammad Chahardori, Washington Diego, Kerim Kibaroglu, Movandi, Mustafa Sayginer, Nokia Bell Labs, Gabriel State Univ., Pawan Agarwal, MaxLinear, Inc., Mohammed Ali Mokri, Deukhyoun Rebeiz, Univ. of California, San Diego Heo, Washington State Univ. Advisor: Prof. Gabriel M. Rebeiz, University of California San Diego Advisor: Deukhyoun Heo, Washington State University A Scalable Switchable Dual-Polarized 256-Element Ka-Band SATCOM Transmit Phased-Array with Embedded RF Driver and ±70° Beam Scanning | We3F Liquid Crystal Based Parallel-Polarized Dielectric Image Guide Phase Shifter Student Finalists: Kevin Kai Wei Low, Univ. of California, San Diego, Samet Zihir, at W-Band | Tu4A Integrated Device Technology, Inc., Tumay Kanar, Integrated Device Technology, Inc., Student Finalists: Henning Tesmer, Roland Reese, Ersin Polat, Rolf Jakoby, Gabriel Rebeiz, Univ. of California, San Diego Holger Maune, Technische Univ. Darmstadt Advisor: Gabriel M. Rebeiz, University of California, San Diego Advisor: Prof. Rolf Jakoby, Technische Universität Darmstadt A Silicon-Based Closed-Loop 256-Pixel Near-Field Capacitive Sensing Array with 3-ppm Sensitivity and Selectable Frequency Shift Gain | We1B Student Finalists: Jia Zhou, Univ. of California, Los Angeles, Chia-Jen Liang, National Chiao Tung Univ., Christopher E. Chen, Jieqiong Du, Rulin Huang, Univ. of California, Los Angeles, Richard Al Hadi, Alcatera LLC, James C.M. Hwang, Cornell Univ., Mau-Chung, Frank Chang, Univ. of California, Los Angeles Advisor: Professor Frank Chang, Univ. of California, Los Angeles

25 25 IMS2020 ADVANCED PRACTICE AND INDUSTRY PAPER COMPETITIONS

he Advanced Practice Paper Competition (APPC) recognizes outstanding technical contributions that apply to practical applications. All finalist papers are on advanced practices and describe an innovative RF/microwave design, integration technique, process enhancement, and/or combination thereof T that results in significant improvements in performance and/or in time to production for RF/microwave components, subsystems, or systems. The Industry Paper Competition (IPC) recognizes outstanding technical contributions from industry sources. All finalist papers are from the RF/microwave industry and describe innovation of a product or system application that potentially has the highest impact on an RF/microwave product and/or system which will significantly benefit the microwave community and society at large. ADVANCED PRACTICE PAPER COMPETITION A CMOS Balun with Common Ground and Artificial Dielectric Compensation­ A 28GHz, 2-Way Hybrid Phased-Array Front-End for 5G Mobile Achieving 79.5% Fractional Bandwidth and <2° Phase Imbalance Applications G. Yang, Tianjin Univ., R. Chen, Southeast Univ., K. Wang, Tianjin Univ. N. Cho, H.-S. Lee, H. Lee, W.-N. Kim, Samsung 300W Dual Path GaN Doherty Power Amplifier with 65% Efficiency A Second Harmonic Separation Symmetric Ports 180° Coupler with for Cellular Infrastructure Applications Arbitrary Coupling Ratio and Transparent Terminations M. Masood, S. Embar R., P. Rashev, J. Holt, NXP Semiconductors, J.S. Kenney, P. Li, H. Ren, Washington State Univ., Y. Gu, Univ. of Texas at Arlington, B. Georgia Tech Pejcinovic, Portland State Univ., B. Arigong, Washington State Univ. RF Systems on Antenna (SoA): A Novel Integration Approach Ultra-Wideband FMCW Radar with Over 40GHz Bandwidth Below 60GHz for Enabled by Additive Manufacturing High Spatial Resolution in SiGe BiCMOS X. He, Y. Fang, R.A. Bahr, M.M. Tentzeris, Georgia Tech B. Welp, G. Briese, N. Pohl, Fraunhofer FHR Load Modulated Balanced mm-Wave CMOS PA with Integrated Linearity A 680GHz Direct Detection Dual-Channel Polarimetric Receiver Enhancement for 5G Applications C.M. Cooke, K. Leong, K. Nguyen, A. Escorcia, X. Mei, , C.R. Chappidi, T. Sharma, Z. Liu, K. Sengupta, Princeton Univ. J. Arroyo, Cubic Nuvotronics, T.W. Barton, University of Colorado Boulder, Analysis and Design of a Concurrent Dual-Band Self-Oscillating Mixer C. Du Toit, G. De Amici, D.L. Wu, NASA Goddard Space Flight Center, W.R. Deal, M. Pontón, A. Herrera, A. Suárez, Universidad de Cantabria Northrop Grumman Scalable, Deployable, Flexible Phased Array Sheets An X-Band Lithium Niobate Acoustic RFFE Filter with FBW of 3.45% and IL M. Gal-Katziri, A. Fikes, F. Bohn, B. Abiri, M.R. Hashemi, A. Hajimiri, Caltech of 2.7dB Y. Yang, L. Gao, S. Gong, Univ. of Illinois at Urbana-Champaign Compact Bandpass Filter with Wide Stopband and Low Radiation Loss Using Substrate Integrated Defected Ground Structure Automated Spiral Inductor Design by a Calibrated PI Network with Manifold D. Tang, C. Han, Z. Deng, H.J. Qian, X. Luo, UESTC Mapping Technique X. Fa, S. Li, P.D. Laforg, Univ. of Regina, Q.S. Cheng- SUSTech AFSIW-to-Microstrip Directional Coupler for High-Performance Systems on Substrate Efficient Modeling of Wave Propagation Through Rough Slabs with FDTD A. Ghiotto, J.-C. Henrion, T. Martin, J.-M. Pham, IMS (UMR 5218), S. Bakirtzis, Univ. of Toronto, X. Zhang, Univ. College Dublin, C.D. Sarris, V. Armengaud, CNES Univ. of Toronto Quasi-Absorptive Substrate-Integrated Bandpass Filters Using High-Frequency Vector-Modulated Signal Generation Using Capacitively-Loaded Coaxial Resonators Frequency-Multiplier-Based RF Beamforming Architecture D. Psychogiou, University of Colorado Boulder, R. Gómez-García, I. Jaffri, A. Ben Ayed, Univ. of Waterloo, A.M. Darwish, U.S. Army Research Universidad de Alcalá Laboratory, S. Boumaiza, Univ. of Waterloo High Isolation Simultaneous Wireless Power and Information High-Resolution Millimeter-Wave Tomography System for Transfer System Using Coexisting DGS Resonators and Figure-8 Inductors Characterization of Low-Permittivity Materials A. Barakat, R.K. Pokharel, S. Alshhawy, K. Yoshitomi, Kyushu Univ., A. Och, P.A. Hölzl- Infineon Technologies, S. Schuster, voestalpine, J.O. Schratte- S. Kawasaki, JAXA necker, Intel, P.F. Freidl, Infineon Technologies, S. Scheiblhofer, D. Zankl- voestal- pine, V. Pathuri-Bhuvan, Silicon Austria Labs, R. Weigel- FAU Erlangen-Nürnberg A Synthesis-Based Design Procedure for Waveguide Duplexers Using a Stepped E-Plane Bifurcated Junction A Dual-Mode Frequency Reconfigurable Waveguide Filter with a Constant G. Macchiarella, G.G. Gentili, Politecnico di Milano, L. Accatino, Frequency Spacing Between Transmission Zeros ACConsulting, V. Tornielli di Crestvolant, ESA-ESTEC G. B., R.R. Mansour, Univ. of Waterloo A Quadband Implantable Antenna System for Simultaneous Wireless Powering and Biotelemetry of Deep-Body Implants A. Basir, H. Yoo, Hanyang Univ.

26 IMS2020

INDUSTRY PAPER COMPETITION A 0.011-mm² 27.5-GHz VCO with Transformer-Coupled Bandpass Filter Digitally Assisted Load Modulated Balanced Amplifier for 200W Cellular Achieving -191dBc/Hz FoM in 16-nm FinFET CMOS Infrastructure Applications C.-H. Lin- TSMC, Y.-T. Lu- TSMC, H.-Y. Liao- TSMC, S. Chen- TSMC, A.L.S. Loke- S. Embar R., M. Masood, T. Sharma, J. Staudinger, NXP Semiconductors, TSMC, T.-J. Yeh- TSMC S.K. Dhar, Univ. of Calgary, P. Rashev, G. Tucker, NXP Semiconductors, Series-Combined Coaxial Dielectric Resonator Class-F Power Amplifier F.M. Ghannouchi, Univ. of Calgary System Suspended SiC Filter with DRIE Silicon Subcovers R.A. Beltran, F. Wang, G. Villagrana, Ophir RF E.T. Kunkee, D.-W. Duan, A. Sulian, P. Ngo, N. Lin, C. Zhang, D. Ferizovic, C.M. In-Band Full-Duplex Self-Interference Canceller Augmented with Band- Jackson, R. Lai, Northrop Grumman stop-Configured Resonators Acceleration and Extension of Radial Point Interpolation Method (RPIM) to R. Sepanek, M. Hickle, M. Stuenkel, BAE Systems Complex Electromagnetic Structures A 135–183GHz Frequency Sixtupler in 250nm InP HBT K. Sabet, A.I. Stefan, EMAG Technologies M. Bao, Ericsson, T.N.T. Do, D. Kuylenstierna, Chalmers Univ. of Technology, Highly Linear & Efficient Power Spatium Combiner Amplifier with H. Zirath, Ericsson GaN HPA MMIC at Millimeter Wavelength Frequency AFSIW-to-Microstrip Directional Coupler for High-Performance S.D. Yoon, J. Kitt, D. Murdock, E. Jackson, M. Roberg, G. Hegazi, P. Courtney, Qorvo Systems on Substrate High-Resolution Millimeter-Wave Tomography System for Characterization of A. Ghiotto,J.-C. Henrion, T. Martin, J.-M. Pham, IMS (UMR 5218), Low-Permittivity Materials V. Armengaud, CNES A. Och, P.A. Hölzl, Infineon Technologies, S. Schuster, voestalpine, Monolithic Integration of Phase-Change RF Switches in a Production J.O. Schrattenecker, Intel, P.F. Freidl, Infineon Technologies, SiGe BiCMOS Process with RF Circuit Demonstrations S. Scheiblhofer, D. Zankl, voestalpine, V. Pathuri-Bhuvana, Silicon Austria Labs, G. Slovin, N. El-Hinnawy, C. Masse, J. Ros, D. Howard, Tower Semiconductor R. Weigel, FAU Erlangen-Nürnberg A Volume Current Based Method of Moments Analysis of Shielded Planar 3-D Circuits in Layered Media J.C. Rautio, M. Thelen, Sonnet Software Design Considerations and FPGA Implementation of a Wideband All-Digital Transmit Beamformer with 50% Fractional Bandwidth S. Pulipati, R. Ma, MERL A 28GHz, 2-Way Hybrid Phased-Array Front-End for 5G Mobile Applications N. Chog, H.-S. Lee, H. Lee, W.-N. Kim, Samsung

27 MM-Wave

ELECTRONICS IDEAS for Today’s Engineers Analog RF Microwave DIGITAL highfrequency electronics.com Lightwave 28 Exhibitors as of 31 July 2020 IMS2020

EXHIBITING COMPANIES 09:00 – 21:00 4 – 6 AUGUST 2020 3G Shielding Specialties IHP GmbH QuinStar Technology, Inc. Akoustis, Inc. IMS2020 R&K Company Ltd. Altair Engineering, Inc. IMS2021 Reactel, Inc. Altum RF InCompliance Magazine Remcom, Inc. AMCOM Communications Inc. Indium Corp. Renaissance/Hxi American Microwave Corp. inTEST Thermal Solutions Renesas Electronics America Inc. Ampleon Isola RFHIC Corp. Analog Devices, Inc. JFW Industries, Inc. RF Morecom Korea Anapico Ltd. Johanson Technology, Inc. Richardson Electronics, Ltd. Anokiwave Keysight Technologies Richardson RFPD Anritsu Co. Knowles Precision Devices Rogers Corp. ANSYS, Inc. KOSTECSYS Co., Ltd. Rohde & Schwarz USA, Inc. API Technologies KVG Quartz Crystal Technology GmbH Rosenberger North America Akron, LLC arQana Technologies Pte Ltd. Kyocera International, Inc. Saint-Gobain Films & Fabrics AR RF/Microwave Instrumentation LadyBug Technologies LLC Superlink Technology Co., Ltd. Association of Old Crows/Naylor Laser Processing Technology, Inc. Signal Hound Atlanta Micro, Inc. LPKF Laser & Electronics Skyworks Solutions, Inc. B&Z Technologies MACOM Smiths Interconnect Berkeley Nucleonics Corporation Marki Microwave, Inc. Sonnet Software Inc. Cadence Design Systems, Inc. Marvin Test Solutions Southwest Microwave, Inc. Caelynx Materion Corp. SpaceForest sp. z.o.o Centerline Technologies MathWorks Sumitomo Electric Device Innovations Chengdu KeyLink Microwave Technology Co., Ltd. Maury Microwave Corp. Susumu International (USA) Inc. Chengdu Power Matrix Microwave Technology Co., MegaPhase SV Microwave Inc. Ltd. Menlo Microsystems, Inc. Switzer Ciao Wireless, Inc. Mercury Systems SynMatrix Technologies Inc. Cicor Group Metallife, Inc. Tabor Electronics Cinch Connectivity Solutions Mician GmbH Tagore Technology Inc. Advanced Electronic Solutions Microchip Technology Inc. Taitien Electronics Coilcraft, Inc. Micro Harmonics Corp. Talent Microwave, Inc. Copper Mountain Technologies Microsanj TDK Corporation of America Crescend Technologies Micro Systems Technologies, Inc. Tecdia Inc. Cubic Nuvotronics Microwave Dynamics Technetics Group Custom Cable Assemblies, Inc. Microwave Journal Teledyne Technologies Custom Microwave Components, Inc. Microwave Product Digest The Goodsystem Corp. Dalian Dalicap Tech. Corp. Microwave Products Group THINFILMS, Inc. Delta Electronics Mfg. Corp. Microwaves & RF thinkRF Diramics AG Microwave Theory and Techniques Society (MTT-S) TICRA dSpace Inc. Miczen Technologies Co., Ltd. TMY Technology Inc. Element Six Milliwave Silicon Solutions, Inc. Tower Semiconductor EM Invent Mini-Circuits TPT Wire Bonder Eravant Mitsubishi Electric US, Inc. Transcat, Inc. ETS-Lindgren MixComm TRS-RenTelco EuMA, European Microwave Association Modelithics, Inc. UIY Inc. European Microwave Week Mouser Electronics, Inc. UMS (United Monolithic Semiconductors) Everything RF / Microwaves 101 MPI Corp. Virginia Inc. Filtronic MRSI Systems LLC Vishay Intertechnology, Inc. Fine-Line Circuits Limited National Instruments Vishay UltraSource Inc. Focus Microwaves Inc. Norden Millimeter Inc. W. L. Gore & Associates, Inc. FormFactor Nxbeam Inc. Waka Manufacturing Co., Ltd. Gamma Electronics, Inc. Optenni Ltd. WAVEPIA Co., Ltd. Geib Refining Corp. Palomar Technologies Wavice, Inc. Genmix Technology Co., Ltd. Passive Plus Inc. weasic Microelectronics S.A. GLOBALFOUNDRIES Pasternack West Bond Inc. Gowanda Components Group (GCG) PCB Power Inc. Wiley Guangdong DAPU Telecom Technology Co., Ltd. Pentek Winchester Interconnect Hamilton Pickering Interfaces, Inc. Wireless Telecom Group Hermetic Solutions Group Pletronics, Inc. Withwave Co., Ltd. Hesse Mechatronics Polyfet RF Devices Wolfspeed, A Cree Company Hirose Electric USA Precision Circuits & Assembles LLC XI’AN PRECISIONRF ELECTRONICS CO., LTD. HYPERLABS PRFI Ltd. Xilinx IEEE Antennas and Propagation Society pSemi Corporation Xpeedic Technology, Inc. IEEE Electromagnetic Compatibility Society Qorvo Yokowo Co., Ltd. IEEE Future Networks Initiative and 5G Roadmap Q-Tech Corp. Zymet, Inc. IEEE Xplore Digital Library Quik-Pak 29 Thank You To Our Loyal Supporters

Platinum, Sliver & Corporate Sponsors Platinum

Silver

RFIC GOLD SPONSOR

CORPORATE SPONSOR

Media Partners: Official Media Source of MTT-S:

Media Sponsors: IMS2020

Pre-recorded Content

31 IMS2020 RFIC TECHNICAL SESSIONS

Mo1A: High Spectral Purity Mo1B: Microwave and mmWave Mo1C: Circulators and Full-Duplex Mo1D: Switches and Delay Phase-Locked Loops Radar Systems Transceivers Elements for Receiver Front-Ends Chair: Fa Foster Dai, Auburn University Chair: Ed Balboni, Analog Devices Chair: François Rivet, IMS (UMR 5218) Chair: Domine M.W. Leenaerts, NXP Co-Chair: Joseph D. Cali, BAE Systems Co-Chair: Duane Howard, Jet Propulsion Co-Chair: Magnus Wiklund, Qualcomm Semiconductors Laboratory Co-Chair: Danilo Manstretta, Università di Pavia

Mo1A-1: A 23.6–38.3GHz Low-Noise Mo1B-1: Low Power Low Phase Noise Mo1C-1: RFIC Inductorless, Widely- Mo1D-1: A Wideband True-Time-Delay PLL with Digital Ring Oscillator and 60GHz Multichannel Transceiver in Tunable N-Path Shekel Circulators Based Phase Shifter with 100% Fractional Multi-Ratio Injection-Locked Dividers 28nm CMOS for Radar Applications on Harmonic Engineering Bandwidth Using 28nm CMOS for Millimeter-Wave Sensing J. Rimmelspacher; Infineon Technologies; N. Reiskarimian; Columbia Univ.; M. Jung; Yonsei Univ.; H.-J. Yoon; Yonsei Y. Zhang; Univ. of California, Los Angeles; R. Ciocoveanu; Infineon Technologies; G. M. Khorshidian; Columbia Univ.; H. Univ.; B.-W. Min; Yonsei Univ. Y. Zhao; Univ. of California, Los Angeles; Steffan; Infineon Technologies; M. Bassi; Krishnaswamy; Columbia Univ. R. Huang; Univ. of California, Los Angeles; Infineon Technologies; V. Issakov; Infineon C.-J. Liang; National Chiao Tung Univ. ; Technologies C.-W. Chiang; National Chiao Tung Univ. ; Y.-C. Kuan; National Chiao Tung Univ. ; M.-C.F. Chang; Univ. of California, Los Angeles

Mo1A-2: A 1Mb/s 2.86% EVM GFSK Mo1B-2: A 77GHz 8RX3TX Transceiver Mo1C-2: A Full-Duplex Receiver Mo1D-2: A DC to 43-GHz SPST Switch Modulator Based on BB-DPLL Without for 250m Long Range Automotive Radar Leveraging Multiphase Switched- with Minimum 50-dB Isolation and Background Digital Calibration in 40nm CMOS Technology Capacitor-Delay Based Multi-Domain FIR +19.6-dBm Large-Signal Power Filter Cancelers Handling in 45-nm SOI-CMOS Y. Liu; Tsinghua Univ.; W. Rhee; Tsinghua T. Usugi; DENSO; T. Murakami; DENSO; Y. Univ.; Z. Wang; Tsinghua Univ. Utagawa; DENSO; S. Kishimoto; DENSO; A. Nagulu; Columbia Univ.; A. A. Eltaliawy; Univ. of Waterloo; J.R. M. Kohtani; DENSO; I. Ando; DENSO; K. Gaonkar; Columbia Univ.; S. Ahasan; Long; Univ. of Waterloo; N. Cahoon; Matsunaga; DENSO; C. Arai; DENSO; T. Columbia Univ.; T. Chen; Columbia GLOBALFOUNDRIES Arai; DENSO; S. Yamaura; DENSO Univ.; G. Zussman; Columbia Univ.; H. Krishnaswamy; Columbia Univ.

Mo1A-3: A 2.0–2.9GHz Digital Ring- Mo1B-3: High Resolution CMOS IR- Mo1C-3: A 3.4–4.6GHz In-Band Full- Mo1D-3: DC-40GHz SPDTs in 22nm FD- Based Injection-Locked Clock Multiplier UWB Radar for Non-Contact Human Duplex Front-End in CMOS Using a SOI and Back-Gate Impact Study Using a Self-Alignment Frequency Vital Signs Detection Bi-Directional Frequency Converter Tracking Loop for Reference Spur M. Rack; Université catholique de Reduction S.G. Kim; GRIT Custom-IC; I.C. Ko; GRIT X. Yi; MIT; J. Wang; MIT; C. Wang; MIT; Louvain; L. Nyssens; Université catholique Custom-IC; S.H. Jung; GRIT Custom-IC K.E. Kolodziej; MIT Lincoln Laboratory; R. de Louvain; S. Wane; eV-Technologies; R. Xu; Fudan Univ.; D. Ye; Fudan Univ.; Han; MIT D. Bajon; eV-Technologies; J.-P. Raskin; L. Lyu; Fudan Univ.; C.-J.R. Shi; Univ. of Université catholique de Louvain Washington

Mo1A-4: A 10-to-12GHz 5mW Charge- Mo1B-4: A 62mW 60GHz FMCW Radar Mo1C-4: A Self-Interference-Tolerant, Mo1D-4: A 100W, UHF to S-Band RF Sampling PLL Achieving 50fsec RMS in 28nm CMOS Multipath Rake Receiver with More Switch in the Super-Lattice Castellated Jitter, -258.9dB FOM and -65dBc Than 40-dB Rejection and 9-dB SNR Field Effect Transistor (SLCFET) 3S Reference Spur S. Park; IMEC; A. Kankuppe; IMEC; P. Multipath Gain in a Fading Channel Process Renukaswamy; IMEC; D. Guermandi; J. Gong; Technische Universiteit Delft; F. IMEC; A. Visweswaran; IMEC; J.C. Garcia; A. Hamza; Univ. of California, Santa J.J. Hug; Northrop Grumman; J. Parke; Sebastiano; Technische Universiteit Delft; IMEC; S. Sinha; IMEC; P. Wambacq; IMEC; Barbara; C. Hill; Univ. of California, Northrop Grumman; V. Kapoor; Northrop E. Charbon; EPFL; M. Babaie; Technische J. Craninckx; IMEC Santa Barbara; H. AlShammary; Univ. of Grumman Universiteit Delft California, Santa Barbara; J. Buckwalter; Univ. of California, Santa Barbara

Mo1B-5: 77GHz CMOS Built-In Self-Test Mo1C-5: Ultra Compact, Ultra Wideband, with 72dB C/N and Less Than 1ppm DC-1GHz CMOS Circulator Based on Frequency Tolerance for a Multi- Quasi-Electrostatic Wave Propagation Channel Radar Application in Commutated Switched Capacitor Networks M. Kohtani; DENSO; T. Murakami; DENSO; Y. Utagawa; DENSO; T. Arai; A. Nagulu; Columbia Univ.; M. Tymchenko; DENSO; S. Yamaura; DENSO Univ. of Texas at Austin; A. Alù; Univ. of Texas at Austin; H. Krishnaswamy; Columbia Univ.

32 IMS2020 RFIC TECHNICAL SESSIONS

Mo2A: Reconfigurable RF Mo2B: Millimeter-Wave Circuits in Mo2C: Digital Power Amplifiers Mo2D: Novel RF Devices and Front-End Blocks D and E Band for High Data-Rate Modeling Approaches Wireless Links Chair: Jeffrey Walling, Qualcomm Chair: Magnus Wiklund, Qualcomm Co-Chair: Justin (ChiaHsin) Wu, AmLogic Chair: Edward Preisler, Tower Co-Chair: François Rivet, IMS (UMR Chair: Kenichi Okada, Tokyo Institute of Semiconductor 5218) Technology Co-Chair: Hsieh-Hung Hsieh, TSMC Co-Chair: Pierre Busson, STMicroelec- tronics

Mo2A-1: A Context-Aware Mo2B-1: D-Band Phased-Array TX and Mo2C-1: A 1.5–3GHz Quadrature Mo2D-1: W-Band Noise Reconfigurable Transmitter with RX Front Ends Utilizing Radio-on-Glass Balanced Switched-Capacitor CMOS Characterization with Back-Gate 2.24pJ/Bit, 802.15.6 NB-HBC and Technology Transmitter for Full Duplex and Half Effects for Advanced 22nm FDSOI mm- 4.93pJ/Bit, 400.9MHz MedRadio Duplex Wireless Systems Wave MOSFETs Modes with 33.6% Transmit Efficiency M. Elkhouly; Nokia Bell Labs; M.J. Holyoak; Nokia Bell Labs; D. Hendry; N. Ginzberg; Technion; D. Regev; Toga Q.H. Le; Fraunhofer IPMS; D.K. Huynh; B. Chatterjee; Purdue Univ.; A. Nokia Bell Labs; M. Zierdt; Nokia Networks; E. Cohen; Technion Fraunhofer IPMS; D. Wang; Fraunhofer Srivastava; Purdue Univ.; D.-H. Seo; Bell Labs; A. Singh; Nokia Bell Labs; IPMS; Z. Zhao; GLOBALFOUNDRIES; Purdue Univ.; D. Yang; Purdue Univ.; S. M. Sayginer; Nokia Bell Labs; S. S. Lehmann; GLOBALFOUNDRIES; T. Sen; Purdue Univ. Shahramian; Nokia Bell Labs; Y. Kämpfe; Fraunhofer IPMS; M. Rudolph; Baeyens; Nokia Bell Labs Brandenburgische Technische Universität

Mo2A-2: A Reconfigurable SOI CMOS Mo2B-2: A 71–76/81–86GHz, E-Band, Mo2C-2: A 65nm CMOS Switched- Mo2D-2: Characterization of Partially Doherty Power Amplifier Module for 16-Element Phased-Array Transceiver Capacitor Carrier Aggregation Overlapped Inductors for Compact Broadband LTE High-Power User Module with Image Selection Transmitter Layout Design in 130nm RFCMOS and Equipment Applications Architecture for Low EVM Variation 22nm FinFET Processes Q.H. Le; Fraunhofer IPMS; D.K. Huynh; A. Serhan; CEA-LETI; D. Parat; CEA-LETI; N. Ebrahimi; Univ. of Michigan; K. Fraunhofer IPMS; D. Wang; Fraunhofer X. Dong; Oregon State Univ.; A. P. Reynier; CEA-LETI; M. Pezzin; CEA-LETI; Sarabandi; Univ. of Michigan; J. IPMS; Z. Zhao; GLOBALFOUNDRIES; Weisshaar; Oregon State Univ. R. Mourot; CEA-LETI; F. Chaix; CEA- Buckwalter; Univ. of California, Santa S. Lehmann; GLOBALFOUNDRIES; T. LETI; R. Berro; CEA-LETI; P. Indirayanti; Barbara Kämpfe; Fraunhofer IPMS; M. Rudolph; Huawei Technologies; C. De Ranter; Brandenburgische Technische Universität Huawei Technologies; K. Han; Huawei Technologies; M. Borremans; Huawei Technologies; E. Mercier; CEA-LETI; A. Giry; CEA-LETI Mo2A-3: A 4-Element 7.5–9GHz Mo2B-3: A D-Band Radio-on-Glass Mo2C-3: A Differential Digital 4-Way Mo2D-3: Parasitic Model to Describe Phased Array Receiver with 8 Module for Spectrally-Efficient and Doherty Power Amplifier with 48% Breakdown in Stacked-FET SOI Simultaneously Reconfigurable Beams Low-Cost Wireless Backhaul Peak Drain Efficiency for Low Power Switches in 65nm CMOS Technology Applications A. Singh; Nokia Bell Labs; M. Sayginer; K. Muhonen; Qorvo; S. Parker; Qorvo; K. N. Li; Zhejiang Univ.; M. Li; Zhejiang Nokia Bell Labs; M.J. Holyoak; Nokia J. Sheth; Univ. of Virginia; S.M. Bowers; Annam; Univ. of Dayton Univ.; S. Wang; Zhejiang Univ.; Z. Zhang; Bell Labs; J. Weiner; Nokia Bell Labs; J. Univ. of Virginia Zhejiang Univ.; H. Gao; Zhejiang Univ.; Kimionis; Nokia Bell Labs; M. Elkhouly; Y.-C. Kuan; National Chiao Tung Univ. ; X. Nokia Bell Labs; Y. Baeyens; Nokia Bell Yu; Zhejiang Univ.; Z. Xu; Zhejiang Univ. Labs; S. Shahramian; Nokia Bell Labs

Mo2A-4: A 29-mW 26.88-GHz Non- Mo2B-4: A 134–149GHz IF Mo2C-4: 1.2–3.6GHz 32.67dBm 4096- Mo2D-4: Residual Network Based Uniform Sub-Sampling Receiver Front- Beamforming Phased-Array Receiver QAM Digital PA Using Reconfigurable Direct Synthesis of EM Structures: A End Enabling Spectral Alias Spreading Channel with 6.4–7.5dB NF Using Power Combining Transformer for Study on One-to-One Transformers CMOS 45nm RFSOI Wireless Communication C. Yang; Univ. of Southern California; M. D. Munzer; Georgia Tech; S. Er; Georgia Ayesh; Univ. of Southern California; A. S. Li; Univ. of California, San Diego; G.M. B. Yang; UESTC; H.J. Qian; UESTC; T. Tech; M. Chen; Georgia Tech; Y. Li; Zhang; Univ. of Southern California; T.-F. Rebeiz; Univ. of California, San Diego Wang; UESTC; X. Luo; UESTC Georgia Tech; N.S. Mannem; Georgia Wu; Univ. of Southern California; M.S.-W. Tech; T. Zhao; Georgia Tech; H. Wang; Chen; Univ. of Southern California Georgia Tech

Mo2B-5: A Fully Integrated 32Gbps Mo2C-5: A Quadrature Digital Power 2×2 LoS MIMO Wireless Link with UWB Amplifier with Hybrid Doherty and Analog Processing for Point-to-Point Impedance Boosting for Efficiency Backhaul Applications Enhancement in Complex Domain M. Sawaby; Stanford Univ.; B. Grave; H.J. Qian; UESTC; B. Yang; UESTC; J. Stanford Univ.; C. Jany; Stanford Univ.; Zhou; UESTC; H. Xu; Fudan Univ.; X. Luo; C. Chen; Stanford Univ.; S. Kananian; UESTC Stanford Univ.; P. Calascibetta; STMicroelectronics; F. Gianesello; STMicroelectronics; A. Arbabian; Stanford Univ.

33 33 IMS2020 RFIC TECHNICAL SESSIONS

402AB 403A 403B Mo3A: RFIC Systems and Applications I: Mo3B: Millimeter-Wave Transceivers and Mo3C: mmWave Power Amplifiers Biomedical and Radar Systems Building Blocks Chair: Patrick Reynaert, KU Leuven Chair: Oren Eliezer, Apogee Semiconductor Chair: Shahriar Shahramian, Nokia Bell Labs Co-Chair: Oleh Krutko, Xilinx Co-Chair: Yao-Hong Liu, IMEC Co-Chair: Hongtao Xu, Fudan University

Mo3A-1: 3D Imaging Using mmWave 5G Signals Mo3B-1: 60GHz Variable Gain & Linearity Mo3C-1: A Dual-Mode V-Band 2/4-Way Non-Uniform Enhancement LNA in 65nm CMOS Power-Combining PA with +17.9-dBm Psat and 26.5- J. Guan; IBM T.J. Watson Research Center; A. Paidimarri; % PAE in 16-nm FinFET CMOS IBM T.J. Watson Research Center; A. Valdes-Garcia; IBM D. Bierbuesse; RWTH Aachen Univ.; R. Negra; RWTH T.J. Watson Research Center; B. Sadhu; IBM T.J. Watson Aachen Univ. K.-D. Chu; Univ. of Washington; S. Callender; Intel; Y. Research Center Wang; ; J.C. Rudell; Univ. of Washington; S. Pellerano; Intel; C. Hull; Intel

Mo3A-2: Digitally Assisted mm-Wave FMCW Radar for Mo3B-2: A 64-QAM 45-GHz SiGe Transceiver for IEEE Mo3C-2: A 28-GHz Highly Efficient CMOS Power High Performance 802.11aj Amplifier Using a Compact Symmetrical 8-Way Parallel-Parallel Power Combiner with IMD3 K. Subburaj; Texas Instruments; A. Mani; Texas P. Zhou; Southeast Univ.; J. Chen; Southeast Univ.; P. Cancellation Method Instruments; K. Dandu; Texas Instruments; K. Bhatia; Yan; Southeast Univ.; H. Gao; Technische Universiteit Texas Instruments; K. Ramasubramanian; Texas Eindhoven; D. Hou; Southeast Univ.; J. Yu; Southeast H. Ahn; Pusan National Univ.; I. Nam; Pusan National Instruments; S. Murali; Texas Instruments; R. Sachdev; Univ.; J. Hu; Southeast Univ.; C. Wang; Southeast Univ.; Univ.; O. Lee; Pusan National Univ. Texas Instruments; P. Gupta; Texas Instruments; H. Dong; Southeast Univ.; L. Wang; Southeast Univ.; Z. Jiang; Southeast Univ.

S. Samala; Texas Instruments; D. Shetty; Texas Instruments; Z. Parkar; Texas Instruments; S. Ram; Texas Mo3B-3: A Scalable 60GHz 4-Element MIMO Mo3C-3: An Embedded 200GHz Power Amplifier with Instruments; V. Dudhia; Texas Instruments; D. Transmitter with a Frequency-Domain-Multiplexing 9.4dBm Saturated Power and 19.5dB Gain in 65nm Single-Wire Interface and Harmonic-Rejection-Based CMOS De-Multiplexing Mo3A-3: A Hybrid-Integrated Artificial H. Bameri; Univ. of California, Davis; O. Momeni; Univ. of Mechanoreceptor in 180nm CMOS A. Binaie; Columbia Univ.; S. Ahasan; Columbia California, Davis Univ.; A. Dascurcu; Columbia Univ.; M. Baraani Dastjerdi; Columbia Univ.; R. Garg; Oregon State Univ.; M. Johnson; Oregon State Univ.; A. Galioglu; Columbia Univ.; A. Natarajan; Oregon State Univ.; H. Krishnaswamy; Columbia Univ.

Mo3A-4: Fully Autonomous System-on-Board with Mo3B-4: A Bidirectional 56–72GHz to 10.56GHz Mo3C-4: A 130-GHz Power Amplifier in a 250-nm InP Complex Permittivity Sensors and 60GHz Transmitter Tranceiver Front-End with Integrated T/R Switches in Process with 32% PAE for Biomedical Implant Applications 28-nm CMOS Technology K. Ning; Univ. of California, Santa Barbara; Y. Fang; Breen; Texas Instruments; S. Bharadwaj; Texas W. Zhu; Tsinghua Univ.; D. Li; Tsinghua Univ.; J. Wang; Univ. of California, Santa Barbara; M. Rodwell; Univ. Instruments; S. Bhatara; Texas Instruments Tsinghua Univ.; X. Zhang; Rice Univ.; Y. Wang; Tsinghua of California, Santa Barbara; J. Buckwalter; Univ. of Univ. California, Santa Barbara; J. Buckwalter; Univ. of California, Santa Barbara

Mo3B-5: A 10.56Gbit/s, -27.8dB EVM Polar Mo3C-5: A 160GHz High Output Power and High Transmitter at 60GHz in 28nm CMOS Efficiency Power Amplifier in a 130-nm SiGe BiCMOS Technology J. Nguyen; IMEC; K. Khalaf; Pharrowtech; S. Brebels; IMEC; M. Shrivas; IMEC; K. Vaesen; IMEC; P. Wambacq; X. Li; Tsinghua Univ.; W. Chen; Tsinghua Univ.; Y. Wang; IMEC Tsinghua Univ.; Z. Feng; Tsinghua Univ.

34 IMS2020 RFIC TECHNICAL SESSIONS

Mo4A: RFIC System and Applications II: Mo4B: Millimeter-Wave and Terahertz Circuits Mo4C: High-Performance Frequency- Wideband Wireless Communication and and Systems for Sensing and Communications Generation Components Quantum Computing Chair: Omeed Momeni, University of California, Davis Chair: Mohyee Mikhemar, Broadcom Chair: Renyuan Wang, BAE Systems Co-Chair: Ruonan Han, MIT Co-Chair: Wanghua Wu, Samsung Co-Chair: Rocco Tam, NXP Semiconductors

Mo4A-1: A Flexible Control and Calibration Mo4B-1: An Integrated 132–147GHz Power Source Mo4C-1: A 0.082mm² 24.5-to-28.3GHz Multi-LC-Tank Architecture Using RISC-V MCU for 5G Millimeter- with +27dBm EIRP Fully-Differential VCO Using Two Separate Single- Wave Mobile RF Transceivers Turn Inductors and a 1D-Tuning Capacitor Achieving A. Visweswaran; IMEC; A. Haag; KIT; C. de Martino; 189.4dBc/Hz FOM and 200±50kHz 1/f³ PN Corner J. Kim; Samsung; J.M. Kim; Samsung; S. Han; Samsung; Technische Universiteit Delft; K. Schneider; KIT; T. P. Vora; Samsung; P. Dayal; Samsung; H. Kim; Samsung; Maiwald; FAU Erlangen-Nürnberg; B. Vignon; IMEC; K. H. Guo; University of Macau; Y. Chen; University of J. Lee; Samsung; D. Yoon; Samsung; J. Lee; Samsung; Aufinger; Infineon Technologies; M. Spirito; Technische Macau; P.-I. Mak; University of Macau; R.P. Martins; T. Chang; Samsung; I.S.-C. Lu; Samsung; K.-B. Song; Universiteit Delft; T. Zwick; KIT; P. Wambacq; IMEC University of Macau Samsung; S.W. Son; Samsung; J. Lee; Samsung

Mo4A-2: Spatio-Temporal Filtering: Precise Beam Mo4B-2: A High-Speed 390GHz BPOOK Transmitter in Mo4C-2: A 22.4-to-40.6-GHz Multi-Ratio Injection- Control Using Fast Beam Switching 28nm CMOS Locked Frequency Multiplier with 57.7-dBc Harmonic Rejection A. Paidimarri; IBM T.J. Watson Research Center; B. C. D’heer; Katholieke Univ. Leuven; P. Reynaert; Sadhu; IBM T.J. Watson Research Center Katholieke Univ. Leuven J. Zhang; UESTC; Y. Peng; UESTC; H. Liu; UESTC; C. Zhao; UESTC; Y. Wu; UESTC; K. Kang; UESTC

Mo4A-3: An Integrated True Zero-Wait-Time Dynamic Mo4B-3: A SiGe Millimeter-Wave Front-End for Mo4C-3: A 0.35mW 70GHz Divide-by-4 TSPC Frequency Selection (DFS) Look-Ahead Scheme for Remote Sensing and Imaging Frequency Divider on 22nm FD-SOI CMOS Technology WiFi-Radar System Co-Existence M. Frounchi; Georgia Tech; J.D. Cressler; Georgia Tech Z. Tibenszky; Technische Universität Dresden; C. Carta; Y. Chen; MediaTek; B. Xu; MediaTek; E. Lu; MediaTek; O. Technische Universität Dresden; F. Ellinger; Technische Shana’a; MediaTek Universität Dresden

Mo4A-4: RF Clock Distribution System for a Scalable Mo4B-4: A Fully Integrated Coherent 50–500-GHz Mo4C-4: A Dual-Core 8–17GHz LC VCO with Enhanced Quantum Processor in 22-nm FDSOI Operating at Frequency Comb Receiver for Broadband Sensing and Tuning Switch-Less Tertiary Winding and 208.8dBc/Hz 3.8K Cryogenic Temperature Imaging Applications Peak FoMT in 22nm FDSOI I. Bashir; Equal1 Labs; D. Leipold; Equal1 Labs; M. S. Razavian; Univ. of California, Los Angeles; A. O. El-Aassar; Univ. of California, San Diego; G.M. Rebeiz; Asker; Equal1 Labs; A. Esmailiyan; Univ. College Dublin; Babakhani; Univ. of California, Los Angeles Univ. of California, San Diego H. Wang; Univ. College Dublin; T. Siriburanon; Univ. College Dublin; P. Giounanlis; Univ. College Dublin; A. Koziol; Univ. College Dublin; D.A. Miceli; Univ. College Dublin; E. Blokhina; Univ. College Dublin; R.B. Staszewski; Univ. College Dublin

35 35 IMS2020 RFIC TECHNICAL SESSIONS

Tu1A: mmWave Signal Generation Tu1B: 5G Focus Session on Tu1C: Linearization and Efficiency Tu1D: Mixed-Signal and Power Advances in Mixer-First Receivers Enhancement Techniques Management Techniques for RF Chair: Ehsan Afshari, University of Transceivers Michigan Chair: Ramesh Harjani, University of Chair: Margaret Szymanowski, NXP Co-Chair: Andreia Cathelin, STMicroelec- Minnesota Semiconductors Chair: Antoine Frappé, IEMN tronicsy Co-Chair: Harish Krishnaswamy, Co-Chair: Sungwon Chung, Neuralink (UMR 8520) Columbia University Co-Chair: Bahar Jalali Farahani, Cisco Systems

Tu1A-1: Frequency Multiplier-by-4 Tu1B-1: mm-Wave Mixer-First Receiver Tu1C-1: A 1–3GHz I/Q Interleaved Tu1D-1: Fourier-Domain DAC-Based (Quadrupler) with 52dB Spurious-Free with Passive Elliptic Low-Pass Filter Direct-Digital RF Modulator as a Driver Transmitter: New Concepts Towards the Dynamic Range for 152GHz to 220GHz for a Common-Gate PA in 40nm CMOS Realisation of Multigigabit Wireless (G-Band) in 130nm SiGe P. Song; Univ. of Southern California; Transmitters H. Hashemi; Univ. of Southern California Y. Shen; Technische Universiteit Delft; P. Stärke; Technische Universität R. Bootsman; Technische Universiteit O. Hanay; RWTH Aachen Univ.; Dresden; V. Rieß; Technische Universität Delft; M.S. Alavi; Technische Universiteit E. Bayram; RWTH Aachen Univ.; Dresden; C. Carta; Technische Universität Delft; L.C.N. de Vreede; Technische S. Müller; RWTH Aachen Univ.; Dresden; F. Ellinger; Technische Universiteit Delft M. Elsayed; RWTH Aachen Univ.; Universität Dresden R. Negra; RWTH Aachen Univ.

Tu1A-2: A D-Band SiGe Frequency Tu1B-2: 10–35GHz Passive Mixer-First Tu1C-2: A 1.3V Wideband RF-PWM Tu1D-2: A 10MHz 40V VIN Slope- Doubler with a Harmonic Reflector Receiver Achieving +14dBm In-Band Cartesian Transmitter Employing Reconfigurable Gaussian Gate Driven Embedded in a Triaxial Balun IIP3 for Digital Beam-Forming Arrays Analog Outphasing and a Switched- GaN DC-DC Converter with 49.1dB Capacitor Class-D Output Stage Conducted EMI Noise Reduction at S.G. Rao; Georgia Tech; M. Frounchi; S. Krishnamurthy; Univ. of California, 100MHz Georgia Tech; J.D. Cressler; Georgia Tech Berkeley; A.M. Niknejad; Univ. of H. Kang; Univ. of Texas at Austin; V California, Berkeley .S. Rayudu; Univ. of Texas at Austin; C. Yang; Southern Methodist Univ.; K.Y. Kim; Univ. of Texas at Austin; W. Chen; Southern Methodist Univ.; R. Gharpurey; Univ. of Texas at Austin W. Da; Texas Instruments; Y. Fan; Texas Instruments; P. Gui; Southern Methodist Univ.

Tu1A-3: A Multichannel Programmable Tu1B-3: A 9–31GHz 65nm CMOS Down- Tu1C-3: Preserving Polar Modulated Tu1D-3: A Sub-10fs FOM, 5000× Load High Order Frequency Multiplier for Converter with >4dBm OOB B1dB Class-E Power Amplifier Linearity Driving Capacity and 5mV Output Channel Bonding and Full Duplex Under Load Mismatch Ripple Digital LDO with Dual-Mode Transceivers at 60GHz Band Z.G. Boynton; Cornell Univ.; A. Molnar; Nonlinear Voltage Detector and Dead- Cornell Univ. A. Khodkumbhe; BITS Pilani; Zone Charge Pump Loop A. Siligaris; CEA-LETI; J.L. Gonzalez- M. Huiskamp; Univ. of Twente; Jimenez; CEA-LETI; C. Jany; CEA-LETI; A. Ghahremani; Univ. of Twente; B. Wang; Tsinghua Univ.; W. Rhee; B. Blampey; CEA-LETI; A. Boulmirat; B. Nauta; Univ. of Twente; A.-J. Annema; Tsinghua Univ.; Z. Wang; Tsinghua Univ. CEA-LETI; A. Hamani; CEA-LETI; C. Univ. of Twente Dehos; CEA-LETI

Tu1A-4: A 126GHz, 22.5% Tuning, Tu1B-4: A 2.5-to-4.5-GHz Switched- Tu1C-4: A 28GHz Voltage-Combined Tu1D-4: A 32–40GHz 7-Bit CMOS 191dBc/Hz FOMt 3rd Harmonic LC-Mixer-First Acoustic-Filtering RF Doherty Power Amplifier with a Phase Shifter with 0.38dB/1.6° RMS Extracted Class-F Oscillator for D-Band Front-End Achieving <6dB NF, +30dBm Compact Transformer-Based Output Magnitude/Phase Errors for Phased Applications in 16nm FinFET IIP3 at 1×Bandwidth Offset Combiner in 22nm FD-SOI Array Systems B. Philippe; Katholieke Univ. Leuven; P H. Seo; Univ. of Illinois at Urbana- Z. Zong; IMEC; X. Tang; IMEC; K. Y. Li; USTC; Z. Duan; ECRIEE; W. Lv; . Reynaert; Katholieke Univ. Leuven Champaign; J. Zhou; Univ. of Illinois at Khalaf; Pharrowtech; D. Yan; IMEC; G. ECRIEE; D. Pan; USTC; Z. Xie; USTC; Urbana-Champaign Mangraviti; IMEC; J. Nguyen; IMEC; Y. Liu; Y. Dai; ECRIEE; L. Sun; USTC IMEC; P. Wambacq; IMEC

Tu1A-5: A 7.4dBm EIRP, 20.2% DC- Tu1C-5: A 6GHz 160MHz Bandwidth EIRP Efficiency 148GHz Coupled Loop MU-MIMO Eight-Element Direct Digital Oscillator with Multi-Feed Antenna in Beamforming TX Utilizing FIR H-Bridge 22nm FD-SOI DAC M.W. Mansha; Rensselaer Polytechnic B. Zheng; Univ. of Michigan; L. Jie; Institute; M. Hella; Rensselaer Univ. of Michigan; R. Wang; Univ. of Polytechnic Institute Michigan; M.P. Flynn; Univ. of Michigan

36 36 IMS2020 RFIC TECHNICAL SESSIONS

Tu2A: Ultra-Low Power Transceivers Tu2B: 5G Focus Session on Millimeter-Wave Tu2C: Sub-6 GHz Receiver Front-End Circuits Components and Systems Chair: Chun Huat Heng, NUS Chair: Kamran Entesari, Texas A&M University Co-Chair: Gernot Hueber, Silicon Austria Labs Chair: Tim Larocca, Northrop Grumman Co-Chair: Gary Hau, Qualcomm Co-Chair: Jane Gu, University of California, Davis

Tu2A-1: A 66.97pJ/Bit, 0.0413mm² Self-Aligned PLL- Tu2B-1: A 16-Element Fully Integrated 28GHz Digital Tu2C-1: A Wide-Band RF Front-End Module for 5G Calibrated Harmonic-Injection-Locked TX with >62dBc Beamformer with In-Package 4×4 Patch Antenna mMIMO Applications Spur Suppression for IoT Applications Array and 64 Continuous-Time Band-Pass Delta- Sigma Sub-ADCs M. Fraser; NXP Semiconductors; V.N.K. Malladi; NXP C.-C. Lin; Washington State Univ.; H. Hu; Washington Semiconductors; J. Staudinger; NXP Semiconductors; State Univ.; S. Gupta; Washington State Univ. R. Lu; Univ. of Michigan; C. Weston; Univ. of Michigan; C.-W. Chang; NXP Semiconductors D. Weyer; Univ. of Michigan; F. Buhler; Univ. of Michigan; M.P. Flynn; Univ. of Michigan

Tu2A-2: A 67-µW Ultra-Low Power PVT-Robust Tu2B-2: A 28GHz Front-End Module with T/R Switch Tu2C-2: A 1.2V, 5.5GHz Low-Noise Amplifier with 60dB MedRadio Transmitter Achieving 17.2dBm Psat, 21.5% PAEmax and 3.2dB On-Chip Selectivity for Uplink Carrier Aggregation and NF in 22nm FD-SOI for 5G Communication 1.3dB NF S. Mondal; Univ. of California, San Diego; D.A. Hall; Univ. of California, San Diego Y. Liu; IMEC; X. Tang; IMEC; G. Mangraviti; IMEC; K. D. Schrögendorfer; Infineon Technologies; T. Leitner; Khalaf; Pharrowtech; Y. Zhang; IMEC; W.-M. Wu; IMEC; Infineon Technologies S.-H. Chen; IMEC; B. Debaillie; IMEC; P. Wambacq; IMEC

Tu2A-3: A 400MHz/900MHz Dual-Band Ultra-Low- Tu2B-3: A 24–28GHz Power and Area Efficient Tu2C-3: A 5–6GHz Low-Noise Amplifier with >65- Power Digital Transmitter for Biomedical Applications 4-Element Phased-Array Transceiver Front-End dB Variable-Gain Control in 22nm FinFET CMOS with 21.1%/16.6% Transmitter Peak/OP1dB Technology Z. Weng; Tsinghua Univ.; H. Jiang; Tsinghua Univ.; PAE Supporting 2.4Gb/s in 256-QAM for 5-G Y. Guo; Tsinghua Univ.; Z. Wang; RITS Communications Y.-S. Yeh; Intel; H.-J. Lee; Intel W. Zhu; Tsinghua Univ.; J. Wang; Tsinghua Univ.; W. Lv; ECRIEE; X. Zhang; Rice Univ.; B. Liao; ECRIEE; Y. Zhu; ECRIEE; Y. Wang; Tsinghua Univ.

Tu2A-4: A mm-Scale Sensor Node with a 2.7GHz Tu2B-4: A CMOS Ka-Band SATCOM Transceiver with Tu2C-4: A Wideband Variable-Gain Amplifier with a 1.3µW Transceiver Using Full-Duplex Self-Coherent ACI-Cancellation Enhanced Dual-Channel Low-NF Negative Exponential Generation in 40-nm CMOS Backscattering Achieving 3.5m Range Wide-Dynamic-Range RX and High-Linearity TX Technology Z. Feng; Univ. of Michigan; L.-X. Chuo; Univ. of Michigan; Y. Wang; Tokyo Institute of Technology; D. You; Tokyo Y. Dong; NTU; L. Kong; NTU; C.C. Boon; NTU; Z. Liu; NTU; Y. Shi; Univ. of Michigan; Y. Kim; Univ. of Michigan; Institute of Technology; X. Fu; Tokyo Institute of C. Li; NTU; K. Yang; NTU; A. Zhou; NTU H. Kim; Univ. of Michigan; D. Blaauw; Univ. of Michigan Technology; T. Nakamura; Tokyo Institute of Technology; A.A. Fadila; Tokyo Institute of Technology; T. Someya; Tokyo Institute of Technology; A. Kawaguchi; Tokyo Institute of Technology; J. Pang; Tokyo Institute of Technology; K. Yanagisawa; Tokyo Institute of Technology; B. Liu; Tokyo Institute of Technology; Y. Zhang; Tokyo Institute of Technology; H. Zhang; Tokyo Institute of T

Tu2A-5: A Fully Integrated 0.2V 802.11ba Wake-Up Tu2B-5: Inter-Stream Loopback Calibration for 5G Tu2C-5: A 0.08mm² 1–6.2GHz Receiver Front-End with Receiver with -91.5dBm Sensitivity Phased-Array Systems Inverter-Based Shunt-Feedback Balun-LNA J. Im; Univ. of Michigan; J. Breiholz; Univ. of Virginia; Y. Aoki; Samsung; Y. Kim; Samsung; Y. Hwang; B. Guo; Chengdu University; D. Prevedelli; Università S. Li; Univ. of Virginia; B. Calhoun; Univ. of Virginia; D.D. Samsung; S. Kim; Samsung; M.T. Dao; Samsung; di Pavia; R. Castello; Università di Pavia; D. Manstretta; Wenzloff; Univ. of Michigan D. Kang; Samsung; D. Minn; Samsung; H. Kang; Università di Pavia Samsung; H.-C. Park; Samsung; A.-S. Ryu; Samsung; S. Jeon; Samsung; S.-G. Yang; Samsung

37 37 IMS2020 IMS TECHNICAL SESSIONS

Tu1E: Novel Components, Tu1F: High Power Amplifiers for HF Tu1G: Innovative RF Switches and Tu1H: Advances in RF and Waveguides, and Methods for Through S Band Applications Microwave CAD Techniques Radiating Structures Chair: Marc Franco, QORVO, Inc. Chair: Guoan Wang, University of South Chair: Erin Kiley, Massachusetts College Chair: Dan Jiao, Purdue University Co-Chair: Robert Caverly, Villanova Carolina of Liberal Arts Co-Chair: Werner Thiel, ANSYS, Inc. University Co-Chair: John Ebel, US Air Force Co-Chair: Jose Rayas-Sanchez, ITESO - Research Laboratory The Jesuit University of Guadalajara

Tu1E-1: Linear-to-Circular Polarization Tu1F-1: Series-Combined Coaxial Tu1G-1: RF-MEMS Switched Capacitor Tu1H-1: High-Dimensional Variability Converter Based on Stacked Dielectric Resonator Class-F Power Using Ta/Ta2O5 Electrodes Analysis via Parameters Space Metasurfaces with Aperture Amplifier System Partitioning Coupling Interlayer J.-C. Orlianges; XLIM (UMR 7252); R.A. Beltran; Ophir RF; F. Wang; Ophir RF; M. Laouini; XLIM (UMR 7252); C. Y. Tao; Carleton Univ.; F. ; IMT C. Tao; Univ. of California, Los Angeles; G. Villagrana; Ophir RF Hallepee; XLIM (UMR 7252); P. Blondy; Atlantique; M. Nakhla; Carleton Univ. A. Papathanasopoulos; Univ. of California, XLIM (UMR 7252) Los Angeles; T. Itoh; Univ. of California, Los Angeles

Tu1E-2: A Coupled Pair of Anti- Tu1F-2: An Over 230W, 0.5–2.1GHz Tu1G-2: A 25THz FCO (6.3 fs Tu1H-2: Adaptively Weighted Training Symmetrically Nonreciprocal Composite Wideband GaN Power Amplifier Using RON*C_OFF) Phase-Change Material of Space-Mapping Surrogates for Right/Left-Handed Metamaterial Lines Transmission-Line-Transformer-Based RF Switch Fabricated in a High Volume Accurate Yield Estimation of Microwave Combining Technique Manufacturing Environment with Components T. Ueda; Kyoto Institute of Technology; Demonstrated Cycling > 1 Billion Times K. Yamagami; Kyoto Institute of Y. Niida; Fujitsu Laboratories; M. Sato; J. Zhang; Tianjin Univ.; F. Feng; Carleton Technology; T. Itoh; Univ. of California, Fujitsu Laboratories; M. Nishimori; Fujitsu N. El-Hinnawy; Tower Semiconductor; Univ.; W. Na; Univ. of Technology; Los Angeles Laboratories; T. Ohki; Fujitsu Laboratories; G. Slovin; Tower Semiconductor; J. Rose; J. Jin; Tianjin Univ.; Q.J. Zhang; Carleton N. Nakamura; Fujitsu Laboratories Tower Semiconductor; D. Howard; Tower Univ. Semiconductor

Tu1E-3: Partially-Air-Filled Slow-Wave Tu1F-3: Compact and Highly Efficient Tu1G-3: Fully Printed VO2 Switch Based Tu1H-3: Computationally Efficient Substrate Integrated Waveguide Lumped Push-Pull Power Amplifier at Flexible and Reconfigurable Filter Performance-Driven Surrogate in Metallic Nanowire Membrane Kilowatt Level with Quasi-Static Drain Modeling of Microwave Components Technology Supply Modulation S. Yang; KAUST; W. Li; KAUST; M. Vaseem; Using Principal Component Analysis KAUST; A. Shamim; KAUST J. Corsi; RFIC-Lab (EA 7520); R. Tong; Uppsala Univ.; D. Dancila; S. Koziel; Reykjavik University; G.P. Rehder; Universidade de São Paulo; Uppsala Univ. A. Pietrenko-Dabrowska; Gdansk L.G. Gomes; Universidade de São University of Technology; J.W. Bandler; Paulo; M. Bertrand; L2E; A.L.C. Serrano; McMaster Univ. Universidade de São Paulo; E. Pistono; RFIC-Lab (EA 7520); P. Ferrari; RFIC-Lab (EA 7520)

Tu1E-4: The Transition Between Tu1F-4: A 2.3kW 80% Efficiency Single Tu1G-4: Miniaturized Reconfigurable Tu1H-4: Design of SIW Filters in Radiative and Reactive Region for GaN Transistor Amplifier for 400.8MHz 28GHz PCM-Based 4-Bit Latching D-Band Using Invertible Neural Nets Leaky Waves in Planar Waveguiding Particle Accelerators and UHF Radar Variable Attenuator for 5G mmWave Structures Systems Applications H. Yu; Georgia Tech; H.M. Torun; Georgia Tech; M.U. Rehman; Georgia Tech; W. Fuscaldo; Università di Roma G. Formicone; Integra Technologies; T. Singh; Univ. of Waterloo; R.R. Mansour; M. Swaminathan; Georgia Tech “La Sapienza”; P. Burghignoli; Università J. Custer; Integra Technologies Univ. of Waterloo di Roma “La Sapienza”; A. Galli; Università di Roma “La Sapienza”

Tu1E-5: Small-Scale Beam Scanning Tu1F-5: An Enhanced Large-Power Tu1G-5: Monolithic Integration of Tu1H-5: Automated Spiral Inductor with an Ultrathin High Impedance S-Band Injection-Locked Magnetron Phase-Change RF Switches in a Design by a Calibrated PI Network with Surface-Based Leaky Wave Antenna with Anode Voltage Ripple Inhibition Production SiGe BiCMOS Process Manifold Mapping Technique with Multiple Feeds with RF Circuit Demonstrations X. Chen; Sichuan Univ.; B. Yang; X. Fan; Univ. of Regina; S. Li; Univ. of M.M.R.H. Tanmoy; Univ. of South Kyoto Univ.; X. Zhao; Sichuan Univ.; G. Slovin; Tower Semiconductor; Regina; P.D. Laforge; Univ. of Regina; Alabama; S.I. Latif; Univ. of South N. Shinohara; Kyoto Univ.; C. Liu; N. El-Hinnawy; Tower Semiconductor; Q.S. Cheng; SUSTech Alabama; A.T. Almutawa; Univ. of Sichuan Univ. C. Masse; Tower Semiconductor; J. Rose; California, Irvine; F. Capolino; Univ. Tower Semiconductor; D. Howard; Tower . of California, Irvine Semiconductor Tu1H-6: An Objective Function Formulation for Circuit Parameter Extraction Based on the Kullback- Leibler Distance R. Loera-Díaz; ITESO; J.E. Rayas-Sánchez; ITESO

38 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

Tu2E: Advances in Microwave Tu2F: Power Amplifiers for S and Tu2G: Filters Based on Tu2H: Advances in to Terhertz Photonics and C Band Micro-machined Acoustic or Electromagnetic Modeling Nanotechnology Electromagnetic Structures Techniques Chair: Vittorio Camarchia, Politecnico di Chair: Mona Jarrahi, University of Torino Chair: Amelie Hagelauer, University of Chair: Zhizhang David Chen, Dalhousie California, Los Angeles Co-Chair: Damon Holmes, NXP Bayreuth University Co-Chair: Luca Pierantoni, Universita Semiconductors Co-Chair: Songbin Gong, University of Co-Chair: Marco Pirola, Politecnico di Politecnica delle Marche Illinois at Urbana-Champaign Torino

Tu2E-1: High-Sensitivity Plasmonic Tu2F-1: Optimal Supply Voltage for PA Tu2G-1: High-Q Bandpass-to-Bandstop Tu2H-1: Surface-Volume-Surface EFIE Photoconductive Terahertz Detector Output Power Correction Under Load Reconfigurable Filter Based on SAW for Analysis of 3-D Microwave Circuits Driven by a Femtosecond Ytterbium- Varying Scenarios Resonators in Multilayered Substrates with Finite Doped Fiber Laser Dielectric Inclusions C.F. Gonçalves; Instituto de R. Chen; USTC; Q. Sheng; USTC; L. Zhou; D. Turan; Univ. of California, Los Angeles; Telecomunicações; F.M. Barradas; USTC; C. Chen; USTC; H. Zhang; UMass S. Zheng; Univ. of Manitoba; R. Gholami; N.T. Yardimci; Univ. of California, Los Instituto de Telecomunicações; L.C. Lowell Univ. of Manitoba; V. Okhmatovski; Univ. Angeles; M. Jarrahi; Univ. of California, Nunes; Instituto de Telecomunicações; of Manitoba Los Angeles P.M. Cabral; Instituto de Telecomunicações; J.C. Pedro; Instituto de Telecomunicações

Tu2E-2: Terahertz Generation Through Tu2F-2: A 3.9-GHz-Band Outphasing Tu2G-2: Microfabrication of a Tu2H-2: A Volume Current Based Bias-Free Telecommunication Power Amplifier with Compact Miniaturized Monolithic Folded Half- Method of Moments Analysis of Compatible Photoconductive Combiner Based on Dual-Power-Level Mode Integrated Waveguide Cavity for Shielded Planar 3-D Circuits in Layered Nanoantennas Over a 5THz Radiation Design for Wide-Dynamic-Range W-Band Applications Media Bandwidth Operation T.R. Jones; Univ. of Alberta; J.C. Rautio; Sonnet Software; M. Thelen; D. Turan; Univ. of California, Los Angeles; R. Ogasawara; Univ. of Electro- M. Daneshmand; Univ. of Alberta Sonnet Software N.T. Yardimci; Univ. of California, Los Communications; Y. Takayama; Univ. Angeles; P.K. Lu; Univ. of California, of Electro-Communications; R. Ishikawa; Los Angeles; M. Jarrahi; Univ. of Univ. of Electro-Communications; California, Los Angeles K. Honjo; Univ. of Electro-Communications

Tu2E-3: A 63-Pixel Plasmonic Photo­ Tu2F-3: Co-Designed High-Efficiency Tu2G-3: An Intrinsically Switchable Tu2H-3: Multiphysics Sensitivity conductive Terahertz Focal-Plane Array GaN Filter Power Amplifier Balanced Ferroelectric FBAR Filter at Analysis in FDTD Based 2GHz Electromagnetic-Thermal Simulations X. Li; Univ. of California, Los Angeles; J.A. Estrada; University of Colorado M. Jarrahi; Univ. of California, Los Angeles Boulder; P. de Paco; Univ. Autònoma M. Zolfagharloo Koohi; Univ. of Michigan; K.-A. Liu; Intel; C.D. Sarris; de Barcelona; S. Johannes; University W. Peng; Univ. of Michigan; A. Mortazawi; Univ. of Toronto Tu2E-4: Operation of Near-Field Scan­ of Colorado Boulder; D. Psychogiou; Univ. of Michigan ning Millimeter-Wave Microscopy up University of Colorado Boulder; Z. to 67GHz Under Scanning Electron Popovic; University of Colorado Boulder Microscopy Vision P. Polovodov; IEMN (UMR 8520); D. Théron; S. Eliet; V. Avramovic; C. Boyaval; D. Deresmes; G. Dambrine; K. Haddadi; IEMN (UMR 8520) Tu2F-4: Integrated Filtering Class-F Tu2G-4: W-Band Micro-Fabricated Tu2H-4: Application of Conformal Tu2E-5: Covert Photonics-Enabled Power Amplifier Based on Microstrip Waveguide Band-Pass Filters Mapping to Rigorous Validation of 2D Millimeter-Wave Transmitter Multimode Resonator Coupled EM-CFD Modelling N. Jguirim; XLIM (UMR 7252); E. Siman-Tov; Johns Hopkins Univ.; J.H. Kalkavage; Johns Hopkins L.-H. Zhou; CityU; X.Y. Zhou; CityU; C. Dalmay; XLIM (UMR 7252); K. Wilczynski; Warsaw Univ. of Univ.; J.C. Juarez; General Dynamics; W.S. Chan; CityU; J. Pang; Univ. College D. Passerieux; XLIM (UMR 7252); Technology; M. Olszewska-Placha; D.M. Coleman; Johns Hopkins Univ. Dublin; D. Ho; CityU P. Blondy; XLIM (UMR 7252) QWED; M. Celuch; QWED

Tu2E-6: Microwave Photonic Tu2G-5: Suppression of Acoustic Tu2H-5: The Entropy Technique for the Self-Adaptive Bandpass Filter Resonances in All-Oxide Varactors Time-Reversal Source Reconstruction and its Application to a Frequency Set-On Oscillator D. Walk; Technische Univ. Darmstadt; X.-Y. Feng; Dalhousie University; D. Kienemund; Technische Univ. Z. Chen; Dalhousie University; J.-C. Liang; G. Charalambous; Univ. of Cyprus; Darmstadt; P. Agrawal; Technische Univ. Southeast Univ. S. Iezekiel; Univ. of Cyprus Darmstadt; P. Salg; Technische Univ. Darmstadt; L. Zeinar; Technische Univ. Darmstadt; P. Komissinskiy; Technische Univ. Darmstadt; L. Alff; Technische Univ. Darmstadt; R. Jakoby; Technische Univ. Darmstadt; H. Maune; Technische Univ. Darmstadt

39 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

Tu3A: Integrated Millimeter-Wave Tu3B: Advances in Low Noise Tu3C: Advanced Mixed-Signal Tu3D: Microwave Characterization Transmission Lines Circuits for Quantum Computing, Transmitter and Optical Driver ICs of Liquid and Biological Materials Scientific Sensing, and Broadband towards 100Gbit/s Chair: Jun Choi, University at Buffalo Communications Chair: Malgorzata Celuch, QWED Sp. z Co-Chair: Maurizio Bozzi, University of Chair: Christian Carlowitz, Friedrich-Alex- o.o Pavia Chair: Pekka Kangaslahti, Jet Propulsion ander-Universität Erlangen-Nürnberg Co-Chair: Arnaud Pothier, Xlim - CNRS- Laboratory Co-Chair: Hermann Boss, Rohde & Unversite De Liroges Co-Chair: George Duh, BAE Systems Schwarz GmbH & Co KG

Tu3A-1: Dual Image Dielectric Guide Tu3B-1: A 1mW Cryogenic LNA Tu3C-1: A 3-Bit DAC with Gray Coding Tu3D-1: An SIW Oscillator for (DIDG) for Polarization Diversity Exploiting Optimized SiGe HBTs to for 100-Gbit/s PAM Signal Generation Microfluidic Lossy Medium Applications at Millimeter Wave Achieve an Average Noise Temperature Characterization Frequency of 3.2K from 4–8GHz V. Rieß; Technische Universität Dresden; P. Stärke; Bosch Sensortec; M.M. Khafaji; M. Abdolrazzaghi; Univ. of Alberta; M. Noferesti; INRS-EMT; T. Djerafi; W.-T. Wong; UMass Amherst; M. Hosseini; Technische Universität Dresden; C. Carta; N. Kazemi; Univ. of Alberta; M. INRS-EMT UMass Amherst; H. Rücker; IHP; Technische Universität Dresden; Daneshmand; Univ. of Alberta J.C. Bardin; Google F. Ellinger; Technische Universität Dresden

Tu3A-2: A Cost-Efficient Air-Filled Tu3B-2: Cryogenic W-Band SiGe Tu3C-2: A 50-Gb/s Optical Transmitter Tu3D-3: A CMOS Microwave Broadband Substrate Integrated Ridge Waveguide BiCMOS Low-Noise Amplifier Based on Co-Design of a 45-nm Adaptive Dual-Comb Dielectric for mmWave Application CMOS SOI Distributed Driver and Spectroscopy System for Liquid M. Varonen; VTT Technical Research 90-nm Silicon Photonic Mach-Zehnder Chemical Detection C.-W. Ting; National Taiwan Univ.; Centre of Finland; N. Sheikhipoor; VTT Modulator S. Chen; National Taiwan Univ.; T.-L. Wu; Technical Research Centre of Finland; E. Kaya; Texas A&M Univ.; K. Entesari; National Taiwan Univ. B. Gabritchidze; Caltech; K. Cleary; N. Hosseinzadeh; Univ. of California, Texas A&M Univ. Caltech; H. Forstén; VTT Technical Santa Barbara; K. Fang; Univ. of Research Centre of Finland; H. Rücker; California, San Diego; L.A. Valenzuela; IHP; M. Kaynak; IHP C.L. Schow; J.F. Buckwalter; Univ. of California, Santa Barbara

Tu3A-3: Travelling-Wave SIW Tu3B-3: X- to Ka-Band Cryogenic Tu3C-3: A 2.85pJ/Bit, 52-Gbps NRZ Tu3D-4: A 162GHz Ring Resonator Transmission Line Using TE20 Mode for LNA Module for Very Long Baseline VCSEL Driver with Two-Tap Feedforward Based High Resolution Dielectric Millimeter-Wave Antenna Application Interferometry Equalization Sensor Z. Wang; UESTC; Y. Dong; UESTC A. Fung; L. Samoska; J. Bowen; L.A. Valenzuela; Univ. of California, Santa H. Yu; Univ. of California, Davis; B. Yu; S. Montanez; J. Kooi; M. Soriano; Barbara; H. Andrade; Univ. of California, Skyworks Solutions; X. Ding; Univ. of C. Jacobs; R. Manthena; D. Hoppe; Santa Barbara; N. Hosseinzadeh; Univ. California, Davis; J.S. Gómez-Díaz; Univ. Jet Propulsion Lab; A. Akgiray; Özyegin of California, Santa Barbara; of California, Davis; Q.J. Gu; Univ. of University; R. Lai; Northrop Grumman; A. Maharry; Univ. of California, Santa California, Davis X. Mei; Northrop Grumman; M. Barsky; Barbara; C.L. Schow; Univ. of California, Northrop Grumman Santa Barbara; J.F. Buckwalter; Univ. of California, Santa Barbara Tu3A-4: AFSIW-to-Microstrip Directional Tu3B-4: A Fully-Integrated W-Band Tu3C-4: A 6.5~7.5-GHz CMOS Tu3D-5: Electrical Properties of Jurkat Coupler for High-Performance Systems I/Q-Down-Conversion MMIC for Use Wideband FMCW Radar Transmitter Cells: An Inverted Scanning Microwave on Substrate in Radio Astronomical Multi-Pixel Based on Synthetic Bandwidth Microscope Study Receivers Technique A. Ghiotto; IMS (UMR 5218); G. Fabi; Università Politecnica delle J.-C. Henrion; IMS (UMR 5218); T. F. Thome; Fraunhofer IAF; E. Ture; H. Su; NUS; S.D. Balon; NUS; K.Y. Marche; C.H. Joseph; Università Martin; IMS (UMR 5218); J.-M. Pham; Fraunhofer IAF; A. Leuther; Fraunhofer Cheong; NUS; C.-H. Heng; NUS Politecnica delle Marche; X. Jin; Lehigh IMS (UMR 5218); V. Armengaud; CNES IAF; F. Schäfer; MPI for Radio Astronomy; University; X. Wang; Cornell Univ.; A. Navarrini; INAF; P. Serres; IRAM; T. Pietrangelo; Università “G. D’Annunzio” O. Ambacher; Fraunhofer IAF Chieti-Pescara; X. Cheng; Lehigh University; J.C.M. Hwang; Cornell Univ.; M. Farina; Università Politecnica delle Marche

Tu3A-5: Design and Analysis of Tu3B-5: A 125.5–157GHz 8dB NF Tu3C-5: A 24–30GHz Ultra-Compact 3D Printed Slotted Waveguides for and 16dB of Gain D-Band Low Noise Phase Shifter Using All-Pass Networks D-Band Using Stereolithography and Amplifier in CMOS SOI 45nm for 5G User Equipment Electroless Silver Plating A. Hamani; CEA-LETI; A. Siligaris; CEA- E.V.P. Anjos; Katholieke Univ. Leuven; K. Lomakin; FAU Erlangen-Nürnberg; LETI; B. Blampey; CEA-LETI; C. Dehos; D.M.M.-P. Schreurs; Katholieke M. Sippel; FAU Erlangen-Nürnberg; CEA-LETI; J.L. Gonzalez Jimenez; CEA-LETI Univ. Leuven; G.A.E. Vandenbosch; K. Helmreich; FAU Erlangen-Nürnberg; Katholieke Univ. Leuven; M. Geurts; NXP G. Gold; FAU Erlangen-Nürnberg Semiconductors

40 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

Tu3E: Acoustic Devices for Ultra- Tu3F: Broadband, High- Tu3H: Advances in Microwave high Frequency Applications and Performance GaN and GaAs Semiconductor Devices RF Filter Synthesis Power Amplifiers Chair: Patrick Fay, University of Notre Chair: Brice Ivira, Broadcom Corporation Chair: Charles Campbell, QORVO, Inc. Dame Co-Chair: Amir Mortzawi, University of Co-Chair: Gayle Collins, Obsidian Co-Chair: Tony Ivanov, US Army CERDEC Michigan Microwave, LLC.

Tu3E-1: A 19GHz Lithium Niobate Tu3F-1: A Compact 10W 2–20GHz Tu3H-1: Impact of Input Nonlinearity Acoustic Filter with FBW of 2.4% GaN MMIC Power Amplifier Using a on Efficiency, Power, and Linearity Decade Bandwidth Output Impedance Performance of GaN RF Power L. Gao; Univ. of Illinois at Urbana- Transformer Amplifiers Champaign; Y. Yang; Univ. of Illinois at Urbana-Champaign; S. Gong; Univ. of M. Roberg; Qorvo; M. Pilla; Qorvo; S.K. Dhar; Univ. of Calgary; T. Sharma; Illinois at Urbana-Champaign S. Schafer; Qorvo; T.R. Mya Kywe; Qorvo; NXP Semiconductors; R. Darraji; R. Flynt; Qorvo; N. Chu; Qorvo Ericsson; D.G. Holmes; J. Staudinger; NXP Semiconductors; X.Y. Zhou; City U; V. Mallette; Focus Microwaves; F.M. Ghannouchi; Univ. of Calgary Tu3E-2: 5.4GHz Acoustic Delay Lines Tu3F-2: 2.5 to 10.0GHz Band-Pass Tu3H-2: High Power AlN/GaN HEMTs in Lithium Niobate Thin Film with 3dB Non-Uniform Distributed GaN MMIC with Record Power-Added-Efficiency Insertion Loss HPA >70% at 40GHz R. Lu; Univ. of Illinois at Urbana- J. Kamioka; Mitsubishi Electric; K. Harrouche; IEMN (UMR 8520); Champaign; Y. Yang; Univ. of Illinois at M. Hangai; Mitsubishi Electric; S. Miwa; R. Kabouche; IEMN (UMR 8520); Urbana-Champaign; S. Link; Univ. of Mitsubishi Electric; Y. Kamo; Mitsubishi E. Okada; IEMN (UMR 8520); F. Illinois at Urbana-Champaign; S. Gong; Electric; S. Shinjo; Mitsubishi Electric Medjdoub; IEMN (UMR 8520) Univ. of Illinois at Urbana-Champaign

Tu3E-3: An X-Band Lithium Niobate Tu3F-3: Two-Stage Concurrent X/Ku Tu3H-3: InAlN/GaN-on-Si HEMT with Acoustic RFFE Filter with FBW of 3.45% Dual-Band GaAs MMIC Power Amplifier 4.5W/mm in a 200-mm CMOS- and IL of 2.7dB Compatible MMIC Process for 3D P. Zurek; University of Colorado Boulder; Integration Y. Yang; Univ. of Illinois at Urbana- Z. Popovic; University of Colorado Champaign; L. Gao; Univ. of Illinois at Boulder S. Warnock; C.-L. Chen; J. Knecht; Urbana-Champaign; S. Gong; Univ. of R. Molnar; D.-R. Yost; M. Cook; C. Stull; R. Illinois at Urbana-Champaign Johnson; C. Galbraith; J. Daulton; W. Hu; G. Pinelli; MIT Lincoln Laboratory; J. Perozek; MIT; T. Palacios; MIT; B. Zhang; MIT Lincoln Laboratory

Tu3E-4: Surface Acoustic Wave Tu3F-4: Broadband Driver Amplifier Tu3H-4: Noise Performance of Sub-100- Resonators Using Lithium Niobate on with Voltage Offset for GaN-Based nm Metamorphic HEMT Technologies Silicon Carbide Platform Switching PAs F. Heinz; Fraunhofer IAF; F. Thome; S. Zhang; Chinese Academy of Sciences; T. Hoffmann; FBH; F. Hühn; FBH; S. Fraunhofer IAF; A. Leuther; Fraunhofer R. Lu; Univ. of Illinois at Urbana- Shevchenko; FBH; W. Heinrich; FBH; IAF; O. Ambacher; Fraunhofer IAF Champaign; H. Zhou; Chinese Academy A. Wentzel; FBH of Sciences; S. Link; Univ. of Illinois at Urbana-Champaign; Y. Yang; Univ. of Illinois at Urbana-Champaign; Z. Li; Chinese Academy of Sciences; K. Huang; Chinese Academy of Sciences; X. Ou; Chinese Academy of Sciences; S. Gong; Univ. of Illinois at Urbana-Champaign

Tu3E-5: Synthesis and Realization of Tu3F-5: A Dual-Mode Bias Circuit Tu3H-5: High-Power RF Characterization Chebyshev Filters Based on Constant Enabled GaN Doherty Amplifier of Diamond Schottky Barrier Diodes at Electromechanical Coupling Coefficient Operating in 0.85–2.05GHz and X-Band Acoustic Wave Resonators 2.4–4.2GHz X. Konstantinou; Michigan State Univ.; S.-Y. Tseng; National Taiwan Univ.; Y. Komatsuzaki; Mitsubishi Electric; C.J. Herrera-Rodriquez; Michigan State C.-C. Hsiao; Tai-Saw Technology; R. Ma; MERL; S. Sakata; Mitsubishi Univ.; A. Hardy; Fraunhofer USA CCD; R.-B. Wu; National Taiwan Univ. Electric; K. Nakatani; Mitsubishi Electric; J.D. Albrecht; Michigan State Univ.; S. Shinjo; Mitsubishi Electric T. Grotjohn; Michigan State Univ.; J. Papapolymerou; Michigan State Univ.T

41 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News 41 IMS2020 IMS TECHNICAL SESSIONS

Tu4A: Innovative Wave Tu4B: High-Performance Low- Tu4C: Advanced Design Tu4D: Microwave Systems Transmission, Manipulation and Noise Amplifiers Techniques for Voltage Controlled and Methods for Permittivity Generation Oscillators Measurements Chair: Chinchun Meng, National Chiao Chair: Christian Damm, Ulm University Tung University Chair: Nils Pohl, Ruhr University Bochum Chair: Pawel Kopyt, Warsaw University of Co-Chair: Jason Soric, Raytheon Co-Chair: Luciano Boglione, Naval Co-Chair: Hiroshi Okazaki, NTT DoCoMo, Technology Company Research Laboratory Inc. Co-Chair: Rashaunda Hnderson, University of Texas at Dallas

Tu4A-1: A Fine Picosecond Pulse Tu4B-1: A 6.5–12GHz Balanced Tu4C-1: Octave Frequency Range Triple- Tu4D-1: Broadband Measurement of Generator Based on Novel SRD Topology Variable Gain Low-Noise Amplifier with Band Low Phase Noise K/Ka-Band VCO Dielectric Properties of Substrates up and Tapered NLTL Frequency-Selective Non-Foster Gain with a New Dual-Path Inductor to 67GHz Using a Coaxial Air Line Equalization Technique M. Rahman; Polytechnique Montréal; Md.A. Hoque; Washington State Univ.; N. Mahjabeen; Univ. of Texas at Dallas; K. Wu; Polytechnique Montréal H. Gao; Zhejiang Univ.; N. Li; Zhejiang M. Chahardori; Washington State A.P. Zanders; Univ. of Texas at Dallas; Univ.; M. Li; Zhejiang Univ.; S. Wang; Univ.; P. Agarwal; MaxLinear; M.A. R. Henderson; Univ. of Texas at Dallas Zhejiang Univ.; Z. Zhang; Zhejiang Univ.; Mokri; Washington State Univ.; D. Heo; Y.-C. Kuan; National Chiao Tung Univ. Washington State Univ. ; X. Yu; Zhejiang Univ.; Q.J. Gu; Univ. of California, Davis; Z. Xu; Zhejiang Univ.

Tu4A-2: Liquid Crystal Based Parallel- Tu4B-2: A Compact Frequency-Tunable Tu4C-2: A Superharmonic Injection Tu4D-2: High-Resolution Millimeter- Polarized Dielectric Image Guide Phase VGA for Multi-Standard 5G Transceivers Based G-Band Quadrature VCO in Wave Tomography System for Shifter at W-Band CMOS Characterization of Low-Permittivity R. Ben Yishay; ON Semiconductor; Materials H. Tesmer; Technische Univ. Darmstadt; D. Elad; ON Semiconductor X. Ding; Univ. of California, Davis; H. Yu; R. Reese; Technische Univ. Darmstadt; Univ. of California, Davis; B. Yu; Skyworks A. Och; P.A. Hölzl; Infineon Technologies; E. Polat; Technische Univ. Darmstadt; Solutions; Z. Xu; Zhejiang Univ.; Q.J. Gu; S. Schuster; voestalpine; J.O. R. Jakoby; Technische Univ. Darmstadt; Univ. of California, Davis Schrattenecker; Intel; P.F. Freidl; Infineon H. Maune; Technische Univ. Darmstadt Technologies; S. Scheiblhofer; D. Zankl; voestalpine; V. Pathuri-Bhuvana; Silicon Austria Labs; R. Weigel; FAU Erlangen-Nürnberg

Tu4A-3: Negative Group Delay Enabled Tu4B-3: A CMOS Band-Pass Low Noise Tu4C-3: A Power Efficient 60-GHz Tu4D-3: Non-Destructive Testing of Artificial Transmission Line Exhibiting Amplifier with Excellent Gain Flatness Super-Regenerative Oscillator with Non-Metallic Concentric Pipes Using Squint-Free, Dominant Mode, Backward for mm-Wave 5G Communications 10-GHz Switching Rate in 22-nm FD- Microwave Measurements Leaky-Wave Radiation SOI CMOS H.-W. Choi; Chungnam National H. Wu; NYIT; M. Ravan; NYIT; R. Sharma; M. Zhu; Rutgers Univ.; C.-T.M. Wu; Rutgers University; S. Choi; Chungnam National A. Ferschischi; Technische Universität NYIT; J. Patel; NYIT; R.K. Amineh; NYIT Univ. University; C.-Y. Kim; Chungnam National Dresden; H. Ghaleb; Technische University Universität Dresden; Z. Tibenszky; Technische Universität Dresden; C. Carta; Technische Universität Dresden; F. Ellinger; Technische Universität Dresden

Tu4A-4: Demonstration of Low Loss Tu4B-4: A Tri (K/Ka/V)-Band Monolithic Tu4C-4: A 0.011-mm² 27.5-GHz VCO Tu4D-4: Portable Low-Cost RF Conductor in Ka and V Bands CMOS Low Noise Amplifier with Shared with Transformer-Coupled Bandpass Measurement Setup for 2D Imaging Using Cu/Fe Multilayers for 5G and Signal Path and Variable Gains Filter Achieving -191dBc/Hz FoM in of Organic Semiconductors Millimeter Wave Applications 16-nm FinFET CMOS C.-J. Liang; National Chiao Tung Univ. ; M. Celuch; QWED; O. Douheret; R. Bowrothu; Univ. of Florida; Y.-K. Yoon; C.-W. Chiang; National Chiao Tung Univ. C.-H. Lin; TSMC; Y.-T. Lu; TSMC; H.-Y. Liao; Materia Nova; P. Korpas; Warsaw Univ. of Univ. of Florida ; J. Zhou; Univ. of California, Los Angeles; TSMC; S. Chen; TSMC; A.L.S. Loke; TSMC; Technology; R. Michnowski; Vigo System; R. Huang; Univ. of California, Los Angeles; T.-J. Yeh; TSMC M. Olszewska-Placha; QWED; J. Rudnicki; K.-A. Wen; National Chiao Tung Univ. ; QWED M.-C.F. Chang; National Chiao Tung Univ. ; Y.-C. Kuan; National Chiao Tung Univ.

Tu4A-5: Equivalent Circuit Models Tu4B-5: A 64.5–88GHz Coupling- Tu4C-5: An X-Band LC VCO Using a New Tu4D-5: Clutter Mitigation Based on for Full-Tensor Anisotropic Composite Concerned CMOS LNA with >10dB Gain Boosted Active Capacitor with 53% Adaptive Singular Value Decomposition Right/Left-Handed Metamaterials and 5dB Minimum NF Tuning Range and -202.4dBc/Hz FoMT in Tomographic Radar Images for Material Inspection T. Nagayama; Kagoshima Univ. K. Zhang; East China Normal Univ.; . Agarwal; Washington State Univ.; C. Shi; East China Normal Univ.; G. Chen; M. Chahardori; Washington State Univ.; D. Meier; Fraunhofer IAF; B. Gashi; Shanghai Eastsoft Microelectronics; D. Heo; Washington State Univ. Fraunhofer IAF; T. Link; Composite J. Chen; Univ. of Houston; R. Zhang; Material Supply; T. Schwarze; GFaI; East China Normal Univ. C. Zech; Fraunhofer IAF; B. Baumann; Fraunhofer IAF; M. Schlechtweg; Fraunhofer IAF; J. Kühn; Fraunhofer IAF; M. Rösch; Fraunhofer IAF; L.M. Reindl; Albert-Ludwigs-Universität Freiburg 42 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

Tu4E: Nonlinear Circuits & Tu4F: Innovations in Broadband Tu4H: Advanced Transistor Systems Millimeter-wave Power Amplifiers Modeling and Characterization Chair: Christopher Silva, The Aerospace Chair: David Brown, BAE Systems Chair: Rob Jones, Raytheon Company Corporation Co-Chair: Mark van der Heijden , NXP Co-Chair: Doug Teeter, QORVO, Co-Chair: Subrata Halder, QORVO, Inc. Semiconductors Inc.406AB

Tu4E-1: Mutual Injection Locking of Tu4F-1: High Output Power Ultra- Tu4H-1: Gate Bias Incorporation Oscillator Circuits Through Inductor Wideband Distributed Amplifier in InP into Cardiff Behavioural Modelling Coupling DHBT Technology Using Diamond Heat Formulation Spreader A. Suárez; Universidad de Cantabria; E.M. Azad; Cardiff University; J.J. Bell; F. Ramírez; Universidad de Cantabria; T. Shivan; FBH; M. Hossain; FBH; Cardiff University; R. Quaglia; Cardiff R. Melville; Emecon R. Doerner; FBH; T.K. Johansen; Technical University; J.J. Moreno Rubio; Cardiff Univ. of Denmark; K. Nosaeva; FBH; University; P.J. Tasker; Cardiff University H. Yacoub; FBH; W. Heinrich; FBH; V. Krozer; FBH

Tu4E-2: Analysis of the Transient Tu4F-2: Broadband PA Architectures Tu4H-2: GaN and GaAs HEMT Channel Dynamics of Coupled-Oscillator with Asymmetrical Combining and Charge Model for Nonlinear Microwave Systems Stacked PA Cells Across 50–70GHz and RF Applications and 64–110GHz in 250nm InP S. Sancho; Universidad de Cantabria; A.E. Parker; Macquarie Univ. A. Suárez; Universidad de Cantabria; T. Sharma; Princeton Univ.; Z. Liu; F. Ramírez; Universidad de Cantabria Princeton Univ.; C.R. Chappidi; Princeton Univ.; H. Saeidi; Princeton Univ.; S. Venkatesh; Princeton Univ.; K. Sengupta; Princeton Univ.

Tu4E-3: Analysis and Design of a Tu4F-3: C to V-Band Cascode Tu4H-3: A Transient Two-Tone RF Concurrent Dual-Band Self-Oscillating Distributed Amplifier Design Leveraging Method for the Characterization of Mixer a Double Gate Length Gallium Nitride Electron Trapping Capture and Emission on Silicon Process Dynamics in GaN HEMTs M. Pontón; Universidad de Cantabria; A. Herrera; Universidad de Cantabria; P.E. Longhi; Università di Roma “Tor P.M. Tomé; F.M. Barradas; L.C. Nunes; A. Suárez; Universidad de Cantabria Vergata”; S. Colangeli; Università di J.L. Gomes; T.R. Cunha; J.C. Pedro; Roma “Tor Vergata”; W. Ciccognani; Instituto de Telecomunicações Università di Roma “Tor Vergata”; L. Pace; Università di Roma “Tor Vergata”; R. Leblanc; OMMIC; E. Limiti; Università di Roma “Tor Vergata”

Tu4E-4: A Coupling Factor Independent Tu4F-4: A 20W GaN-on-Si Solid State Tu4H-4: Explaining the Different Wireless Power Transfer System Power Amplifier for Q-Band Space Time Constants Extracted from Low Employing Two Nonlinear Circuits Communication Systems Frequency Y22 and IDS-DLTS on GaN HEMTs R. Chai; Univ. of Michigan; A. Mortazawi; R. Giofrè; Università di Roma “Tor Univ. of Michigan Vergata”; F. Costanzo; Università di Roma J.L. Gomes; Instituto de Telecomuni­ “Tor Vergata”; A. Massari; Thales Alenia cações; L.C. Nunes; Instituto de Space; A. Suriani; ; Telecomunicações; J.C. Pedro; Instituto F. Vitulli; Thales Alenia Space; E. Limiti; de Telecomunicações Università di Roma “Tor Vergata”

Tu4E-5: Over-The-Air Behavioral Tu4F-5: Highly Linear & Efficient Power Tu4H-5: Extraction of an Extrinsic Modeling of Millimeter Wave Spatium Combiner Amplifier with GaN Parasitic Network for InGaAs/ Beamforming Transmitters with HPA MMIC at Millimeter Wavelength InP DHBTs Scalable Model Using Concurrent Dynamic Configurations Frequency Electromagnetic simulation Utilizing Heterogenous Neural Network S.D. Yoon; Qorvo; J. Kitt; Qorvo; Yukun Li; University of Electronic H. Yin; Southeast Univ.; Z. Jiang; D. Murdock; Qorvo; E. Jackson; Qorvo; Science and Technology of Southeast Univ.; X.-W. Zhu; Southeast M. Roberg; Qorvo; G. Hegazi; Qorvo; Univ.; C. Yu; Southeast Univ. P. Courtney; Qorvo

43 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News 43 IMS2020 IMS TECHNICAL SESSIONS

We1A: Non-Planar Filters I We1B: Advances in Wireless We1C: Millimeter-Wave and We1D: Novel Microwave Sensors Terahertz Transmitter Components Technologies for Biomedical Chair: Simone Bastioli, RS Microwave Sensing Co-Chair: Miguel Laso, Public University Chair: Jasmin Grosinger, Graz University Chair: Theodore Reck, Virginia Diodes of Navarre (UPNA) of Technology Inc. Chair: Souvik Dubey, Abbott Labs Co-Chair: Etienne Perret, Grenoble Co-Chair: Adrian Tang, Jet Propulsion Co-Chair: Hung-Wei Wu, Kun Shan Institute of Technology Laboratory University

We1A-1: Direct Synthesis Technique We1B-1: Highly Sensitive Capacitive We1C-1: A 99–132GHz Frequency We1D-1: A Quadband Implantable of Quasi-Canonical Filters Comprising Sensor Based on Injection Locked Quadrupler with 8.5dBm Peak Output Antenna System for Simultaneous Cascaded Frequency-Variant Blocks Oscillators with ppm Sensing Power and 8.8% DC-to-RF Efficiency in Wireless Powering and Biotelemetry of Resolution 130nm BiCMOS Deep-Body Implants Y. He; Yokohama National Univ.; Z. Ma; Saitama University; N. Yoshikawa; M. Babay; C. Hallepee; C. Dalmay; B. K. Wu; Analog Devices; M.W. Mansha; A. Basir; Hanyang Univ.; H. Yoo; Hanyang Yokohama National Univ. Barelaud; XLIM (UMR 7252); Rensselaer Polytechnic Institute; Univ. E.C. Durmaz; IHP; C. Baristiran Kaynak; M. Hella; Rensselaer Polytechnic Institute IHP; M. Kaynak; IHP; D. Cordeau; XLIM (UMR 7252); A. Pothier; XLIM (UMR 7252)

We1A-2: Design of Extracted-Pole We1B-2: An Integrated Battery-Less We1C-2: A 135–183GHz Frequency We1D-2: The Design of Transmitting Tag Filters: An Application-Oriented Wirelessly Powered RFID Tag with Clock Sixtupler in 250nm InP HBT for Nasogastric Intubation Sensing Synthesis Approach Recovery and Data Transmitter for UWB Localization M. Bao; Ericsson; T.N.T. Do; Chalmers M.-H. Lin; National Chung Cheng Univ.; G. Macchiarella; Politecnico di Milano; Univ. of Technology; D. Kuylenstierna; C.-C. Chang; National Chung Cheng S. Tamiazzo; CommScope H. Rahmani; Univ. of California, Los Chalmers Univ. of Technology; H. Zirath; Univ.; S.-F. Chang; National Chung Cheng Angeles; A. Babakhani; Univ. of California, Ericsson Univ. Los Angeles

We1A-3: A Dispersive Coupling We1B-3: A Silicon-Based Closed- We1C-3: Broadband and High-Gain We1D-3: A Wearable Throat Vibration Structure for In-Line Helical Resonator Loop 256-Pixel Near-Field Capacitive 400-GHz InGaAs mHEMT Medium- Microwave Sensor Based on Split-Ring Filters with Transmission Zeros Sensing Array with 3-ppm Sensitivity Power Amplifier S-MMIC Resonator for Harmonics Detection and Selectable Frequency Shift Gain Y. Zhang; CUHK; K.-L. Wu; CUHK B. Gashi; Fraunhofer IAF; L. John; Y.-R. Ho; National Cheng Kung Univ.; J. Zhou; C.-J. Liang; C. Chen; J. Du; Fraunhofer IAF; D. Meier; Fraunhofer IAF; C.-L. Yang; National Cheng Kung Univ. R. Huang; Univ. of California, Los Angeles; M. Rösch; Fraunhofer IAF; A. Tessmann; R. Al Hadi; Alcatera; J.C.M. Hwang; Fraunhofer IAF; A. Leuther; Fraunhofer Lehigh University; M.-C.F. Chang; IAF; H. Maßler; Fraunhofer IAF; M. Univ. of California, Los Angeles Schlechtweg; Fraunhofer IAF; O. Ambacher; Fraunhofer IAF

We1A-4: Synthesis of Extracted Pole We1B-4: All-Digital Single Sideband We1C-4: A 160–183GHz 0.24-W (7.5% We1D-4: Experimental Dosimetry Study Filters Without the Extra Spikes (SSB) Bluetooth Low Energy (BLE) PAE) PA and 0.14-W (9.5% PAE) PA, of a Miniature RF Applicator Dedicated Backscatter with an Inductor-Free, High-Gain, G-Band Power Amplifier to the Evaluation of Severe RF Exposure Y. Yang; CUHK; Y. Zeng; CUHK; M. Yu; Digitally-Tuned Capacitance Modulator MMICs in 250-nm InP HBT Impact on a 3D Biological Model CUHK; Q. Wu; Xidian Univ. J. Rosenthal; Univ. of Washington; M.S. Z. Griffith; Teledyne Scientific & Imaging; S. Augé; LAAS; A. Tamra; LAAS; L. Rigal; Reynolds; Univ. of Washington M. Urteaga; Teledyne Scientific & ITAV (USR 3505); V. Lobjois; ITAV (USR Imaging; P. Rowell; Teledyne Scientific & 3505); B. Ducommun; ITAV (USR 3505); Imaging; L. Tran; Teledyne Scientific & D. Dubuc; LAAS; K. Grenier; LAAS Imaging

We1A-5: A Synthesis-Based Design We1B-5: Microwave Encoders with We1C-5: A 140GHz Power Amplifier We1D-5: Chest-Worn Self-Injection- Procedure for Waveguide Duplexers Synchronous Reading and Direction with 20.5dBm Output Power and 20.8% Locked Oscillator Tag for Monitoring Using a Stepped E-Plane Bifurcated Detection for Motion Control PAE in 250-nm InP HBT Technology Heart Rate Variability Junction Applications A.S.H. Ahmed; Univ. of California, R.E. Arif; National Sun Yat-sen Univ.; G. Macchiarella; Politecnico di Milano; F. Paredes; Univ. Autònoma de Barcelona; Santa Barbara; M. Seo; Sungkyunkwan W.-C. Su; National Sun Yat-sen Univ.; G.G. Gentili; Politecnico di Milano; C. Herrojo; Univ. Autònoma de Barcelona; Univ.; A.A. Farid; Univ. of California, M.-C. Tang; National Sun Yat-sen Univ.; L. Accatino; ACConsulting; V. Tornielli F. Martín; Univ. Autònoma de Barcelona Santa Barbara; M. Urteaga; Teledyne T.-S. Horng; National Sun Yat-sen Univ.; di Crestvolant; ESA-ESTEC Scientific & Imaging; J.F. Buckwalter; F.-K. Wang; National Sun Yat-sen Univ. Univ. of California, Santa Barbara; M.J.W. Rodwell; Univ. of California, Santa Barbara

44 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

We1E: High Frequency Non- We1F: Advances in 5G Millimeter- We1G: Emerging Next Generation Reciprocal Techniques using wave Systems and Architectures GaN RF Technologies for 5G and Novel Material, Device and Circuit MMW Applications Approaches Chair: Gent Paparisto, Cadence Design Systems, Inc. Chair: Jeong-Sun Moon, HRL Chair: Dimitris Pavlidis, Florida Co-Chair: Christian Fager, Chalmers Laboratories International University University of Technology Co-Chair: Kenneth Mays, Boeing Co-Chair: Yuanxun Ethan Wang, University of California, Los Angeles We1E-1: Lamb Wave Resonator Loaded We1F-1: Demonstrating 139Gbps We1G-1: Emerging High Power mm- Non-Reciprocal RF Devices and 55.6bps/Hz Spectrum Efficiency Wave RF Transistors Using 8×8 MIMO Over a 1.5-km Link T. Lu; J.D. Schneider; X. Zou; S. Tiwari; at 73.5GHz Y.-K. Chen; DARPA; A. Sivananthan; Booz Univ. of California, Los Angeles; Allen Hamilton; T.-H. Chang; HetInTec Z. Yao; Berkeley Lab; G. Carman; Univ. C.B. Czegledi; Ericsson; M. Hörberg; of California, Los Angeles; R.N. Candler; Ericsson; M. Sjödin; Ericsson; P. Univ. of California, Los Angeles; Y.E. Wang; Ligander; Ericsson; J. Hansryd; Ericsson; Univ. of California, Los Angeles J. Sandberg; Ericsson; J. Gustavsson; Ericsson; D. Sjöberg; Ericsson; D. Polydorou; OTE; D. Siomos; OTE

We1E-2: Microwave Applications We1F-2: Digital Predistortion of We1G-2: Advanced GaN HEMT of Zirconium-Doped Hafnium Oxide Millimeter-Wave Phased Array Modeling Techniques and Power Ferroelectrics: From Nanoscale Transmitter with Over-The-Air Amplifiers for Millimeter-Wave Calculations up to Experimental Results Calibrated Simplified Conductive Applications Feedback Architecture M. Aldrigo; M. Dragoman; IMT Bucharest; S. Shinjo; Mitsubishi Electric; M. Hangai; E. Laudadio; Università Politecnica delle N. Tervo; Univ. of Oulu; B. Khan; Univ. of Mitsubishi Electric; Y. Yamaguchi; Marche; S. Iordanescu; IMT Bucharest; Oulu; O. Kursu; Univ. of Oulu; J.P. Aikio; Mitsubishi Electric; M. Miyazaki; M. Modreanu; I.M. Povey; Univ. College Univ. of Oulu; M. Jokinen; Univ. of Oulu; Mitsubishi Electric Cork; F. Nastase; S. Vulpe; IMT Bucharest; M.E. Leinonen; Univ. of Oulu; M. Juntti; P. Stipa; A. Di Donato; L. Pierantoni; Univ. of Oulu; T. Rahkonen; Univ. of Oulu; D. Mencarelli; Università Politecnica delle A. Pärssinen; Univ. of Oulu Marche

We1E-3: Novel Non-Reciprocal We1F-3: On the Effectiveness of We1G-3: Qorvo’s Emerging GaN Microwave Spin Wave and Magneto- Near-Field Feedback for Digital Technologies for mmWave Applications Elastic Wave Devices for On-Chip Signal Pre-Distortion of Millimeter-Wave RF Processing Beamforming Arrays Y. Cao; Qorvo; V. Kumar; Qorvo; S. Chen; Qorvo; Y. Cui; Qorvo; S.D. Yoon; Qorvo; E. I.N. Krivorotov; Univ. of California, Irvine; A. Ben Ayed; Univ. of Waterloo; Beam; Qorvo; A. Xie; Qorvo; J. Jimenez; E.A. Montoya; Univ. of California, Irvine; G. Scarlato; Univ. of Waterloo; P. Mitran; Qorvo; A. Ketterson; Qorvo; C. Lee; A. Khan; Univ. of California, Irvine; A.N. Univ. of Waterloo; S. Boumaiza; Univ. of Qorvo; D. Linkhart; Metamagnetics; A. Slavin; Oakland Univ.; M. Wu; Colorado Waterloo Geiler; Metamagnetics State Univ.

We1E-4: Organic Ferrimagnetic We1F-4: High-Frequency Vector- We1G-4: High-Speed Graded-Channel Material Vanadium Tetracyanoethylene Modulated Signal Generation Using GaN HEMTs with Linearity and for Non-Reciprocal Microwave Frequency-Multiplier-Based RF Efficiency Applications Beamforming Architecture J.-S. Moon; HRL Laboratories; B. Grabar; N. Zhu; Yale Univ.; A. Franson; S. Kurfman; I. Jaffri; Univ. of Waterloo; A. Ben Ayed; HRL Laboratories; M. Antcliffe; HRL M. Chilcote; The Ohio State University; Univ. of Waterloo; A.M. Darwish; U.S. Laboratories; J. Wong; HRL Laboratories; D.R. Candido; Univ. of Iowa; K.E. Nygren; Army Research Laboratory; S. Boumaiza; C. Dao; HRL Laboratories; P. Chen; HRL Colorado State Univ.; M.E. Flatté; Univ. Univ. of Waterloo Laboratories; E. Arkun; HRL Laboratories; of Iowa; K.S. Buchanan; Colorado State I. Khalaf; HRL Laboratories; A. Corrion; Univ.; E. Johnston-Halperin; The Ohio HRL Laboratories; J. Chappell; HRL State University; H.X. Tang; Yale Univ. Laboratories; N. Venkatesan; Univ. of Notre Dame; P. Fay; Univ. of Notre Dame

We1E-5: Non-Reciprocal Lithium We1F-5: Aperture-Array & Lens+FPA We1G-5: Advances in the Super-Lattice Niobate-on-Silicon Acoustoelectric Multi-Beam Digital Receivers at 28GHz Castellated Field Effect Transistor Delay Lines on Xilinx ZCU 1275 RF SoC (SLCFET) for High Power Density, Energy Efficient RF Amplification H. Mansoorzare; Univ. of Central Florida; S. Pulipati; V. Ariyarathna; Md.R. Khan; R. Abdolvand; Univ. of Central Florida S. Bhardwaj; A. Madanayake; Florida J. Chang; Northrop Grumman; International Univ. S. Afroz; Northrop Grumman; B. Novak; We1E-6: A Highly Linear Non-Magnetic Northrop Grumman; J. Merkel; Northrop GaN Circulator Based on Spatio- We1F-6: A 3D Detect-Array for Low- Grumman; K. Nagamatsu; Northrop Temporal Modulation with an IIP3 of Complexity W-Band Beam Sensing and Grumman; R. Howell; Northrop Grumman 56dBm Direction-of-Arrival Estimation J.A. Bahaonde; Columbia Univ.; J. Kimionis; M.J. Holyoak; A. Singh; S. I. Kymissis; Columbia Univ.; Shahramian; Y. Baeyens; Nokia Bell Labs H. Krishnaswamy; Columbia Univ.

45 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News 45 IMS2020

IMS INTERACTIVE FORUM WEIF1 CHAIR: ZAHER BARDAI, CONSULTANT | CO-CHAIR: JEFFREY NANZER, MICHIGAN STATE UNIVERSITY

WEIF1-1: Toroidal Metasurface for WEIF1-18: High-k and Low-Loss Dielectric WEIF1-26: Complexity Analysis of WEIF1-35: Power-Combined Rectenna High Efficiency Sensing Composite Feedstock Filaments, Tailored Wideband Power Amplifiers Linearization Array for X-Band Wireless Power Transfer for Additive Manufacturing of Microwave in Multi-Band Signal Transmission for P. Qin; Zhejiang Univ.; T. Li; Zhejiang Univ.; Devices Massive MIMO Systems E. Kwiatkowski; University of Colorado E.-P. Li; Zhejiang Univ. Boulder; C.T. Rodenbeck; U.S. Naval V. Kosamiya; Univ. of South Florida; J. Wang; S. Wang; Chalmers Univ. of Technology; Research Laboratory; T.W. Barton; University WEIF1-10: Gysel Power Divider with Fixed Univ. of South Florida W. Cao; Chalmers Univ. of Technology; of Colorado Boulder; Z. Popovic; University Characteristic Impedance T. Eriksson; Chalmers Univ. of Technology of Colorado Boulder WEIF1-19: Bi-Layer Kinetic Inductance A. Moulay; INRS-EMT; T. Djerafi; INRS-EMT Detectors for W-Band WEIF1-27: Mechanically Decoupled WEIF1-36: Conductivity Measurement in Transitions from MMIC to Rectangular mm-Wave Band with a Fabry-Perot Open B. Aja; Universidad de Cantabria; and Dielectric Waveguides at G-Band Resonator WEIF1-11: Concurrent Dual-Band L. de la Fuente; Universidad de Cantabria; Microstrip Line Hilbert Transformer for A. Fernandez; Universidad de Cantabria; M. Geiger; Universität Ulm; M. Hitzler; J. Cuper; Warsaw Univ. of Technology; Spectrum Aggregation Real-Time Analog J.P. Pascual; Universidad de Cantabria; Universität Ulm; C. Waldschmidt; Universität B. Salski; Warsaw Univ. of Technology; Signal Processing E. Artal; Universidad de Cantabria; M.C. Ulm T. Karpisz; Warsaw Univ. of Technology; R. Islam; Washington State Univ.; de Ory; IMDEA Nanociencia; M.T. Magaz; A. Pacewicz; Warsaw Univ. of Technology; Md.H. Maktoomi; Washington State Univ.; Centro de Astrobiología; D. Granados; WEIF1-28: A Phase Analysis Method P. Kopyt; Warsaw Univ. of Technology Y. Gu; Univ. of Texas at Arlington; B. Arigong; IMDEA Nanociencia; J. Martin-Pintado; for Ferromagnetic Resonance Washington State Univ. Centro de Astrobiología; A. Gomez; Centro Characterization of Magnetic Nanowires WEIF1-4: Acceleration and Extension of de Astrobiología Radial Point Interpolation Method (RPIM) WEIF1-12: Controlled High Order Mode Y. Zhang; Univ. of Minnesota; B. Garcia; to Complex Electromagnetic Structures Generation for Tracking Coupler Bench WEIF1-2: Efficient Modeling of Wave Univ. of Minnesota; J. Um; Univ. of Test Propagation Through Rough Slabs with Minnesota; B. Stadler; Univ. of Minnesota; K. Sabet; EMAG Technologies; A.I. Stefan; FDTD R. Franklin; Univ. of Minnesota EMAG Technologies G. Ceccato; Università di Pavia; J.L. Cano; Universidad de Cantabria; A. Mediavilla; S. Bakirtzis; Univ. of Toronto; X. Zhang; Univ. WEIF1-29: A Software-Defined mmWave WEIF1-5: Progress Towards a Compact Universidad de Cantabria; L. Perregrini; College Dublin; C.D. Sarris; Univ. of Toronto Radio Architecture Comprised of Modular, and Low-Power Miniaturized Rubidium Università di Pavia Controllable Pixels to Attain Near-Infinite Oscillator (mRO) WEIF1-20: Characterization of a Pattern, Polarization, and Beam Steering WEIF1-13: A Second Harmonic Separation Josephson Junction Comb Generator Angles IMS J. Gouloumet; Orolia; B. Leuenberger; Symmetric Ports 180° Coupler with Orolia; C. Schori; Orolia; S. Grop; Orolia; Arbitrary Coupling Ratio and Transparent A.A. Babenko; NIST; A.S. Boaventura; NIST; J. Park; POSTECH; D. Choi; POSTECH; P. Rochat; Orolia Terminations N.E. Flowers-Jacobs; NIST; J.A. Brevik; W. Hong; POSTECH NIST; A.E. Fox; NIST; D.F. Williams; NIST; Z. WEIF1-6: Broadband Conductivity P. Li; Washington State Univ.; H. Ren; Popovic; University of Colorado Boulder; WEIF1-3: Rapid Microwave Optimization Measurement Method up to 110GHz Washington State Univ.; Y. Gu; Univ. of Texas P.D. Dresselhaus; NIST; S.P. Benz; NIST Using a Design Database and Inverse/ Using a Balanced-Type Circular Disk at Arlington; B. Pejcinovic; Portland State Forward Metamodels Resonator Univ.; B. Arigong; Washington State Univ. WEIF1-21: Design and Measurement of a Josephson Traveling Wave A. Pietrenko-Dabrowska; Gdansk University Y. Kato; AIST; M. Horibe; AIST WEIF1-14: Distributed-Element Absorptive Parametric Amplifier Fabricated in a of Technology; S. Koziel; Reykjavik Bandpass Filter with a Broadband Superconducting Qubit Process University; J.W. Bandler; McMaster Univ. WEIF1-7: Millimeter-Wave Resonator Impedance Matching Based on High Quality Factor Inductor D.C. Feng; Rigetti Computing; M. Vahidpour; WEIF1-31: Phase Shifter-Relaxed and and Capacitor Based on Slow-Wave CPS J. Lee; Korea Univ.; S. Nam; Korea Univ.; Rigetti Computing; Y. Mohan; Rigetti Control-Relaxed Continuous Tuning 4×4 J. Lee; Korea Univ. Computing; N. Sharac; Rigetti Computing; Butler Matrix A.A. Saadi; RFIC-Lab (EA 7520); T. Whyland; Rigetti Computing; S. Stanwyck; M. Margalef-Rovira; RFIC-Lab (EA 7520); Rigetti Computing; G. Ramachandran; H. Ren; Washington State Univ.; P. Li; Y. Amara; RFIC-Lab (EA 7520); P. Ferrari; WEIF1-15: Compact Substrate-Integrated Rigetti Computing; M. Selvanayagam; Washington State Univ.; Y. Gu; Univ. of Texas RFIC-Lab (EA 7520) Waveguide Filtering Crossover by Rigetti Computing Embedding CPW Quarter-Wavelength at Arlington; B. Arigong; Washington State Resonators Univ. WEIF1-8: A Compact PCB Gasket for WEIF1-22: Lock Detector Integrated Waveguide Leakage Suppression at K. Zhou; Polytechnique Montréal; K. Wu; in a High Order Frequency Multiplier WEIF1-32: An Automatic Gain and 110–170GHz Polytechnique Montréal Operating at 60-GHz-Band in 45nm Offset Control Circuit for DC-Coupled CMOS SOI Technology Continuous-Wave Radar Systems Z.S. He; Chalmers Univ. of Technology; A. Hassona; Chalmers Univ. of Technology; WEIF1-16: Synthesis Considerations for A. Boulmirat; CEA-LETI; A. Siligaris; F. Michler; FAU Erlangen-Nürnberg; Á. Pérez-Ortega; Gotmic; H. Zirath; Shunt-Starting Acoustic Wave Ladder CEA-LETI; C. Jany; CEA-LETI; J.L. Gonzalez S. Schoenhaerl; FAU Erlangen-Nürnberg; Chalmers Univ. of Technology Filters and Duplexers Jimenez; CEA-LETI S. Schellenberger; Brandenburgische E. Guerrero; Univ. Autònoma de Barcelona; Technische Universität; K. Shi; FAU WEIF1-9: 3D-Printed Broadband P. Silveira; Univ. Autònoma de Barcelona; WEIF1-23: A Magnetless Microstrip Erlangen-Nürnberg; B. Scheiner; FAU Impedance Transformers Using Helical- A. Triano; Univ. Autònoma de Barcelona; Filtering Circulator Based on Coupled Erlangen-Nürnberg; F. Lurz; FAU Erlangen- Microstrip Transmission Line Segments J. Verdú; Univ. Autònoma de Barcelona; Static and Time-Modulated Resonators Nürnberg; R. Weigel; FAU Erlangen- P. de Paco; Univ. Autònoma de Barcelona Nürnberg; A. Koelpin; Brandenburgische J.M. Lopez-Villegas; Universitat de X. Wu; Univ. of California, Davis; M. Nafe; Technische Universität Barcelona; A. Salas; Universitat de Univ. of California, Davis; X. Liu; Univ. of Barcelona; N. Vidal; Universitat de WEIF1-17: Novel Dual-Band Bandpass-to- California, Davis Bandstop Filter Using Shunt PIN Switches WEIF1-33: Snow Depth Measurements Barcelona Loaded on the Transmission Line from an Octo-Copter Mounted Radar WEIF1-24: A Novel 32-Gb/s 5.6-Vpp Y. Zhu; UESTC; Y. Dong; UESTC Digital-to-Analog Converter in 100nm A.E.-C. Tan; Lincoln Agritech; J. McCulloch; GaN Technology for 5G Signal Generation University of Canterbury; W. Rack; University of Canterbury; I. Platt; Lincoln Agritech; M. Weiß; Fraunhofer IAF; C. Friesicke; I. Woodhead; Lincoln Agritech Fraunhofer IAF; R. Quay; Fraunhofer IAF; O. Ambacher; Fraunhofer IAF WEIF1-34: Ultra-Compact and High- Efficiency Rectenna for Wireless Sensing WEIF1-25: A 20–30GHz Compact PHEMT Applications in Concrete Structure Power Amplifier Using Coupled-Line Based MCCR Matching Technique A. Sidibe; LAAS; A. Takacs; LAAS; G. Loubet; LAAS; D. Dragomirescu; LAAS J. Zhang; Fudan Univ.; T. Wu; Fudan Univ.; L. Nie; Fudan Univ.; D. Wei; Fudan Univ.; 46 S. Ma; Fudan Univ.; J. Ren; Fudan Univ. 46 IMS2020 IMS TECHNICAL SESSIONS

We2A: Non-Planar Filters II We2B: Advances in Radar and We2C: Millimeter-Wave and We2D: Advancement of Backscatter Sensor Systems Terahertz Transmitter and Receiver Biomedical Radar and Imaging Chair: Ming Yu, Chinese University of Systems Hong Kong Chair: Kazuya Yamamoto, Mitsubishi Chair: Chai-Chan Chang, National Co-Chair: Giuseppe Macchiarella, Electric Corporation Chair: Samet Zihir, Renesas Electronics Chung Cheng University Politecnico di Milano Co-Chair: Changzhan Gu, Shanghai Jiao Corporation Co-Chair: Changzhi Li, Texas Tech Tong University Co-Chair: Herbert Zirath, Chalmers University University of Technology

We2A-1: 3-D Printed Bandpass We2B-1: Nonlinear Negative We2C-1: A 300GHz Wireless Transceiver We2D-1: Frequency-Offset Self- Filter Using Conical Posts Interlaced Resistance-Based Harmonic in 65nm CMOS for IEEE802.15.3d Injection-Locked (FOSIL) Radar for Vertically Backscatter Using Push-Push Subharmonic Mixer Noncontact Vital Sign Monitoring E. López-Oliver; Università di Perugia; K. Gumber; IMS (UMR 5218); F. Amato; I. Abdo; T. Fujimura; T. Miura; P.-H. Juan; National Sun Yat-sen Univ.; C. Tomassoni; Università di Perugia; Università di Roma “Tor Vergata”; K.K. Tokgoz; Tokyo Institute of Technology; K.-H. Chen; National Sun Yat-sen Univ.; L. Silvestri; Università di Pavia; C. Dejous; IMS (UMR 5218); S. Hemour; H. Hamada; NTT; H. Nosaka; NTT; F.-K. Wang; National Sun Yat-sen Univ. M. Bozzi; Università di Pavia; L. Perregrini; IMS (UMR 5218) A. Shirane; K. Okada; Tokyo Institute of Università di Pavia; S. Marconi; Università Technology di Pavia; G. Alaimo; Università di Pavia; F. Auricchio; Università di Pavia

We2A-2: An All-Metal Capacitive We2B-2: A 5.8GHz Fully-Tunnel-Diodes- We2C-2: 100Gbps 0.8-m Wireless Link We2D-2: Noncontact Wrist Pulse Coupling Structure for Coaxial Cavity Based 20µW, 88mV, and 48dB-Gain Based on Fully Integrated 240GHz IQ Waveform Detection Using 24-GHz Filters Fully-Passive Backscattering RFID Tag Transmitter and Receiver Continuous-Wave Radar Sensor for Blood Pressure Estimation Y. Chen; CUHK; K.-L. Wu; CUHK A. Eid; Georgia Tech; J. Hester; Georgia M.H. Eissa; IHP; N. Maletic; IHP; E. Tech; M.M. Tentzeris; Georgia Tech Grass; IHP; R. Kraemer; IHP; D. Kissinger; T.-J. Tseng; Taiwan Tech; C.-H. Tseng; Universität Ulm; A. Malignaggi; IHP Taiwan Tech

We2A-3: Design of a Four Channel We2B-3: Active Reflector Tag for We2C-3: Wireless Communication We2D-3: A High-Sensitivity Low- C-Band Multiplexer with a Modified Millimeter Wave Harmonic Radar Using Fermi-Level-Managed Barrier Power Vital Sign Radar Sensor Based Star-Junction Topology at 61/122GHz ISM Band Based on Receiver with J-Band Waveguide- on Super-Regenerative Oscillator 130nm-BiCMOS SiGe:C Technology Input Port Architecture M. Martínez Mendoza; Thales Alenia Space; M. García Tudela; Thales Alenia S. Hansen; Fraunhofer FHR; T. Nagatsuma; F. Ayano; K. Toichi; L. Yi; Y. Yuan; Rutgers Univ.; A.Y.-K. Chen; Space; R. Gómez-Chacón Camuñas; C. Bredendiek; Fraunhofer FHR; N. Pohl; Osaka Univ.; M. Fujiwara; NTT; Cal State Northridge; C.-T.M. Wu; Rutgers Thales Alenia Space Fraunhofer FHR N. Iiyama; NTT; J. Kani; NTT; H. Ito; Univ. Kitasato University

We2A-4: Compact Harmonic Rejection We2B-4: Long-Range Zero-Power Multi- We2C-4: A 680GHz Direct Detection We2D-4: A Feasibility Study on the Filter for C-Band High-Power Satellite Sensing in Industrial Environment Using Dual-Channel Polarimetric Receiver Use of Microwave Imaging for in-vivo Applications Polarization Diversity and 3D Radar Screening of Knee Prostheses Imagery C.M. Cooke; K. Leong; K. Nguyen; A. F. Teberio; Universidad Pública de Escorcia; X. Mei; Northrop Grumman; K. Root; FAU Erlangen-Nürnberg; Navarra; P. Martin-Iglesias; Universidad D. Henry; LAAS; T. Marchal; LAAS; J. Arroyo; Cubic Nuvotronics; T.W. Barton; I. Ullmann; FAU Erlangen-Nürnberg; Pública de Navarra; I. Arregui; J. Philippe; LAAS; H. Aubert; LAAS; University of Colorado Boulder; F. Seehaus; FAU Erlangen-Nürnberg; Universidad Pública de Navarra; I. P. Pons; LAAS C. Du Toit; G. De Amici; D.L. Wu; NASA M. Vossiek; FAU Erlangen-Nürnberg Arnedo; Universidad Pública de Navarra; Goddard Space Flight Center; W.R. Deal; T. Lopetegi; Universidad Pública de Northrop Grumman Navarra; M.A.G. Laso; Universidad Pública de Navarra

We2A-5: Substrate Integrated We2B-5: Noncontact High-Linear We2C-5: Flexible Radar Front End with We2D-5: Human Tracking and Vital Sign Waveguide Bandpass Filters Motion Sensing Based on a Modified Multimodal Transition at 300GHz Monitoring with a Switched Phased- Implemented on Silicon Interposer for Differentiate and Cross-Multiply Array Self-Injection-Locked Radar Terahertz Applications Algorithm M. Geiger; Universität Ulm; S. Gut; Universität Ulm; P. Hügler; Universität W.-C. Su; National Sun Yat-sen Univ.; G. Prigent; LAAS; A.-L. Franc; LAPLACE W. Xu; Shanghai Jiao Tong Univ.; Ulm; C. Waldschmidt; Universität Ulm P.-H. Juan; National Sun Yat-sen Univ.; (UMR 5213); M. Wietstruck; IHP; M. C. Gu; Shanghai Jiao Tong Univ.; D.-M. Chian; National Sun Yat-sen Univ.; Keynak; IHP J.-F. Mao; Shanghai Jiao Tong Univ. T.-S. Horng; National Sun Yat-sen Univ.; C.-K. Wen; National Sun Yat-sen Univ.; We2A-6: A Compact Diplexer for F.-K. Wang; National Sun Yat-sen Univ. Circularly Polarized 20/30GHz SIW- Antennas A. Sieganschin; Technische Universität Hamburg-Harburg; T. Jaschke; Technische Universität Hamburg-Harburg; A.F. Jacob; Technische Universität Hamburg-Harburg

47 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

We2E: Recent Advances in Compact We2F: 5G Arrays and We2G: Load Modulated Power and High Performance Planar Filter Beamformers Amplifiers Design and Realization Chair: Kwang-Jin Koh, Chair: Leo de Vreede, Delft University of Chair: Dimitra Psychogiou, University Corp. Technology of Colorado Co-Chair: Tumay Kanar, Renesas Co-Chair: Paul Draxler, MaXentric Co-Chair: Christopher Galbraith, Electronics America Technologies, LLC Massachusetts Institute of Technology, Lincoln Laboratory We2E-1: Quasi-Absorptive Substrate- We2F-1: A 28GHz, 2-Way Hybrid We2G-1: Dual-Octave-Bandwidth RF- Integrated Bandpass Filters Using Phased-Array Front-End for 5G Mobile Input Pseudo-Doherty Load Modulated Capacitively-Loaded Coaxial Applications Balanced Amplifier with q10-dB Power Resonators Back-Off Range N. Cho; Samsung; H.-S. Lee; Samsung; D. Psychogiou; University of Colorado H. Lee; Samsung; W.-N. Kim; Samsung Y. Cao; Univ. of Central Florida; K. Chen; Boulder; R. Gómez-García; Universidad Univ. of Central Florida de Alcalá

We2E-2: UIR-Loaded Dual-Mode We2F-2: A 24–29.5GHz 256-Element We2G-2: Extend High Efficiency SIW Filter with Compact Size and 5G Phased-Array with 65.5dBm Peak Range of Doherty Power Amplifier by Controllable Transmission Zeros EIRP and 256-QAM Modulation Modifying Characteristic Impedance of Transmission Lines in Load Modulation Y. Zhu; UESTC; Y. Dong; UESTC Y. Yin; Univ. of California, San Diego; Network Z. Zhang; Univ. of California, San Diego; T. Kanar; IDT; S. Zihir; IDT; G.M. Rebeiz; J. Pang; Univ. College Dublin; Y. Li; Univ. Univ. of California, San Diego College Dublin; C. Chu; Univ. College Dublin; J. Peng; UESTC; X.Y. Zhou; CityU; A. Zhu; Univ. College Dublin

We2E-3: Compact Bandpass Filter with We2F-3: Machine Learning for We2G-3: A Fully-Integrated GaN Doherty Wide Stopband and Low Radiation Loss Accelerated IBFD Tuning in 5G Flexible Power Amplifier Module with a Compact Using Substrate Integrated Defected Duplex Networks Frequency-Dependent Compensation Circuit Ground Structure for 5G Massive MIMO Base Stations K.E. Kolodziej; MIT Lincoln Laboratory; D. Tang; UESTC; C. Han; UESTC; Z. Deng; A.U. Cookson; MIT Lincoln Laboratory; S. Sakata; K. Kato; E. Teranishi; T. Sugitani; UESTC; H.J. Qian; UESTC; X. Luo; UESTC B.T. Perry; MIT Lincoln Laboratory Mitsubishi Electric; R. Ma; MERL; K. Chuang; NanoSemi; Y.-C. Wu; NanoSemi; K. Fukunaga; Y. Komatsuzaki; K. Horiguchi; K. Yamanaka; S. Shinjo; Mitsubishi Electric

We2E-4: Step Impedance Resonator We2F-4: A 38-GHz 32-Element Phased- We2G-4: 300W Dual Path GaN Doherty (SIR) Loaded with Complementary Split Array Transmitter Based on Scalable Power Amplifier with 65% Efficiency for Ring Resonator (CSRR): Modeling, 8-Element Phased-Array Modules for Cellular Infrastructure Applications Analysis and Applications 5G MMW Data Links M. Masood; NXP Semiconductors; P. Vélez; Univ. Autònoma de Barcelona; C.-N. Chen; L.-C. Hung; Y.-H. Lin; S. Embar R.; NXP Semiconductors; P. J. Muñoz-Enano; Univ. Autònoma de T.-C. Tang; W.-P. Chao; G.-Y. Lin; National Rashev; NXP Semiconductors; J. Holt; Barcelona; A. Ebrahimi; Rmit Univ.; J. Taiwan Univ.; W.-J. Liao; Y.-H. Nien; NXP Semiconductors; J.S. Kenney; Scott; Rmit Univ.; K. Ghorbani; Rmit National Chung Cheng Univ.; Georgia Tech Univ.; F. Martín; Univ. Autònoma de W.-C. Huang; T.-Y. Kuo; K.-Y. Lin; T.-W. Barcelona Huang; Y.-C. Lin; H.-C. Lu; National Taiwan Univ.

We2E-5: Quasi-Elliptic Coupled-Line- We2F-5: OLED Display-Integrated We2G-5: Digitally Assisted Load Based Balanced Bandpass Filters with Optically Invisible Phased Arrays for Modulated Balanced Amplifier Ultra-Wide Stopband Characteristics Millimeter-Wave 5G Cellular Devices for 200W Cellular Infrastructure Applications M. Kong; BUPT; D. Psychogiou; University J. Park; POSTECH; J. Choi; POSTECH; of Colorado Boulder; Y. Wu; BUPT D. Park; Dongwoo Fine-Chem; M.-S. S. Embar R.; NXP Semiconductors; Kim; Dongwoo Fine-Chem; C. You; LG M. Masood; NXP Semiconductors; Electronics; D. Jung; LG Electronics; T. Sharma; NXP Semiconductors; J. I. Song; LG Electronics; J. Lee; LG Staudinger; NXP Semiconductors; Electronics; Y.N. Whang; SK Telecom; Y. S.K. Dhar; Univ. of Calgary; P. Rashev; Lee; Y-TECH; B. Kang; Corning Precision NXP Semiconductors; G. Tucker; NXP Materials; W. Hong; POSTECH Semiconductors; F.M. Ghannouchi; Univ. of Calgary

48 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News 48 IMS2020 IMS TECHNICAL SESSIONS

We3A: Recent Advances in Passive We3B: Advanced Nonlinear We3C: Millimeter-Wave and We3D: Millimeter Wave Radar Components Measurement Techniques and Submillimeter-Wave Components Vibrometry: Technical Advances Results and New Phenomenology Chair: Holger Maune, Technische Chair: Dietmar Kissinger, Ulm University Universität Darmstadt Chair: Marcus Da Silva, National Co-Chair: William Deal, Northrop Chair: Chris Robenbeck, Naval Research Co-Chair: Thomas Lingel, TTM Instruments Grumman Corporation Laboratory Co-Chair: Sherif Ahmed, Entrepreneur Co-Chair: Chai-Chan Chang, National Chung Cheng University We3A-1: Angular-Momentum Biased We3B-1: Broadband Error Vector We3C-1: InP HBT Oscillators Operating We3D-1: Silent Speech Recognition Circulator with a Common-Differential Magnitude Characterization of a GaN up to 682GHz with Coupled-Line Load Based on Short-Range Millimeter-Wave Mode Topology for RF and Modulation Power Amplifier Using a Vector Network for Improved Efficiency and Output Sensing Isolation Analyzer Power L. Wen; Shanghai Jiao Tong Univ.; H.M. Kadry; Wayne State Univ.; A.M. Angelotti; Univ. of Bologna; G.P. J. Kim; Korea Univ.; H. Son; Korea Univ.; C. Gu; Shanghai Jiao Tong Univ.; D.L. Sounas; Wayne State Univ. Gibiino; Univ. of Bologna; C. Florian; Univ. D. Kim; Korea Univ.; K. Song; Korea Univ.; J.-F. Mao; Shanghai Jiao Tong Univ. of Bologna; A. Santarelli; Univ. of Bologna J. Yoo; Korea Univ.; J.-S. Rieh; Korea Univ.

We3A-2: Miniature Wideband Rat-Race We3B-2: Precisely Synchronized NVNA We3C-2: A DC to 194-GHz Distributed We3D-2: Non-Contact Vital Signs Coupler in Silicon-Based Integrated Setup for Digital Modulation Signal Mixer in 250-nm InP DHBT Technology Monitoring for Multiple Subjects Using Passive Device Technology Measurements at Millimeter-Wave Test a Millimeter Wave FMCW Automotive Bands T. Jyo; NTT; M. Nagatani; NTT; M. Ida; Radar Y.-R. Liu; National Central Univ. ; NTT; M. Mutoh; NTT; H. Wakita; NTT; C.-H. Chan; National Central Univ. ; Y. Zhang; NIM; X. Guo; NIM; Z. Zhang; N. Terao; NTT; H. Nosaka; NTT S.M.M. Islam; University of Hawaii Y.-S. Lin; National Central Univ. NIM; Z. He; NIM; A. Yang; NIM at Manoa; N. Motoyama; ON Semiconductor; S. Pacheco; ON We3A-3: A Geometrically Shaped Semiconductor; V.M. Lubecke; University Hemispherical Cavity Resonator with of Hawaii at Manoa Extended Spurious-Free Region J. Li; Shenzhen Univ.; T. Yuan; Shenzhen Univ.

We3A-4: Low-Loss Continuous True Time We3B-3: Millimeter-Wave Power We3C-3: Broadband 110–170GHz True We3D-3: Multi-Spectral THz Delay with Delay Summing Amplifier Linearity Characterization Time Delay Circuit in a 130-nm SiGe Micro-Doppler Radar Based on a Using Unequally Spaced Multi-Tone BiCMOS Technology Silicon-Based Picosecond Pulse K. Park; Yonsei Univ.; B.-W. Min; Yonsei Stimulus Univ. A. Karakuzulu; IHP; M.H. Eissa; IHP; Radiator V. Gillet; XLIM (UMR 7252); J.-P. Teyssier; D. Kissinger; Universität Ulm; A. S. Razavian; Univ. of California, Los Keysight Technologies; A. Al Hajjar; Malignaggi; IHP Angeles; A. Babakhani; Univ. of OMMIC; A. Gasmi; OMMIC; C. Edoua California, Los Angeles Kacou; OMMIC; M. Prigent; XLIM (UMR 7252); R. Quéré; XLIM (UMR 7252)

We3A-5: Miniaturized Couplers Using We3B-4: Pulse Profiling Active Load We3D-4: Using FMCW Radar for Multi-Mode Star-Junction Pull Measurements Spatially Resolved Intra-Chirp Vibrometry in the Audio Range M.H.A. Elsawaf; Ain Shams Univ.; Y. Alimohammadi; Cardiff University; A.M.H. Nasr; Ain Shams Univ.; A.M.E. E. Kuwata; Cardiff University; X. Liu; L. Piotrowsky; Ruhr-Universität Bochum; Safwat; Ain Shams Univ. Cardiff University; T. Husseini; Al-Furat J. Siska; Ruhr-Universität Bochum; Al-Awsat Technical University; J.J. C. Schweer; Ruhr-Universität Bochum; Bell; Cardiff University; L. Wu; Huawei N. Pohl; Ruhr-Universität Bochum Technologies; P.J. Tasker; Cardiff University; J. Benedikt; Cardiff University

We3A-6: AFSIW Power Divider with We3B-5: Enhanced Wideband We3D-5: AI-Driven Event Recognition Isolated Outputs Based on Balanced- Active Load-Pull with a Vector with a Real-Time 3D 60-GHz Radar Delta-Port Magic-Tee Topology Network Analyzer Using Modulated System Excitations and Device Output Match N.-H. Nguyen; IMEP-LAHC (UMR 5130); Compensation A. Tzadok; IBM T.J. Watson Research A. Ghiotto; IMS (UMR 5218); T. Martin; Center; A. Valdes-Garcia; IBM T.J. Watson IMS (UMR 5218); A. Vilcot; IMEP-LAHC A.M. Angelotti; Univ. of Bologna; Research Center; P. Pepeljugoski; IBM T.J. (UMR 5130); T.-P. Vuong; IMEP-LAHC G.P. Gibiino; Univ. of Bologna; T.S. Watson Research Center; J.-O. Plouchart; (UMR 5130); K. Wu; Polytechnique Nielsen; Keysight Technologies; IBM T.J. Watson Research Center; Montréal D.M.M.-P. Schreurs; Katholieke Univ. M. Yeck; IBM T.J. Watson Research Leuven; A. Santarelli; Univ. of Bologna Center; H. Liu; IBM T.J. Watson Research Center

49 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

We3E: Tunable and Active Filters We3F: Beamforming for Satellite We3G: Digital Predistortion and Communications and Sensors Supply Modulation Chair: Sanghoon Shin, Naval Research Laboratory Chair: Byung-Wook Min, Yonsei Chair: John Wood, Wolfspeed, A Cree Co-Chair: Julien LINTIGNAT, University of University Company Limoges Co-Chair: David Ricketts, North Carolina Co-Chair: Jonmei Yan, MaXentric State University Technologies, LLC

We3E-1: A Compact Reconfigurable We3F-1: A Scalable Switchable We3G-1: Closed-Loop Sign Algorithms N-Path Low-Pass Filter Based on Dual-Polarized 256-Element Ka-Band for Low-Complexity Digital Predistortion Negative Trans-Resistance with <1dB SATCOM Transmit Phased-Array with Loss and >21dB Out-of-Band Rejection Embedded RF Driver and ±70° Beam P. Pascual Campo; Tampere University; Scanning V. Lampu; Tampere University; L. Anttila; M. Khorshidian; Columbia Univ.; N. Tampere University; A. Brihuega; Tampere Reiskarimian; Columbia Univ.; K.K.W. Low; Univ. of California, San University; M. Allén; Tampere University; H. Krishnaswamy; Columbia Univ. Diego; S. Zihir; IDT; T. Kanar; IDT; G.M. M. Valkama; Tampere University Rebeiz; Univ. of California, San Diego

We3E-2: BPFs with Parametrically We3F-2: A 28-GHz Full Duplex Front- We3G-2: OTA-Based Data Acquisition Compensated Passband Insertion Loss End and Canceller Using Two Cross- and Signal Separation for Digital and Selectivity Polarized 64-Element Phased Arrays Predistortion of Multi-User MIMO Transmitters in 5G L.K. Yeung; Univ. of California, Los J. Myeong; Yonsei Univ.; K. Park; Yonsei Angeles; X. Zou; Univ. of California, Los Univ.; A. Nafe; Univ. of California, San X. Wang; Univ. College Dublin; Y. Li; Univ. Angeles; Y.E. Wang; Univ. of California, Diego; H. Chung; Univ. of California, San College Dublin; C. Yu; Southeast Univ.; Los Angeles Diego; G.M. Rebeiz; Univ. of California, W. Hong; Southeast Univ.; A. Zhu; Univ. San Diego; B.-W. Min; Yonsei Univ. College Dublin

We3E-3: Fully-Reconfigurable Non- We3F-3: Affordable, Multi-Function We3G-3: L-Band Floating-Ground Reciprocal Bandpass Filters Flight-Worthy Airborne Phased-Array RF Power Amplifier for Reverse-Type Sensor Envelope Tracking Systems D. Simpson; University of Colorado Boulder; D. Psychogiou; University of J. Navarro; Boeing S. Paul; FBH; W. Heinrich; FBH; Colorado Boulder O. Bengtsson; FBH

We3E-4: A Dual-Mode Frequency We3F-4: A Scalable 256-Element We3G-4: High Efficiency, High Reconfigurable Waveguide Filter with a E-Band Phased-Array Transceiver for Bandwidth Switch-Mode Envelope Constant Frequency Spacing Between Broadband Communications Tracking Supply Modulator Transmission Zeros M. Repeta; W. Zhai; T. Ross; K. Ansari; F. Hühn; FBH; F. Müller; FBH; G. B.; Univ. of Waterloo; R.R. Mansour; S. Tiller; H.K. Pothula; D. Wessel; X. Li; L. Schellhase; FBH; W. Heinrich; FBH; Univ. of Waterloo H. Cai; D. Liang; G. Wang; W. Tong; A. Wentzel; FBH Huawei Technologies

We3E-5: Behavior of Lossy Spiral We3F-5: A Dual-Polarized 1024-Element We3G-5: Exploiting the Marx Generator Inductors and Their Applications to the Ku-Band SATCOM Transmit Phased- as a 100MHz High-Speed Multilevel Design of Tunable Band Reject Filters Array with ±70° Scan and 43.5dBW Supply Modulator EIRP H. Jia; Univ. of Waterloo; R.R. Mansour; P. Gjurovski; RWTH Aachen Univ.; Univ. of Waterloo G. Gültepe; Univ. of California, San Diego; L. Huessen; RWTH Aachen Univ.; S. Zihir; IDT; T. Kanar; IDT; G.M. Rebeiz; R. Negra; RWTH Aachen Univ. We3E-6: Novel Reconfigurable Filtering Univ. of California, San Diego Crossover Based on Evanescent-Mode Cavity Resonators J. Lai; UESTC; T. Yang; UESTC; P.-L. Chi; National Chiao Tung Univ. ; R. Xu; UESTC

50 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News 50 IMS2020 IMS TECHNICAL SESSIONS

Th1B: Late-breaking News in Th1C: Advanced Radar Systems Th1D: Chip-Scale Interconnects Silicon Technologies and Circuits for Automotive and Vehicular and Packaging Technologies Applications Chair: Deuk Heo, Washington State Chair: Rhonda Franklin, University of University Chair: Markus Gardill, Universität Minnesota, Twin Cities Co-Chair: James Buckwalter, University Würzburg Co-Chair: Florian Herrault, HRL of California, Santa Barbara Co-Chair: Martin Vossiek, Friedrich-Alex- Laboratories, LLC ander-Universität Erlangen-Nürnberg

Th1B-1: An E-Band Power Amplifier Th1C-1: A Fast-Chirp MIMO Radar Th1D-1: Polylithic Integration for RF/ Using High Power RF Device with Hybrid System Using Beat Frequency FDMA MM-Wave Chiplets Using Stitch- Work Function and Oxide Thickness in with Single-Sideband Modulation Chips: Modeling, Fabrication, and 22nm Low-Power FinFET Characterization M.Q. Nguyen; Johannes Kepler Q. Yu; Intel; Y.-S. Yeh; Intel; J. Garret; Intel; Universität Linz; R. Feger; Johannes T. Zheng; Georgia Tech; P.K. Jo; Georgia J. Koo; Intel; S. Morarka; Intel; S. Rami; Kepler Universität Linz; J. Bechter; ZF Tech; S. Kochupurackal Rajan; Georgia Intel; G. Liu; Intel; H.-J. Lee; Intel Friedrichshafen; M. Pichler-Scheder; Tech; M.S. Bakir; Georgia Tech LCM; A. Stelzer; Johannes Kepler Universität Linz

Th1B-2: A Highly Rugged 19dBm Th1C-2: A System Analysis of Noise Th1D-2: A W-Band Chip-to-Printed 28GHz PA Using Novel PAFET Device Influences on the Imaging Performance Circuit Board Interconnect in 45RFSOI Technology Achieving Peak of Millimeter Wave MIMO Efficiency Above 48% B. Deutschmann; Technische Universität A. Dürr; Universität Ulm; D. Schwarz; Hamburg-Harburg; A.F. Jacob; Technische S. Syed; GLOBALFOUNDRIES; S. Jain; Universität Ulm; C. Waldschmidt; Universität Hamburg-Harburg GLOBALFOUNDRIES; Universität Ulm D. Lederer; GLOBALFOUNDRIES; W. Liu; GLOBALFOUNDRIES; E. Veeramani; GLOBALFOUNDRIES; B. Chandhoke; GLOBALFOUNDRIES; A. Kumar; GLOBALFOUNDRIES; G. Freeman; GLOBALFOUNDRIES

Th1B-3: Efficiency Enhancement Th1C-3: Millimeter-Wave Th1D-3: A Low-Loss Balun-Embedded Technique Using Doherty-Like Over- Interferometric Radar for Speed-Over- Interconnect for THz Heterogeneous The-Air Spatial Combining in a 28GHz Ground Estimation System Integration CMOS Phased-Array Transmitter E. Klinefelter; Michigan State Univ.; T.-Y. Chiu; National Tsing Hua Univ.; A. Sayag; Technion; I. Melamed; Technion; J.A. Nanzer; Michigan State Univ. Y.-L. Lee; Atom Element Matter; C.-L. Ko; E. Cohen; Technion NARLabs-TSRI; S.-H. Tseng; NARLabs- TSRI; C.-H. Li; National Tsing Hua Univ.

Th1B-4: A Multi-Standard 15–57GHz Th1C-4: Root-MUSIC Based Power Th1D-4: W Band Carbon Nanotubes 4-Channel Receive Beamformer with Estimation Method with Super- Interconnects Compatible with CMOS 4.8dB Midband NF for 5G Applications Resolution FMCW Radar Technology A.A. Alhamed; Univ. of California, San T. Iizuka; NTT; Y. Toriumi; NTT; F. Ishiyama; P. Roux-Lévy; XLIM (UMR 7252); Diego; O. Kazan; Univ. of California, San NTT; J. Kato; NTT J.M. De Saxce; XLIM (UMR 7252); Diego; G.M. Rebeiz; Univ. of California, C.F. Siah; CINTRA (UMI 3288); J. Wang; San Diego CINTRA (UMI 3288); B.K. Tay; CINTRA (UMI 3288); P. Coquet; CINTRA (UMI 3288); D. Baillargeat; XLIM (UMR 7252)

Th1C-5: Learning Representations for Th1D-5: Suspended SiC Filter with Neural Networks Applied to Spectrum- DRIE Silicon Subcovers Based Direction-of-Arrival Estimation for Automotive Radar E.T. Kunkee; Northrop Grumman; D.-W. Duan; Northrop Grumman; M. Gall; InnoSenT; M. Gardill; InnoSenT; A. Sulian; Northrop Grumman; P. Ngo; J. Fuchs; FAU Erlangen-Nürnberg; T. Horn; Northrop Grumman; N. Lin; Northrop InnoSenT Grumman; C. Zhang; Northrop Grumman; D. Ferizovic; Northrop Grumman; C.M. Jackson; Northrop Grumman; R. Lai; Northrop Grumman

51 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

Th1E: Advances in RF Energy Th1F: Phased Arrays and Th1G: Advanced Silicon PAs for 5G Harvesting Beamformer Technologies and Automotive Applications Chair: Alessandra Costanzo, University of Chair: Frank E. van Vliet, TNO, Chair: Kaushik Sengupta, Princeton Bologna Netherlands University Co-Chair: Smail Tedjini, University of Co-Chair: Christian Waldschmidt, Ulm Co-Chair: Joe Qiu, Army Research Office Grenoble-Alpes France University

Th1E-1: A W-Band Rectenna Using Th1F-1: Design Considerations and Th1G-1: A 28GHz Linear and Efficient On-Chip CMOS Switching Rectifier and FPGA Implementation of a Wideband Power Amplifier Supporting Wideband On-PCB Tapered Slot Antenna Achieving All-Digital Transmit Beamformer with OFDM for 5G in 28nm CMOS 25% Effective-Power-Conversion 50% Fractional Bandwidth Efficiency for Wireless Power Transfer Y.-W. Chang; National Taiwan Univ.; S. Pulipati; MERL; R. Ma; MERL T.-C. Tsai; National Taiwan Univ.; P. He; Southeast Univ.; J. Xu; Southeast J.-Y. Zhong; National Taiwan Univ.; Univ.; D. Zhao; Southeast Univ. J.-H. Tsai; National Taiwan Normal Univ.; T.-W. Huang; National Taiwan Univ.

Th1E-2: An Ultra-Low-Power Power Th1F-2: FPGA-Based 2-D FIR Frost Th1G-2: A Balanced Power Amplifier Management Circuit with Output Beamformers with Digital Mutual with Asymmetric Coupled-Line Couplers Bootstrapping and Reverse Leakage Coupling Compensation and Wilkinson Baluns in a 90nm SiGe Reduction Function for RF Energy BiCMOS Technology Harvesting S. Pulipati; Florida International Univ.; V. Ariyarathna; Florida International Y. Gong; Georgia Tech; J.D. Cressler; Z. Zeng; Texas A&M Univ.; S. Shen; Univ.; A.L. Jayaweera; Univ. of Moratuwa; Georgia Tech HKUST; B. Wang; Hamad Bin Khalifa C.U.S. Edussooriya; Univ. of Moratuwa; University; J.J. Estrada-López; Texas A&M C. Wijenayake; University of Queensland; Univ.; R. Murch; HKUST; E. Sánchez- L. Belostotski; Univ. of Calgary; Sinencio; Texas A&M Univ. A. Madanayake; Florida International Univ.

Th1E-3: Compact and High Efficiency Th1F-3: In-situ Self-Test and Self- Th1G-3: Load Modulated Balanced Rectifier Design Based on Microstrip Calibration of Dual-Polarized 5G TRX mm-Wave CMOS PA with Integrated Coupled Transmission Line for Energy Phased Arrays Leveraging Orthogonal- Linearity Enhancement for 5G Harvesting Polarization Antenna Couplings Applications F. Zhao; UESTC; D. Inserra; UESTC; A. Nafe; Univ. of California, San Diego; C.R. Chappidi; Princeton Univ.; T. Sharma; G. Wen; UESTC A.H. Aljuhani; Univ. of California, San Princeton Univ.; Z. Liu; Princeton Univ.; Diego; K. Kibaroglu; Univ. of California, K. Sengupta; Princeton Univ. San Diego; M. Sayginer; Univ. of California, San Diego; G.M. Rebeiz; Univ. of California, San Diego

Th1E-4: High-Efficiency Sub-1GHz Th1F-4: Scalable, Deployable, Flexible Th1G-4: A 22–37GHz Broadband Com­ Flexible Compact Rectenna Based Phased Array Sheets pact Linear mm-Wave Power Amplifier on Parametric Antenna-Rectifier Co- Supporting 64-/256-/512-QAM Design M. Gal-Katziri; Caltech; A. Fikes; Caltech; Modulations for 5G Communications F. Bohn; Caltech; B. Abiri; Caltech; M. Wagih; Univ. of Southampton; M.R. Hashemi; Caltech; A. Hajimiri; F. Wang; A. Wang; H. Wang; Georgia Tech A.S. Weddell; Univ. of Southampton; Caltech S. Beeby; Univ. of Southampton Th1G-5: Two W-Band Wideband CMOS mmW PAs for Automotive Radar Transceivers Y. Xue; C. Shi; East China Normal Univ.; G. Chen; Shanghai Eastsoft Microelectronics; J. Chen; Univ. of Houston; R. Zhang; East China Normal Univ.

Th1E-5: 920MHz Band High Sensitive Th1F-5: 28GHz Active Monopulse Th1G-6: An 18.5W Fully-Digital Rectenna with the High Impedance Networks with Amplitude and Phase Transmitter with 60.4% Peak System Folded Dipole Antenna on the Artificial Control and -30dB Null-Bandwidth of Efficiency Magnetic Conductor Substrate 5GHz R.J. Bootsman; Technische Universiteit N. Yasumaru; Kanazawa Institute of H. Chung; Univ. of California, San Diego; Delft; D.P.N. Mul; Technische Universiteit Technology; N. Sakai; Kanazawa Institute Q. Ma; Univ. of California, San Diego; Delft; Y. Shen; Technische Universiteit of Technology; K. Itoh; Kanazawa G.M. Rebeiz; Univ. of California, San Delft; R.M. Heeres; Ampleon; F. van Institute of Technology; T. Tamura; Diego Rijs; Ampleon; M.S. Alavi; Technische Kanazawa Institute of Technology; Universiteit Delft; L.C.N. de Vreede; S. Makino; Kanazawa Institute of Technische Universiteit Delft Technology

52 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News 52 IMS2020 IMS TECHNICAL SESSIONS

Th2B: Late-breaking News from Th2C: Networked and Distributed Th2D: 3D Packaging and Additive the Terahertz Frontier Radar and Imaging Systems Manufacturing Chair: Nils Pohl, Ruhr University Bochum Chair: Christian Waldschmidt, Ulm Chair: Kamal Samanta, Sony Corp. Co-Chair: James Buckwalter, University University Co-Chair: Dominique Baillargeat, Xlim of California, Santa Barbara Co-Chair: Martin Vossiek, Ulm University - CNRS- Unversite De Liroges

Th2B-1: First Demonstration of G-Band Th2C-1: A Self-Mixing Receiver for Th2D-1: RF Systems on Antenna (SoA): Broadband GaN Power Amplifier MMICs Wireless Frequency Synchronization in A Novel Integration Approach Enabled Operating Beyond 200GHz Coherent Distributed Arrays by Additive Manufacturing M. Cwiklinski; Fraunhofer IAF; P. Brückner; S. Mghabghab; Michigan State Univ.; X. He; Georgia Tech; Y. Fang; Georgia Fraunhofer IAF; S. Leone; Fraunhofer J.A. Nanzer; Michigan State Univ. Tech; R.A. Bahr; Georgia Tech; M.M. IAF; S. Krause; Fraunhofer IAF; C. Tentzeris; Georgia Tech Friesicke; Fraunhofer IAF; H. Maßler; Fraunhofer IAF; R. Quay; Fraunhofer IAF; O. Ambacher; Fraunhofer IAF

Th2B-2: 475-GHz 20-dB-Gain InP-HEMT Th2C-2: A Digital Interferometric Array Th2D-2: Wireless 3D Vertical Power Amplifier Using Neutralized with Active Noise Illumination for Interconnect with Power Splitting Common-Source Architecture Millimeter-Wave Imaging at 13.7fps Capability H. Hamada; NTT; T. Tsutsumi; NTT; S. Vakalis; Michigan State Univ.; A. Dave; Univ. of Minnesota; R. Franklin; H. Matsuzaki; NTT; H. Sugiyama; NTT; J.A. Nanzer; Michigan State Univ. Univ. of Minnesota H. Nosaka; NTT

Th2B-3: A High-Isolation and Highly Th2C-3: Wireless Coherent Full-Duplex Th2D-3: 3D Printed One-Shot Linear Super-Wideband SPDT Switch in Double-Sided Two-Way Ranging Deployable Flexible “Kirigami” InP DHBT Technology (CFDDS-TWR) Approach with Phase Dielectric Reflectarray Antenna for mm- Tracking Based Multipath Suppression Wave Applications T. Shivan; FBH; M. Hossain; FBH; R. for Submillimeter Accuracy Doerner; FBH; T.K. Johansen; Technical Displacement Sensing Y. Cui; Georgia Tech; S.A. Nauroze; Univ. of Denmark; K. Nosaeva; FBH; H. Georgia Tech; R.A. Bahr; Georgia Tech; Yacoub; FBH; W. Heinrich; FBH; V. Krozer; M. Gottinger; FAU Erlangen-Nürnberg; M.M. Tentzeris; Georgia Tech FBH M. Hoffmann; FAU Erlangen-Nürnberg; M. Vossiek; FAU Erlangen-Nürnberg

Th2B-4: 240-GHz Reflectometer with Th2C-4: Phase Recovery in Sensor Th2D-4: Evaluation of Micro Laser Integrated Transducer for Dielectric Networks Based on Incoherent Sintering Metal 3D-Printing Technology Spectroscopy in a 130-nm SiGe Repeater Elements for the Development of Waveguide BiCMOS Technology Passive Devices up to 325GHz D. Werbunat; Universität Ulm; D. Wang; Fraunhofer IPMS; M.H. Eissa; B. Meinecke; Universität Ulm; M. Steiner; V. Fiorese; STMicroelectronics; C. Belem IHP; K. Schmalz; IHP; T. Kämpfe; Universität Ulm; C. Waldschmidt; Gonçalves; STMicroelectronics; C. del Rio Fraunhofer IPMS; D. Kissinger; Universität Universität Ulm Bocio; Universidad Pública de Navarra; Ulm D. Titz; Polytech’Lab (EA 7498); F. Gianesello; STMicroelectronics; C. Luxey; Polytech’Lab (EA 7498); G. Ducournau; IEMN (UMR 8520); E. Dubois; IEMN (UMR 8520); C. Gaquière; IEMN (UMR 8520); D. Gloria; STMicroelectronics

Th2B-5: A 311.6GHz Phase-Locked Th2C-5: Fusion of Radar and Loop in 0.13µm SiGe BiCMOS Process Communication Information for with -90dBc/Hz In-Band Phase Noise Tracking in OFDM Automotive Radar at 24GHz Y. Liang; NTU; C.C. Boon; NTU; Y. Dong; NTU; Q. Chen; NTU; Z. Liu; NTU; J.B. Sanson; Instituto de C. Li; NTU; T. Mausolf; IHP; D. Kissinger; Telecomunicações; D. Castanheira; Universität Ulm; Y. Wang; UESTC; Instituto de Telecomunicações; H.J. Ng; KIT A. Gameiro; Instituto de Telecomunicações; P.P. Monteiro; Instituto de Telecomunicações

53 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

Th2E: Novel Applications of Th2F: In-Band Full-Duplex Th2G: Phased Array and Wireless Power Transfer Cancellers and Transceivers Beamformer Integrated Circuits Chair: Nuno Borges Carvalho, Instituto Chair: Kenneth E. Kolodziej, Massachu- Chair: Jeremy Dunworth, Qualcomm De Telecomunicacoes setts Institute of Technology, Lincoln Research Co-Chair: Marco Dionigi, University of Laboratory Co-Chair: Donald LaFrance, Lockheed Perugia Co-Chair: Kate Remley, National Institute Martin Corp. of Standards and Technology

Th2E-1: High Isolation Simultaneous Th2F-1: A BST Varactor Based Th2G-1: A Fundamental-Frequency Wireless Power and Information Circulator Self Interference Canceller 122GHz Radar Transceiver with 5.3dBm Transfer System Using Coexisting DGS for Full Duplex Transmit Receive Single-Ended Output Power in a 130nm Resonators and Figure-8 Inductors Systems SiGe Technology A. Barakat; Kyushu Univ.; R.K. Pokharel; C.F. Campbell; Qorvo; J.A. Lovseth; E. Aguilar; FAU Erlangen-Nürnberg; Kyushu Univ.; S. Alshhawy; Kyushu Univ.; Collins Aerospace; S. Warren; Qorvo; V. Issakov; OvG Universität Magdeburg; K. Yoshitomi; Kyushu Univ.; S. Kawasaki; A. Weeks; Univ. of Central Florida; R. Weigel; FAU Erlangen-Nürnberg JAXA P.B. Schmid; Qorvo

Th2E-2: Conductive Coupler for Th2F-2: In-Band Full-Duplex Self- Th2G-2: An Integrated Bistatic 4TX/4RX Wireless Power Transfer Under Interference Canceller Augmented with Six-Port MIMO-Transceiver at 60GHz in Seawater Bandstop-Configured Resonators a 130-nm SiGe BiCMOS Technology for Radar Applications M. Tamura; Toyohashi University of R. Sepanek; BAE Systems ; M. Hickle; Technology; K. Murai; Toyohashi BAE Systems ; M. Stuenkel; BAE M. Voelkel; FAU Erlangen-Nürnberg; University of Technology; M. Matsumoto; Systems S. Pechmann; FAU Erlangen-Nürnberg; Toyohashi University of Technology H.J. Ng; IHP; D. Kissinger; Universität Ulm; R. Weigel; FAU Erlangen-Nürnberg; A. Hagelauer; Universität Bayreuth

Th2E-3: The K-Band Communication Th2F-3: An Integrated Full-Duplex/ Th2G-3: A Power Efficient BiCMOS Ka- Transmitter/Receiver Powered by the FDD Duplexer and Receiver Achieving Band Transmitter Front-End for SATCOM C-Band HySIC Energy Harvester with 100MHz Bandwidth 58dB/48dB Phased-Arrays Multi-Sensors Self-Interference Suppression Using Hybrid-Analog-Digital Autonomous S. Rasti-Boroujeni; Univ. of Waterloo; S. Yoshida; Kagoshima Univ.; Adaptation Loops A. Wyrzykowska; Univ. of Waterloo; K. Matsuura; Univ. of Tokyo; D. Kobuchi; M. Mazaheri; Univ. of Waterloo; A. Univ. of Tokyo; N. Yabuta; Sophia Y. Cao; Univ. of Illinois at Urbana- Palizban; Univ. of Waterloo; S. Ituah; University; T. Nakaoka; Sophia University; Champaign; X. Cao; Univ. of Illinois at Univ. of Waterloo; A. El-Gouhary; Univ. K. Nishikawa; Kagoshima Univ.; Urbana-Champaign; H. Seo; Univ. of of Waterloo; G. Chen; Univ. of Waterloo; S. Kawasaki; JAXA Illinois at Urbana-Champaign; J. Zhou; H. Gharaei-Garakani; Univ. of Waterloo; Univ. of Illinois at Urbana-Champaign M. Nezhad-Ahmadi; Univ. of Waterloo; S. Safavi-Naeini; Univ. of Waterloo

Th2E-4: A Wireless Power Transfer Th2F-4: A Full-Duplex Transceiver with Th2G-4: A K-Band Low-Complexity System (WPTS) Using Misalignment CMOS RF Circulation and Code-Domain Modular Scalable Wide-Scan Phased Resilient, On-Fabric Resonators for Signal Processing for 104dB Self- Array Wearable Applications Interference Rejection and Watt Level TX Power Handling F. Akbar; Univ. of Michigan; A. Mortazawi; D. Vital; Florida International Univ.; Univ. of Michigan J.L. Volakis; Florida International Univ.; A. Hamza; Univ. of California, Santa S. Bhardwaj; Florida International Univ. Barbara; A. Nagulu; Columbia Univ.; H. AlShammary; Univ. of California, Santa Barbara; C. Hill; Univ. of California, Santa Barbara; E. Lam; Univ. of California, Santa Barbara; H. Krishnaswamy; Columbia Univ.; J.F. Buckwalter; Univ. of California, Santa Barbara

Th2E-5: A 3D Rectenna with All- Th2F-5: Transmit-Receive Cross- Th2G-5: A Compact Ultra-Broadband Polarization and Omnidirectional Modulation Distortion Correction in GaN MMIC T/R Front-End Module Capacity for IoT Applications a 5–6GHz Full Duplex Quadrature Balanced CMOS RF Front-End Q. Lin; Qinghai Nationalities University; S. Wang; National Central Univ. ; H. Wu; Chengdu Ganide Technology; Y. H.-Y. Chang; National Central Univ. N. Ginzberg; Technion; T. Gidoni; Tel Aviv Chen; Chengdu Ganide Technology; L. University; D. Regev; Toga Networks; Hu; Chengdu Ganide Technology; Th2E-6: RF Energy On-Demand for E. Cohen; Technion S. Chen; Qinghai Nationalities University; Automotive Applications X. Zhang; Qinghai Nationalities University G. Paolini; Univ. of Bologna; M. Shanawani; Univ. of Bologna; A. Costanzo; Univ. of Bologna; F. Benassi; Univ. of Bologna; D. Masotti; Univ. of Bologna Long- 20 Min. 54 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News 54 IMS2020 IMS TECHNICAL SESSIONS

Th3B: Robert J Trew: More than 50 Th3C: Emerging Technologies for Th3D: Late-breaking News in Th3E: Late-breaking News in III-V Years of Service to the Microwave Radar Detection, Tracking, and Millimeter-Wave Communication MMICs Community” Imaging and Radar Systems Chair: Hasan Sharifi, HRL Laboratories Chair: Samir El-Ghazaly, University of Chair: Rudy Emrick, Northrop Grumman Chair: Ethan Wang, University of Co-Chair: James Buckwalter, University Arkansas Corporation California, Los Angeles of California, Santa Barbara Co-Chair: George Haddad, National Co-Chair: Danny Elad, ON Semiconduc- Co-Chair: James Buckwalter, University Science Foundation tor of California, Santa Barbara

Th3B-1: Remembering Dr. Robert James Th3C-1: K-Band MIMO FMCW Radar Th3D-1: A 25–29GHz 64-Element Dual- Th3E-1: A 20W 2–20GHz GaN MMIC Trew Using CDMA for TX-Separation Based Polarized/Dual-Beam Small-Cell with Power Amplifier Using a Decade on an Ultra-Wideband SiGe BiCMOS 45dBm 400MHz 5GNR Operation and Bandwidth Transformer-Based Power H.M. Trew; U.S. Department of the Radar Chipset High Spectral Purity Combiner Treasury B. Welp; Fraunhofer FHR; H. Chung; Univ. of California, San Diego; M. Roberg; Qorvo; M. Pilla; Qorvo; A. Shoykhetbrod; Fraunhofer FHR; Q. Ma; Univ. of California, San Diego; T.R. Mya Kywe; Qorvo; R. Flynt; Qorvo; S. Wickmann; Fraunhofer FHR; G. Y. Yin; Univ. of California, San Diego; N. Chu; Qorvo Briese; Fraunhofer FHR; G. Weiß; MBDA L. Gao; Univ. of California, San Diego; Deutschland; J. Wenderoth; MBDA G.M. Rebeiz; Univ. of California, San Deutschland; R. Herschel; Fraunhofer Diego FHR; N. Pohl; Fraunhofer FHR

Th3B-2: Following the Evolution of High- Th3C-2: Measurement-Based Th3D-2: Linearization of mm-Wave Th3E-2: A 120-mW, Q-Band InP HBT Frequency Electronics: From Diodes to Performance Investigation of a Hybrid Large-Scale Phased Arrays Using Near- Power Amplifier with 46% Peak PAE Transistors — A Memorial to the Life of MIMO-Frequency Scanning Radar Field Coupling Feedback for >10Gb/s A. Arias-Purdue; P. Rowell; M. Urteaga; Dr. Robert J. Trew (1944–2019) Wireless Communication A. Shoykhetbrod; Fraunhofer FHR; K. Shinohara; A. Carter; J. Bergman; M.S. Gupta; Univ. of California, San Diego H. Cetinkaya; Fraunhofer FHR; S. Nowok; R. Murugesu; Nokia Bell Labs; Teledyne Scientific & Imaging; K. Ning; Fraunhofer FHR M.J. Holyoak; Nokia Bell Labs; H. Chow; Univ. of California, Santa Barbara; Nokia Bell Labs; S. Shahramian; Nokia M.J.W. Rodwell; Univ. of California, Bell Labs Santa Barbara; J.F. Buckwalter; Univ. of California, Santa Barbara

Th3B-3: Robert J. Trew and the Th3C-3: Ultra-Wideband FMCW Radar Th3D-3: Modular Scalable 80- and Th3E-3: Transformer-Based Broadband Microwave Community with Over 40GHz Bandwidth Below 160-GHz Radar Sensor Platform mm-Wave InP PA Across 42–62GHz 60GHz for High Spatial Resolution in for Multiple Radar Techniques and with Enhanced Linearity and Second M. Golio; Golio Endeavors SiGe BiCMOS Applications Harmonic Engineering B. Welp; Fraunhofer FHR; G. Briese; W.A. Ahmad; IHP; M. Kucharski; IHP; Z. Liu; Princeton Univ.; T. Sharma; Fraunhofer FHR; N. Pohl; Fraunhofer FHR A. Ergintav; IHP; D. Kissinger; Universität Princeton Univ.; C.R. Chappidi; Princeton Ulm; H.J. Ng; KIT Univ.; S. Venkatesh; Princeton Univ.; K. Sengupta; Princeton Univ.

Th3B-4: Bob Trew: Teacher, Researcher, Th3C-4: Harmonic Micro-Doppler Th3D-4: A Radar System Concept for Th3E-4: A 300-µW Cryogenic HEMT LNA Mentor, and Friend Detection Using Passive RF Tags and 2D Unambiguous Angle Estimation for Quantum Computing Pulsed Microwave Harmonic Radar Using Widely Spaced MMICs with A. Riddle; Quanergy Systems Antennas On-Chip at 150GHz E. Cha; Chalmers Univ. of Technology; N. Nourshamsi; Michigan State Univ.; N. Wadefalk; Low Noise Factory; C. Hilton; Michigan State Univ.; P. Grüner; Universität Ulm; M. Klose; G. Moschetti; Qamcom Research & S. Vakalis; Michigan State Univ.; Universität Ulm; C. Waldschmidt; Technology; A. Pourkabirian; Low Noise J.A. Nanzer; Michigan State Univ. Universität Ulm Factory; J. Stenarson; Low Noise Factory; J. Grahn; Chalmers Univ. of Technology

Th3C-5: Localization and Tracking Bees Th3D-5: Wide-Band Frequency Using a Battery-Less Transmitter and an Synthesizer with Ultra-Low Phase Noise Autonomous Unmanned Aerial Vehicle Using an Optical Clock Source J. Shearwood; Bangor Univ.; S. Williams; M. Bahmanian; Universität Paderborn; Bangor Univ.; N. Aldabashi; Bangor Univ.; S. Fard; Universität Paderborn; B. P. Cross; Bangor Univ.; B.M. Freitas; Koppelmann; Universität Paderborn; J.C. Universidade Federal do Ceará; C. Zhang; Scheytt; Universität Paderborn China Agricultural University; C. Palego; Bangor Univ.

55 Microwave Field, Device & Circuit Techniques Passive Components Active Components Systems & Applications Emerging Technologies & Applications Focus & Special Sessions Late Breaking News IMS2020 IMS TECHNICAL SESSIONS

Th3G: Phased Array Silicon Components Chair: Sorin Voinnigescu, University of Toronto Co-Chair: Cynthia Hang, Raytheon Company

Th3G-1: A DC-32GHz 7-Bit Passive Attenuator with Capacitive Compensation Bandwidth Extension Technique in 55nm CMOS Z. Zhang; Zhejiang Univ.; N. Li; Zhejiang Univ.; H. Gao; Zhejiang Univ.; M. Li; Zhejiang Univ.; S. Wang; Zhejiang Univ.; Y.-C. Kuan; National Chiao Tung Univ. ; X. Yu; Zhejiang Univ.; Z. Xu; Zhejiang Univ.

Th3G-2: A Low Power 60GHz 6V CMOS Peak Detector Z. Tibenszky; Technische Universität Dresden; C. Carta; Technische Universität Dresden; F. Ellinger; Technische Universität Dresden

Th3G-3: A 35GHz Hybrid π-Network High-Gain Phase Shifter with 360° Continuous Phase Shift Range D. Wei; Fudan Univ.; X. Ding; Univ. of California, Davis; H. Yu; Univ. of California, Davis; Q.J. Gu; Univ. of California, Davis; Z. Xu; Zhejiang Univ.; Y.-C. Kuan; National Chiao Tung Univ. ; S. Ma; Fudan Univ.; J. Ren; Fudan Univ.

Th3G-4: A 68-dB Isolation 1.0-dB Loss Compact CMOS SPDT RF Switch Utilizing Switched Resonance Network X. Fu; Y. Wang; Z. Li; A. Shirane; K. Okada; Tokyo Institute of Technology Th3G-5: A CMOS Balun with Common Ground and Artificial Dielectric Compensation Achieving 79.5% Fractional Bandwidth and <2° Phase Imbalance G. Yang; Tianjin Univ.; R. Chen; Southeast Univ.; K. Wang; Tianjin Univ. Th3G-6: A 20.8–41.6-GHz Transformer- Based Wideband Power Amplifier with 20.4-dB Peak Gain Using 0.9-V 28-nm CMOS Process C.-W. Wang; National Taiwan Univ.; Y.-C. Chen; National Taiwan Univ.; W.-J. Lin; National Taiwan Univ.; J.-H. Tsai; National Taiwan Normal Univ.; T.-W. Huang; National Taiwan Univ.

56 56 IMS2020

95th ARFTG Microwave Measurement Conference Technical Program

Welcome and Introduction Joe Gering, ARFTG President, Jon Martens, General Chair, Peter Aaen, TPC Chair Oral Session A: Electromagnetic Field Measurements A-1 Electro-Optic Mapping Techniques for Characterization of Kaz Sabet, EMAG Technologies Inc, Ann Arbor, MI, USA Microwave Circuits, Devices and Antenna Systems (Keynote) A-2 Over-the-Air Test of Dipole and Patch Antenna Arrays at 28 GHz Utpal Dey1, Jan Hesselbarth1, Jose Moreir2, Krzysztof by Probing Them in the Reactive Field Dabrowiecki3 1University of Stuttgart, 2Advantest Europe GmbH, 3Feinmetall GmbH A-3 5G Waveform vs. CW: Near-Field Measurement of De-Coupled Maryna Nesterova1, Stuart Nicol1, Yuliya Nesterova2 Electric and Magnetic Fields for Power Density Assessment 1APREL.Inc, 2Queen’s University A-4 Over-the-Air Characterization Of mm-Wave On-Chip Antennas Carmine De Martino1, Akshay Visweswaran2, Marco Spirito1 and Tx Modules, Concept and Calibration 1Delft University of Technology, 2IMEC Break Exhibits and Interactive Forum Oral Session B: Sources and Nonlinear Device Measurements B-1 A Cryogenic Quantum-Based RF Source J. Brevik, A. Boaventura, M. Castellanos-Beltran, C. Donnelly N. Flowers-Jacobs, A. Fox, P. Hopkins, P. Dresselhaus, D. Williams, S. Benz, National Institute of Standards and Technology B-2 Modulation Distortion Analysis for Mixers and Frequency J. Verspecht, T. Nielsen, A. Stav, J. Dunsmore, and J.-P. Teyssier Converters Keysight Technologies, Santa Rosa, CA B-3 Swept Notch NPR for Linearity Assessment of Systems R. Figueiredo1, A. Piacibello2, V. Camarchia2, N. Borges Presenting Long-Term Memory Effects Carvalho3 1University of Aveiro, 2Politecnico di Torino, 3Instituto de Telecomunicacoes B-4 Vector Gain Based Behavioral Models for Distortion Evaluation J. van ‘t Hof1, E. Malotaux1, M. Squillante2, M. Marchetti2, in mm-Wave Devices L. Galatro3, M. Spirito1 1Delft University of Technology, 2Anteverta-mw B.V., 2Vertigo Tech Awards Luncheon Oral Session C: VNA Measurements and Calibration C-1 How Did We Get Here? A Short History of VNA Technology Andrea Ferrero, Keysight Technologies (Invited Talk) C-2 Calibration, Repeatability and Related Characteristics of On-wa- Andrej Rumiantsev1, Jon Martens2, Steve Reyes2 fer, Broadband 70 kHz-220 GHz Single-Sweep Measurements 1MPI Corporation, 2Anritsu C-3 Multi-port Reflectometry Applied to a Varactor-Tuned Steven Claessens and Taylor Barton; University of Colorado – Sampled-Line Boulder C-4 Towards Commercially Available Quartz Calibration Substrates L. Galatro1, C. De Martino2, J. van ‘t Hof2, M. Alomari3, J. Burghartz3, M. Spirito2 1Vertigo Tech, 2Delft University of Technology, 3Institut für Mikroelektronik Stuttgart (IMS) Break Exhibits and Interactive Forum

www.arftg.org

57 IMS2020

95th ARFTG Microwave Measurement Conference Technical Program Oral Session D: Additional Measurement Topics D-1 Cryogenic Calibration of a Quantum-based Radio Zain Ahmed Khan1,2, Peter Händel2, and Magnus Isaksson1 Frequency Source A. Boaventura, J. Brevik, D. Williams, A. Fox, M. Castellanos-Beltran, P. Hopkins, P. Dresselhaus, S. Benz, National Institute of Standards and Technology D-2 Measurement of Dielectric Properties Using Reflected Group Gaurav Walia, Paul Laforge, Muhammed Suleman; University Delay of an Over-Coupled Resonator of Regina D-3 Setup and Control of a Millimeter-Wave Synthetic Aperture Measurement System with Uncertainties; A. Weiss1, J. Quimby1, R. Leonhardt1, B. Jamroz1, D. Williams1, K. Remley1, P. Vouras1, A. Elsherbeni2, 1National Institute of Standards and Technology, 2Colorado School of Mines D-4 Over-the-Air Testing of Cellular Large-Form-Factor K. Remley1, C. Bax2, E. Mendivil3, M. Foegelle3, J. Kvarnstrand4, Internet-of-Things Devices in Reverberation Chambers D. Skousen4, D. Sánchez-Hernández5, M. García-Fernández5, L. Chang6, J. Gutierrez7, E. Yen7, J. Harbour7 1National Institute of Standards and Technology, 2Bureau Veritas, 3ETS-Lindgren, 4Bluetest AB, 5EMITE, 6Sporton, 7Dell Interactive Forum Session Backward Unknown-Thru Calibration Method JeongHwan Kim, Jin-Seob Kang, Jeong-Il Park, Chihyun Cho, KRISS Active Interferometry-Based Vector Network Analyzer Reference Haris Votsi1, Cristian Matei2, Stavros Iezekiel1, Peter H. Aaen3 Impedance Renormalization 1University of Cyprus, 2University of Surrey, 3Colorado School of Mines SOLT and SOLR calibration methods using a single multiport Tibault Reveyrand, Silvia Hernandez, Sebastien Mons, “thru” standard connection Edouard Ngoya, XLIM, University of Limoges Fast Software-Defined Radio-based System Performance Evalu- Austin Egbert1, Benjamin Kirk2, Charles Baylis1, Anthony ation for Real-time Adaptive RF Systems Martone3, Robert J. Marks II1 1Baylor University, 2Pennsylvania State University, 3Army Research Laboratory Model of Probe Transition Including Probe Mispositioning Robin Schmidt1, Dominique Schreurs2, Michael Dieudonné1, Pawel Barmuta2 1Keysight Technologies, 2Katholieke Universiteit Leuven Vector Network Analyzer Calibration for Characterization of Masahiro Horibe and Iku Hirano, AIST Packaged Power MOSFET Device at RF Frequency High-Performance Probe for Over-the-Air Measurement Mohammadreza Ranjbar Naeini, Yuchen Gu, Daniel van der Weide, University of Wisconsin-Madison Complex Permittivity Measurement Technique for a 3D Printed Takashi Shimizu and Yoshinori Kogami, Utsunomiya University Rectangular Dielectric Rod using an NRD Guides at 60-GHz Band

58 IMS2020 TECHNICAL LECTURES

Lecture Title Course Syllabus TWA1 N-Path Mixers and Filters: One of the most important RF circuits to emerge in the past decade is the N-path passive mixer (sometimes called Concept, Theory and Applications the “N-path filter”). Although known for decades, the advent of deep-submicron CMOS has enabled N-path passive Speaker: Alyosha Molnar, mixers and filters to be scaled to GHz frequencies, providing dramatic enhancements in RF receiver linearity, and enabling various other interesting capabilities. This lecture will introduce the N-path passive mixer and its Cornell Univ. application to frequency flexible, interference tolerant receivers, as well as a variety of other applications. The lecture will then provide an intuitive frame work for analyzing, designing and optimizing N-path circuits. This framework will also be used to describe ways in which circuit and transistor properties limit N-path mixers’ performance, specifically with regard to frequency of operation, power consumption, noise, and linearity. Second-or- der phenomena, such as phase noise and LO leakage will also be discussed, as well as techniques for their mitigation. The lecture will also suggest a design methodology for such circuits, with several worked examples, and will finish with several extensions of the core circuit to multi-port applications, such as beamforming, and non-reciprocal circuits. TWB2 Fundamentals of Phased Arrays Phased arrays have been the linchpin technology behind 5G wireless networks, LEO & MEO broadband Speaker: Marinos Vouvakis, high-speed internet connectivity and to some extend autonomous vehicles, in addition to many more conventional University of Massachusetts Amherst defense and security applications. Their main appeal stems from their ability to form directive (high gain) electronically scanned beams with controlled side-lobes, while maintaining smaller form factors than perhaps any other directive antenna e.g. reflectors. This technical lecture offers a top-down introduction into phased arrays, that includes the main operation principles and key analysis and design methodologies. Participants will learn to critically evaluate the system-level performance of phased array systems, and the various antenna elements and array arrangements.

Lecture Title Course Syllabus TMA1 Understanding Oscillator Phase In this lecture, we will discuss the nature and properties of oscillators and the general behavior of the phase noise. Noise and Locking We then investigate methods to model the phase noise in oscillators and the resultant design insights. In particular, Speaker: Ali Hajimiri, Caltech we develop a time-varying model of noise in oscillators based on the impulse sensitivity function (ISF). We will use this model to describe some important phenomena such as up-conversion of 1/f noise, the effect of cyclostation- ary noise source, and the impact of correlated noise and their associated design implications. We will look at the newly developed generalization of the approach to model oscillator injection locking and puling and finally we will look at several designs examples of oscillators. TMB2 Intuitive Microwave Filter Design Microwave filters are one of the basic building blocks in RF systems along with amplifiers, mixers and oscillators. At with EM Simulation some point, you may be called on to design or specify a filter, even though you are not a filter design expert. Luckily, Speaker: Daniel Swanson, DGS there is simple design method for narrow band filters that is easy to learn and quite universal. It can be applied to any lumped element or distributed topology and any manufacturing technology except SAW-BAW, and, the method Associates, LLC is valid for bandwidths from a fraction of a percent up to 20 percent or more. This technical lecture is a “no math” approach to filter design that requires only simple algebra and no knowledge of complex filter synthesis tech- niques. The root of the design flow is based on Dishal’s method with the addition of EM simulation for accuracy and port tuning for updates to the filter geometry. The basic design method can also be expanded to include cross-cou- pled filters and multiplexers. Two design flow examples have been prepared for this technical lecture. The first is a high Q cavity combline bandpass filter and the second is a microstrip combline bandpass filter. Example project files will be made available to attendees.

Lecture Title Course Syllabus TFA1 Silicon-based Millimeter-Wave In this technical lecture, you will learn key aspects of silicon-based mm-wave phased-array design and Phased Array Design characterization. The lecture will cover the following topics: (1) Fundamentals of phased arrays — theory and intuition, Speakers: Bodhisatwa Sadhu, IBM T. (2) Silicon-based mm-wave phased array architectures, (3) Silicon-based circuit building blocks for phased array systems, (4) Package, antenna and module design and simulation, (5) phased array measurements, (6) phased J. Watson Research Center; Alberto array system considerations. Both CMOS and SiGe technologies will be covered. The lecture will end with a peek Valdes-Garcia, IBM T. J. Watson into current research trends and future research outlook of phased array systems. Research Center

59 FULL PAGE AD_OL.pdf 1 7/27/20 1:07 PM

C

M

Y

CM

MY

CY

CMY

K IMS2020 MICROAPPS SCHEDULE

TITLE SPEAKERS SMD Characterization Using Progressive De-embedding Methods with a VNA Rebecca Wilson – Copper Mountain Technologies Stingray - X-Ku Band Phased Array Prototyping System Eamon Nash, Weston Sapia – Analog Devices 60 GHz Phased Array Antenna Design Using XFdtd for WiGig Application Naveen Kumar, T J – Remcom A 24GHz Radar Evaluation and Development Platform Alex Andrews – Analog Devices 16TX-16RX S-Band Phased Array Radar Prototyping Platform Chas Frick, Michael Jones, Peter Delos – Analog Devices A 2.6GHz Compact 40W Fully Integrated 3-Way Doherty for m-MIMO 5G Applications Marc Vigneau – Ampleon Gaining Insight to Doherty Amplifiers Markus Loerner – Rohde & Schwarz Fully Integrated IC-Package Co-Simulation Flow for RF IC Designs Feng Ling, Changhua Wan, Joshua – Xpeedic Technology Power Handling in Passive Surface Mount RF Devices Hassan Dani – Knowls DLI Surface Mount Quadrature Hybrid Couplers for Microwave Designs Dave Thibado – Knowles Corporation Alternative Architectures for Extending Ground Coverage of Mobile Networks Using Paul Moakes – CommAgility - Wireless Telecom Satellites Device Miniaturization with High K Materials Jared Burdick – Knowles Capacitors Network Synthesis and Vendor Component Models Support Impedance Matching Circuit David Vye, Chris Bean – Cadence Design Systems, Inc. Development Automated Rigorous Filter Synthesis using Mician Filter Workbench Ralf Ihmels – Mician GmbH RF Amplifier Bias Networks: What could go wrong? Ray Barker – Analog Devices TFLE-Thin Film Lumped Elements Filters and Transition Time Converters (TTC) Solutions. Rafi Hershtig – K&L Microwave Component Phase Noise Measurement Practices Jacob Trevithick – Marki Microwave AXIEM EM Simulation for Complex ICs and PCBs John Dunn – Cadence Design Systems, Inc. Easy Semiconductor Workflows with the new Sonnet Technology File (.STF) Brian Rautio – Sonnet Software Parallel and Remote Schematic Simulation and Optimization in AWR Dustin Hoekstra – Cadence Design Systems, Inc.

n 5G Cell Phone ≤ 6GHz, FR1 n 5G Millimeterwave, FR2 n Antenna and Antenna Components n Components & Materials n CAD and Modeling Products and Techniques n High Power Devices, including GaN Devices n Instrumentation and Measurement Techniques n Systems

MicroApps Sponsor: MicroApps Media Sponsor:

61 IMS2020 MICROAPPS SCHEDULE

TITLE SPEAKERS Unveiling the True Performance of Your Wi-Fi Chipset Walt Strickler – Boonton - Wireless Telecom USB Noise Source with Internal Current and Temperature Correction for ENR Uncertainty Su Chen Ho – Keysight Technologies Improvement Speed up Beamformer test with Multi-channel mmWave Vector Signal Transceiver Alejandro Buritica – NI FCC Part 30 Emissions Measurements for 5G FR2 Devices Jari Vikstedt – ETS-Lindgren Advanced Imaging Techniques Address the Thermal Challenges Presented by Advanced Microwave Dustin Kendig – Microsanj Devices New highly integrated transceiver with RF front end (RFFE) Larry Hawkins – Richardson RFPD The Perfection of Translation Loop: Eliminating the Spurious Signals when Generating Ultralow Jitter Kazim Peker – Analog Devices High Frequency Signal Application advantages of modular VNA architectures Stanley Oda – Anritsu Company

n 5G Cell Phone ≤ 6GHz, FR1 n 5G Millimeterwave, FR2 n Antenna and Antenna Components n Components & Materials n CAD and Modeling Products and Techniques n High Power Devices, including GaN Devices n Instrumentation and Measurement Techniques n Systems

MicroApps Sponsor: MicroApps Media Sponsor:

62 IMS2020 MICROAPPS SCHEDULE

TITLE SPEAKERS Power Amplifier Measurements using Spectre RF Option and Virtuoso ADE Explorer and Sruba Seshadri – Cadence Design Systems Assembler WinCal, the Microwave Engineer’s Toolkit Craig Kirkpatrick – FormFactor Sonnet’s Upcoming Fast Solver: Beowulf Brian Rautio – Sonnet Software Tunable and Fixed Filtering Solutions enhances Dynamic Range and Flexibility of 4G-5G-LTE Rafi Hershtig – K&L Microwave Measurements Automating Simulation of S-Parameters in Spectre Tawna Wilsey – Cadence S-C Band High Q Low Loss Filters for 5G FR1 and Radar Bands Dave Thibado – Knowles Corporation A Panelized Filter Array for Millimeter Wave 5G Applications David Bates – Knowles Lies My Tester Told Me: How Impairments in RF Test Equipment Can Hide a DUT’s True EVM Abram Rose – Naitonal Instruments Optimisation of Load and Source pull tuning to 110 GHz on Wafer Gavin Fisher – IMECHE Passive RF Mounting & Integration Jared Burdick – Knowles Capacitors How Material Properties and Fabrication can Impact RF Filter Performance John Coonrod – Rogers Corp. The Design of Integrated RFSOI based mm-wave Beamformers Arun Natarajan – MixComm Best Practices for the Installation and Test of Board Level Passive Components for Ka-band and Mo Hasanovic – Smiths Interconnect Above Applications Dual Polarized Antennas Fang Lu – SAGE Millimeter Designing a Practical 100GbE Real-time Recording System for the Xilinx RFSoC Bob Muro – Pentek

n 5G Cell Phone ≤ 6GHz, FR1 n 5G Millimeterwave, FR2 n Antenna and Antenna Components n Components & Materials n CAD and Modeling Products and Techniques n High Power Devices, including GaN Devices n Instrumentation and Measurement Techniques n Systems

MicroApps Sponsor: MicroApps Media Sponsor:

63 IMS2020 INDUSTRY WORKSHOPS

SESSION TITLE EVENT COMPANY SPEAKERS Analytical vs. numerical techniques for beamforming optimization in Optenni Ltd Joni Lappalainen, Optenni Ltd; Jussi Rahola, Optenni phased arrays Ltd Cadence Design Systems, Gent Paparisto, Cadence Design Systems, Inc.; Takao Understanding 5G System-Level Evaluation Inc. Inoue, Cadence Design Systems, Inc. Achieving Electromagnetic Compatibility (EMC) for 5G Devices ETS-Lindgren Ross Carlton, ETS-Lindgren Rohde & Schwarz GmbH & RF and mmWave Frontends: efficient RF power amplifiers and affiliates Co KG Brooks Hanley, Keysight Technologies; Rich Hoft, Phase-Noise Theory and Measurement Workshop Keysight Technologies Keysight Technologies; Joanne Mistler, Keysight Technologies Feng Ling, Xpeedic Technology, Inc.; Lijun Chen, Integrated Passive Devices (IPD) for 5G RF Front-end Designs Xpeedic Technology, Inc. Xpeedic Technology Co. Ltd. Enabling Technologies for Silicon Beamformers for 5G and Satcom Integrated Device Technology, Systems Inc. 5G Performance Verification Test Challenges of Modern Wireless ETS-Lindgren Jari Vikstedt, ETS-Lindgren; Harry Skinner, Intel Devices Best Practices for Thermal on Wafer S-parameter Measurements Formfactor Gavin Fisher, IMECHE; Craig Kirkpatrick, IEEE Practical GaN Power Amplifier Design - Modeled vs Measured Wolfspeed, A Cree Company Kasyap Patel, Cree-Wolfspeed Performance, Tricks and Tips for and Satcom Applications

Measuring S-Parameters and Power with Uncertainty Maury Microwave Corp.

Cadence Design Systems, Best Practices for Efficient EM Simulation John Dunn, Cadence Design Systems, Inc. Inc. Raj Sodhi, Keysight Technologies Inc; Martha Zemede, Learn 5G Signals, Demodulation and Conformance Tests with the VSA Keysight Technologies Inc Keysight Technologies Inc; Denis Gregoire, Keysight Technologies Inc; Aidin Taeb, Keysight Technologies Inc Addressing Calibration and Measurement Challenges of Broadband Steve Reyes, Anritsu Company; Jon Martens, Anritsu Anritsu Company On-wafer VNA Measurements up to 220 GHz Company; Andrej Rumiantsev, MPI Corporation Cadence Design Systems, David Vye, Cadence Design Systems, Inc.; John Dunn, Design Tutorial for a High-Efficiency GaN Doherty Power Amplifier Inc. Cadence Design Systems, Inc. Suren Singh, Keysight Technologies; Nizar Messaoudi, Cryogenic Measurement Challenges for Quantum Applications Keysight Technologies Keysight Technologies; David Daughton, Lakeshore Cryotronics Redefine OTA: Innovative Testing Solution for 5G NR mmWave TMY Technology, Inc Ethan Lin, TMY Technology Understanding 5G New Radio (NR) Release 15-16 Standards Keysight Technologies Designing GaN on SiC MMIC Power Amplifiers Using the Cree-Wolf- Wolfspeed, A Cree Company Yueying Liu, Cree-Wolfspeed speed MWO PDK Module-Level RF-Microwave Design Flows Integrating Circuit-EM and Cadence Design Systems, David Choe, Cadence Design Systems, Inc.; Michael Thermal Analysis Inc. Thompson, Cadence Design Systems, Inc. Tackling Emerging Wideband mmWave Applications then Moving Keysight Technologies Greg Jue and Jennifer Stark Beyond into 6G

64 64 Accelerate System Innovation in Microwave and RF Design

Accelerate the design of your most complex electronics and intelligent systems. Build your next design with the comprehensive 5G/RF solution from Cadence spanning verification, implementation, mixed-signal, and RF/analog design. We’ve expanded our ability to help you design products for complex, high-frequency RF applications and RFICs with the acquisitions of AWR Corporation and Integrand Software. Together with Cadence’s Virtuoso® RF Solution, Clarity™ 3D Solver, and Sigrity™ analysis, the combination of tools offers a best-in-class electromagnetic signoff solution. www.cadence.com

UNLEASH IMAGINATION WORLD AFER R, S TE AR M S A R O F

G

N

I

T

C

E

N

N

O C 2021

SAVE THE DATE FOR IMS2021 6-11 JUNE 2021