Effects of Vegetation Zones and Climatic Changes on Fire-Induced Atmospheric Carbon Emissions: a Model Based on Paleodata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tropical Vegetation Response to Heinrich Event 1 As Simulated with the Uvic ESCM Title Page and CCSM3 Abstract Introduction Conclusions References D
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 8, 5359–5387, 2012 www.clim-past-discuss.net/8/5359/2012/ Climate doi:10.5194/cpd-8-5359-2012 of the Past CPD © Author(s) 2012. CC Attribution 3.0 License. Discussions 8, 5359–5387, 2012 This discussion paper is/has been under review for the journal Climate of the Past (CP). Tropical vegetation Please refer to the corresponding final paper in CP if available. response to Heinrich Event 1 D. Handiani et al. Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM Title Page and CCSM3 Abstract Introduction Conclusions References D. Handiani1, A. Paul1,2, X. Zhang1, M. Prange1,2, U. Merkel1,2, and L. Dupont2 Tables Figures 1Department of Geosciences, University of Bremen, Bremen, Germany 2 MARUM – Center for Marine Environmental Sciences, University of Bremen, J I Bremen, Germany J I Received: 12 October 2012 – Accepted: 31 October 2012 – Published: 5 November 2012 Correspondence to: D. Handiani ([email protected]) Back Close Published by Copernicus Publications on behalf of the European Geosciences Union. Full Screen / Esc Printer-friendly Version Interactive Discussion 5359 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract CPD We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1) using two different global cli- 8, 5359–5387, 2012 mate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and 5 the Community Climate System Model version 3 (CCSM3). Tropical South American Tropical vegetation and African pollen records suggest that the cooling of the North Atlantic Ocean during response to Heinrich HE1 influenced the tropics through a southward shift of the rainbelt. -
Postglacial Vegetation of Canada, by J.C. Ritchie
324 I REVIEWS bring readers up to the present with respect to land use planning and theWhile threatened, traditional crafts demonstrate tenacious adaptabil- issues with which itis associated. For those with longer involvements ity. Sections of formica counter tops discarded after installing modern in northern affairs, it brings together a diversity of views of land use sinks are salvaged as scraping boards for cleaning sealskins. We also planning not found elsewhere. learn that extra-soft, creamy-white leather may be produced by smear- The editors have succeeded quite well in elucidating both the devel-ing pelts with “Mr. Clean.” (Ad agencies take note.) opment of land use planning and the issues that are raisedby such an Oakes’s hands-on approach results in some interesting exchanges. initiative. Younger women, she finds, fear that chewing seal hides (to prepare them for kamik production) might damage their teeth. Oakes’sof ause R.J. Payne wringer washing machine to soften soles (a technique she learned from School of Outdoor Recreation a woman from Chesterfield Inlet) is watched with keen interest. Lakehead University Another process developed by her friend in Chesterfield Inlet is Thunder Bay, Ontario, Canada revealed with the sympathetic and understated humour that pops up P7B 5EI here and there to brighten what could easily have become a comprehen- sive but lifeless report: Once the skinis pliable she dips it into a bowlof warm water mixed with FACTORS INFLUENCING KAMIK PRODUCTION IN ARCTIC a bitof salt anddish detergent,rubs theskin withlard or goose fat,wraps BAY, NORTHWEST TERRITORIES. By JILL E. OAKES. -
Classification of Ecosystem Types: Experiences and Perspectives from Statistics Canada
Classification of ecosystem types: Experiences and perspectives from Statistics Canada Prepared for Forum of Experts in SEEA Experimental Ecosystem Accounting 2018 18 – 20 June 2018 Glen Cove, New York, USA Prepared by: Jennie Wang, Marcelle Grenier, Mark Henry and François Soulard,1 Environmental Accounts and Statistics Program, Statistics Canada. Working paper, June 14, 2018. 1 Corresponding author: [email protected] 1 Contents Introduction .............................................................................................................................................. 3 Initial work on measuring ecosystem extent in Canada ......................................................................... 3 Ecological classification in Canada ........................................................................................................ 3 Measuring ecosystem goods and services ............................................................................................ 6 Ecosystem extent accounts ................................................................................................................... 6 Discussion issues ...................................................................................................................................... 7 Ecological classification ......................................................................................................................... 7 Identifying ecosystem types ................................................................................................................ -
Pollen-Based Quantitative Land-Cover Reconstruction for Northern Asia Covering the Last 40 Ka Cal BP
Clim. Past, 15, 1503–1536, 2019 https://doi.org/10.5194/cp-15-1503-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP Xianyong Cao1,a, Fang Tian1, Furong Li2, Marie-José Gaillard2, Natalia Rudaya1,3,4, Qinghai Xu5, and Ulrike Herzschuh1,4,6 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, Potsdam 14473, Germany 2Department of Biology and Environmental Science, Linnaeus University, Kalmar 39182, Sweden 3Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 17, Novosibirsk 630090, Russia 4Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany 5College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050024, China 6Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24, Potsdam 14476, Germany apresent address: Key Laboratory of Alpine Ecology, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China Correspondence: Xianyong Cao ([email protected]) and Ulrike Herzschuh ([email protected]) Received: 21 August 2018 – Discussion started: 23 October 2018 Revised: 3 July 2019 – Accepted: 8 July 2019 – Published: 8 August 2019 Abstract. We collected the available relative pollen produc- pollen producers. Comparisons with vegetation-independent tivity estimates (PPEs) for 27 major pollen taxa from Eura- climate records show that climate change is the primary fac- sia and applied them to estimate plant abundances during the tor driving land-cover changes at broad spatial and temporal last 40 ka cal BP (calibrated thousand years before present) scales. -
Classification and Description of World Formation Types
CLASSIFICATION AND DESCRIPTION OF WORLD FORMATION TYPES PART I. INTRODUCTION Hierarchy Revisions Working Group (Federal Geographic Data Committee) 2012 Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, Dave Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Jean-Pierre Saucier, Gene Fults, Eileen Helmer This document is being developed for the U.S. National Vegetation Classification, the International Vegetation Classification, and other national and international vegetation classifications. ii July 18, 2012 Citation: Faber-Langendoen, D., T. Keeler-Wolf, D. Meidinger, C. Josse, A. Weakley, D. Tart, G. Navarro, B. Hoagland, S. Ponomarenko, J.-P. Saucier, G. Fults, E. Helmer. 2012. Classification and description of world formation types. Part I (Introduction) and Part II (Description of formation types). Hierarchy Revisions Working Group, Federal Geographic Data Committee, FGDC Secretariat, U.S. Geological Survey. Reston, VA, and NatureServe, Arlington, VA. i ACKNOWLEDGEMENTS The work produced here was supported by the U.S. National Vegetation Classification partnership between U.S. federal agencies, the Ecological Society of America, and NatureServe staff, working through the Federal Geographic Data Committee (FGDC) Vegetation Subcommittee. FGDC sponsored the mandate of the Hierarchy Revisions Working Group, which included incorporating international expertise into the process. For that reason, this product represents a collaboration of national and international vegetation ecologists. We thank Ralph Crawford, chair of the FGDC vegetation subcommittee. We gratefully acknowledge the support of the U.S. federal agencies that helped fund the work of the Hierarchy Revisions Working Group from 2003 to 2012. We appreciate their patience with our slow progress on this effort. Most recently, the U.S. -
Ecosystems of Ontario, Part 1: Ecozones and Ecoregions
Science & Information Branch Inventory, Monitoring and Assessment Section The Ecosystems of Ontario, Part 1: Ecozones and Ecoregions Ministry of Natural Resources Science & Information Branch Inventory, Monitoring and Assessment Section Technical Report SIB TER IMA TR-01 The Ecosystems of Ontario, Part 1: Ecozones and Ecoregions By William J. Crins, Paul A. Gray, Peter W.C. Uhlig, and Monique C. Wester 2009 Ministry of Natural Resources ©2009, Queen’s Printer for Ontario Printed in Ontario, Canada ISBN 978-1-4435-0812-4 (Print) ISBN 978-1-4435-0813-1 (PDF) Single copies of this publication are available from: Ontario Ministry of Natural Resources Inventory, Monitoring and Assessment 1235 Queen Street East Sault Ste. Marie, ON P6A 2E5 Cette publication spécialisée n’est disponible qu’en anglais This publication should be cited as: Crins, William J., Paul A. Gray, Peter W.C. Uhlig, and Monique C. Wester. 2009. The Ecosystems of Ontario, Part I: Ecozones and Ecoregions. Ontario Ministry of Natural Resources, Peterborough Ontario, Inventory, Monitoring and Assessment, SIB TER IMA TR- 01, 71pp. Dedication This description of the broad-scale ecosystems of Ontario is dedicated to our cherished friend and colleague, Brenda Chambers, whose thorough knowledge of central Ontario’s ecosystems, environmental ethic, infectious enthusiasm, and positive outlook in the face of daunting challenges, have inspired us, and will continue to do so. Acknowledgments The authors respectfully acknowledge the many contributions of earlier authors Angus Hills, Dys Burger, Geoffrey Pierpoint, John Riley, and Stan Rowe whose work continues to provide the foundation for much of our understanding of the structure and function of Ontario’s diverse ecosystems. -
Classification and Description of World Formation Types
United States Department of Agriculture Classification and Description of World Formation Types Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, David Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Gene Fults, Eileen Helmer Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-346 August 2016 Faber-Langendoen, D.; Keeler-Wolf, T.; Meidinger, D.; Josse, C.; Weakley, A.; Tart, D.; Navarro, G.; Hoagland, B.; Ponomarenko, S.; Fults, G.; Helmer, E. 2016. Classification and description of world formation types. Gen. Tech. Rep. RMRS-GTR-346. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 222 p. Abstract An ecological vegetation classification approach has been developed in which a combi- nation of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classifica- tion efforts. The classification structure was largely developed by the Hierarchy Revisions Working Group (HRWG), which contained members from across the Americas. The HRWG was authorized by the U.S. Federal Geographic Data Committee (FGDC) to devel- op a revised global vegetation classification to replace the earlier versions of the structure that guided the U.S. National Vegetation Classification and International Vegetation Classification, which formerly relied on the UNESCO (1973) global classification (see FGDC 1997; Grossman and others 1998). This document summarizes the develop- ment of the upper formation levels. We first describe the history of the Hierarchy Revisions Working Group and discuss the three main parameters that guide the clas- sification—it focuses on vegetated parts of the globe, on existing vegetation, and includes (but distinguishes) both cultural and natural vegetation for which parallel hierarchies are provided. -
Tropical Wet Realms of Central Africa, Part I
Geo/SAT 2 TROPICAL WET REALMS OF CENTRAL AFRICA, PART I Professor Paul R. Baumann Department of Geography State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT © 2009 Paul R. Baumann INTRODUCTION: Forests used to dominate the Earth’s land surface. Covering an estimated 15 billion acres (6 billion hectares) these forests, with their dense canopies and little undergrowth, surrounded the islands of grasslands and deserts. Today, in many sections of the world the forests have become islands, encompassed by not only grasslands and deserts but also open lands due to deforestation for human endeavors. Tropical rainforests represent one of the last great forest areas in the world. They cover about 8.3 percent of the Earth’s surface. These great forests are being cleared at an alarming rate to meet a variety of social and economic needs. The clearing of these forests can impact the world’s hydrologic cycle and energy balance, the consequences of which we do not know. FIGURE 1: MODIS images of Africa. This instructional module consists of two parts and centers on the tropical landscapes of Central Africa. The primary goal of the module is to use remotely sensed imagery to identify and measure the tropical wet regions. Part I discusses the world’s tropical atmospheric patterns, the tropical regions of Central Africa, and the characteristics associated with the remote sensing scanner, MODIS (Moderate Resolution Imaging Spectroradiometer). It also deals with some preliminary analysis of four MODIS data sets covering the four seasons of the year in Central Africa. Part II examines two different ways to classify the four data sets and produce land cover images as well as acreage figures. -
Evolution of Canada's Boreal Forest Spatial Patterns As Seen from Space
RESEARCH ARTICLE Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space Paul D. Pickell1*, Nicholas C. Coops1, Sarah E. Gergel1, David W. Andison2, Peter L. Marshall1 1 Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada, 2 Bandaloop Landscape-Ecosystem Services, North Vancouver, British Columbia, Canada * [email protected] Abstract Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for for- a11111 ested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We ana- lyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) for- est cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 OPEN ACCESS years of Landsat satellite imagery to derive annualized trends of the landscape pattern indi- ces. The largest declines in forest cover, largest forest patch index, and core forest cover Citation: Pickell PD, Coops NC, Gergel SE, Andison DW, Marshall PL (2016) Evolution of Canada’s Boreal were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest Forest Spatial Patterns as Seen from Space. PLoS edge density increased at all landscape extents for all ecozones. Rapidly changing land- ONE 11(7): e0157736. -
Lowland Vegetation of Tropical South America -- an Overview
Lowland Vegetation of Tropical South America -- An Overview Douglas C. Daly John D. Mitchell The New York Botanical Garden [modified from this reference:] Daly, D. C. & J. D. Mitchell 2000. Lowland vegetation of tropical South America -- an overview. Pages 391-454. In: D. Lentz, ed. Imperfect Balance: Landscape Transformations in the pre-Columbian Americas. Columbia University Press, New York. 1 Contents Introduction Observations on vegetation classification Folk classifications Humid forests Introduction Structure Conditions that suppport moist forests Formations and how to define them Inclusions and archipelagos Trends and patterns of diversity in humid forests Transitions Floodplain forests River types Other inundated forests Phytochoria: Chocó Magdalena/NW Caribbean Coast (mosaic type) Venezuelan Guayana/Guayana Highland Guianas-Eastern Amazonia Amazonia (remainder) Southern Amazonia Transitions Atlantic Forest Complex Tropical Dry Forests Introduction Phytochoria: Coastal Cordillera of Venezuela Caatinga Chaco Chaquenian vegetation Non-Chaquenian vegetation Transitional vegetation Southern Brazilian Region Savannas Introduction Phytochoria: Cerrado Llanos of Venezuela and Colombia Roraima-Rupununi savanna region Llanos de Moxos (mosaic type) Pantanal (mosaic type) 2 Campo rupestre Conclusions Acknowledgments Literature Cited 3 Introduction Tropical lowland South America boasts a diversity of vegetation cover as impressive -- and often as bewildering -- as its diversity of plant species. In this chapter, we attempt to describe the major types of vegetation cover in this vast region as they occurred in pre- Columbian times and outline the conditions that support them. Examining the large-scale phytogeographic regions characterized by each major cover type (see Fig. I), we provide basic information on geology, geological history, topography, and climate; describe variants of physiognomy (vegetation structure) and geography; discuss transitions; and examine some floristic patterns and affinities within and among these regions. -
A National Ecological Framework for Canada
A NATIONAL ECOLOGICAL FRAMEWORK FOR CANADA Written and compiled by: Ecological Stratification Working Group Centre for Land and Biological State of the Environment Directorate Resources Research Environment Conservation Service Research Branch Environment Canada Agriculture and Agri-Food Canada ---- Copies of this report and maps available from: Canadian Soil Information System (CanSIS) Centre for Land and Biological Resources Research Research Branch, Agriculture and Agri-Food Canada Ottawa, ON KIA OC6 State of the Environment Directorate Environmental Conservation Service Environment Canada Hull, PQ KIA OH3 Printed and digital copies of the six regional ecodistrict and ecoregion maps at scale of 1:2 million (Atlantic Provinces #CASOlO; Quebec #CASOll; Ontario #CAS012; Manitoba, Saskatchewan, and Alberta #CAS013; British Columbia and Yukon Territory #CASOI4; and the Northwest Territories #CASOI5); and associated databases are available from Canadian Soil Information System (CanSIS), address as above. co Minister of Supply and Services Canada 1996 Cat. No. A42-65/1996E ISBN 0-662-24107-X Egalement disponible en fran91is sous Ie titre Cadrc ecologiqllc national po"r Ie Canada Bibliographic Citation: Ecological Stratification Working Group. 1995. A National Ecological Framework for Canada. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, Ottawa/Hull. Report and national map at 1:7500 000 scale. TABLE OF CONTENTS Preface iv Acknowledgemenl<; v 1. Ecolo~cal Re~onalization in Canada 1 2. Methodology. .. .. 2 Map COlnpilation . .. 2 Levels of Generalization. .. 2 Ecozones 2 Ecoregions . 4 Ecodistricts 4 Data Integration. .. 6 3. The Ecological Framework 8 4. Applications of the Framework 8 Reporting Applications. -
Taiga Shield Ecozone
.9t Perspective on Canatia's f£cosgstems YIn OVerview oftfie 'Ierrestria{ and !Mari:ne t£cazones Prepared for the Canadian Council on Ecological Areas Ottawa, Ontario KIA OH3 llTitten by Ed B. Wiken, David Gauthier, Ian Marshall, Ken Lawton and Harry Hirvonen CCEA Occasional Papers (September 1996) 1996, NO. 14 ( ( Table of Contents ( ( Prelude ........................................................................................... iv ( vi Acknowledgements ....................................................................... t Section 1 ( Introduction .................................................................................. 1 ( Section 2 ( Defining Ecozones and Ecosystems ............................................. 2 ( Section 3 ( The Terrestrial Ecozones of Canada ........................................ 11 ( Arctic Cordillera Ecozone ............................................................ 12 Northern Arctic Ecozone .............................................................. 15 ( Southern Arctic Ecozone .............................................................. 18 C Taiga Plains Ecozone .................................................................... 22 ( Taiga Shield Ecozone ................................................................... 25 ( Taiga Cordillera Ecozone ............................................................. 28 Hudson Plains Ecozone ................................... :............................ 31 ( Boreal Plains Ecozone .................................................................