Commensalism in the Mimiviridae Giant Virus Family

Total Page:16

File Type:pdf, Size:1020Kb

Commensalism in the Mimiviridae Giant Virus Family bioRxiv preprint doi: https://doi.org/10.1101/782383; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Commensalism in the Mimiviridae giant virus family 2 3 Sandra Jeudya#*, Lionel Bertauxa#, Jean-Marie Alempica, Audrey Lartiguea, Matthieu Legendrea, Lucid 4 Belmudesb, Sébastien Santinia, Nadège Philippea, Laure Beucherb, Emanuele G. Biondic, Sissel Juuld, 5 Daniel J. Turnerd, Yohann Coutéb, Jean-Michel Claveriea*, Chantal Abergela* 6 aAix–Marseille Univ., Centre National de la Recherche Scientifique, Information Génomique & 7 Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), 8 13288 Marseille Cedex 9, France 9 bUniv. Grenoble Alpes, CEA, INSERM, IRIG, BGE, 38000 Grenoble, France 10 cAix–Marseille Univ., Centre National de la Recherche Scientifique, Laboratoire de Chimie 11 Bactérienne, Unité Mixte de Recherche 7283 (Institut de Microbiologie de la Méditerranée, FR3479), 12 13009 Marseille, France 13 dOxford Nanopore Technologies Ltd, UK 14 #These authors contributed equally to the work 15 *Corresponding authors 16 Chantal Abergel, ORCID 0000-0003-1875-4049, [email protected], Phone: +33 491 17 825422 18 Jean-Michel Claverie, ORCID: 0000-0003-1424-0315, [email protected] 19 Sandra Jeudy, ORCID: 0000-0002-5297-0135, [email protected] 20 Short Title : Mimiviruses and their mobilomes 21 1 bioRxiv preprint doi: https://doi.org/10.1101/782383; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 Abstract 23 Acanthamoeba-infecting Mimiviridae belong to three clades: Mimiviruses (A), Moumouviruses (B) 24 and Megaviruses (C). The uniquely complex mobilome of these giant viruses includes virophages and 25 linear 7 kb-DNA molecules called “transpovirons”. We recently isolated a virophage (Zamilon vitis) 26 and two transpovirons (maBtv and mvCtv) respectively associated to B-clade and C-clade mimiviruses. 27 We used the capacity of the Zamilon virophage to replicate both on B-clade and C-clade host viruses 28 to investigate the three partite interaction network governing the propagation of transpovirons. We 29 found that the virophage could transfer both types of transpovirons to B-clade and C-clade host 30 viruses provided they were devoid of a resident transpoviron (permissive effect). If not, only the 31 resident transpoviron was replicated and propagated within the virophage progeny (dominance 32 effect). Although B- and C-clade viruses devoid of transpoviron could replicate both maBtv and mvCtv, 33 they did it with a lower efficiency across clades, suggesting an ongoing process of adaptive co- 34 evolution. We performed proteomic comparisons of host viruses and virophage particles carrying or 35 cleared of transpovirons in search of proteins involved in this adaptation process. These experiments 36 revealed that transpoviron-encoded proteins are synthetized during the combined 37 mimiviruses/virophage/transpoviron replication process and some of them are specifically 38 incorporated into the virophage and giant virus particles together with the cognate transpoviron 39 DNA. This study also highlights a unique example of intricate commensalism in the viral world, where 40 the transpoviron uses the virophage to propagate from one host virus to another and where the 41 Zamilon virophage and the transpoviron depend on their host giant virus to replicate, this without 42 affecting the giant virus infectious cycle, at least in laboratory conditions. 43 2 bioRxiv preprint doi: https://doi.org/10.1101/782383; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 44 Author Summary 45 The Mimiviridae are giant viruses with dsDNA genome up to 1.5 Mb. They build huge viral factories in 46 the host cytoplasm in which the nuclear-like virus-encoded functions (transcription and replication) 47 take place. They are themselves the target of infections by 20 kb-dsDNA virophages, replicating in 48 the giant virus factories. They can also be found associated with 7kb-DNA episomes, dubbed 49 transpovirons. We investigated the relationship between these three players by combining 50 competition experiments involving the newly isolated Zamilon vitis virophage as a vehicle for 51 transpovirons of different origins with proteomics analyses of virophage and giant virus particles. Our 52 results suggest that relationship of the virophage, the transpoviron, and their host giant virus, extend 53 the concept of commensalism to the viral world. 54 55 3 bioRxiv preprint doi: https://doi.org/10.1101/782383; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 56 Introduction 57 As of today, the Mimiviridae family appears composed of several distinct subfamilies (1–10) one 58 of which, the proposed Megamimivirinae (7,10,11), corresponds to the family members specifically 59 infecting Acanthamoeba (1,3–5,8). Members of this subfamilies, collectively refers to as 60 "mimiviruses" throughout this article, can be infected by dsDNA satellite viruses called virophages 61 only able to replicate using the already installed intracytoplasmic viral factory (6,12–15). These new 62 type of satellite viruses constitute the Lavidaviridae family (16). In addition to virophages, the 63 members of the mimiviruses can be found associated with a linear plasmid-like 7 kb-DNA called a 64 transpoviron (13,16,17) making their mobilome uniquely complex among the known large DNA virus 65 families. 66 Sputnik, the first discovered virophage, was found to infect the A-clade Mamavirus (12). Since it 67 caused the formation of abnormal, less infectious, MamavirusA particles, it was initially proposed that 68 virophages would in general protect host cells undergoing giant viruses’ infections. Such a protective 69 role was quantitatively demonstrated for the protozoan Cafeteria roenbergensis, infected by the 70 CroV (2)virus, in presence of the Mavirus virophage (18,19). However, it was later recognized that 71 some virophages replicated without visibly impairing the replication of their associated host virus. 72 This is the case for the mimiviruses of the B- or C-clades when infected by the Zamilon virophage 73 (15). On the other hand, members of the A-clade appeared non permissive to Zamilon replication 74 (15). The resistance to Zamilon infection was linked to a specific locus proposed to encode the viral 75 defence system MIMIVIRE (20–22) but the actual mechanisms governing the virulence of a given 76 virophage vis à vis its host virus remain to be elucidated (21,22). The rather ubiquitous transpovirons 77 might also be involved in the protection of the mimiviruses against the deleterious effects of 78 virophages infection. In this study we took advantage of a newly isolated virophage (Zamilon vitis) 79 and of its ability to propagate different transpovirons to investigate the specificity of the 80 transpoviron/host virus relationship. We also used B- and C-clades strains of mimiviruses originally 81 devoid of transpoviron to investigate the possible role of the transpoviron in the context of 4 bioRxiv preprint doi: https://doi.org/10.1101/782383; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 82 virophage co-infections. Finally, we analyzed the proteome of virophage particles replicated on B- 83 and C-clades host viruses, with and without resident transpoviron, to identify transpoviron proteins 84 that could be involved in the co-evolution process allowing the transpovirons to be replicated by 85 mimiviruses. 86 87 Results 88 MegavirusC vitis, MoumouvirusB australiensis, MoumouvirusB maliensis and their 89 mobilomes 90 Three samples recovered from various locations (France, Australia and Mali) produced lytic 91 infections phenotypes when added to cultures of Acanthamoeba castellanii cells. Viral factories were 92 recognizable in the amoeba cells after DAPI staining and we observed the accumulation of spherical 93 particles visible by light microscopy in the culture medium (Fig. 1A). The corresponding virus 94 populations were cloned and amplified as previously described (23). In all cases, negative staining 95 electron microscopy (EM) images confirmed the presence of icosahedral virions of ~450 nm in 96 diameter with a stargate structure at one vertex, as was observed previously for all Mimiviridae 97 infecting Acanthamoeba cells (3,15,24,25). For some clones of the MegavirusC vitis giant virus, 98 associated icosahedral virions of ~70 nm diameter were also visible, suggesting the presence of 99 virophages (Fig. 1B-F). 100 Based on its genome sequence, this new isolate was determined to belong to the C-clade and named 101 MegavirusC vitis. Its associated virophage was named Zamilon vitis, in reference to its genomic 102 similarity with the original Zamilon virophage (15). In addition, the genome sequence assembly 103 process revealed the presence of a 7kb dsDNA sequence homologous to previously described 104 transpovirons (13). The MegavirusC vitis associated transpoviron was named mvCtv. The Australian 105 isolate was found to be a B-clade, and was named MoumouvirusB australiensis. It came with its own 106 transpoviron that we named maBtv.
Recommended publications
  • Chapitre Quatre La Spécificité D'hôtes Des Virophages Sputnik
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE THESE DE DOCTORAT Présentée par Morgan GAÏA Né le 24 Octobre 1987 à Aubagne, France Pour obtenir le grade de DOCTEUR de l’UNIVERSITE AIX -MARSEILLE SPECIALITE : Pathologie Humaine, Maladies Infectieuses Les virophages de Mimiviridae The Mimiviridae virophages Présentée et publiquement soutenue devant la FACULTE DE MEDECINE de MARSEILLE le 10 décembre 2013 Membres du jury de la thèse : Pr. Bernard La Scola Directeur de thèse Pr. Jean -Marc Rolain Président du jury Pr. Bruno Pozzetto Rapporteur Dr. Hervé Lecoq Rapporteur Faculté de Médecine, 13385 Marseille Cedex 05, France URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Directeur : Pr. Didier RAOULT Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Characteristics of Virophages and Giant Viruses Beata Tokarz-Deptuła1*, Paulina Czupryńska2, Agata Poniewierska-Baran1 and Wiesław Deptuła2
    Vol. 65, No 4/2018 487–496 https://doi.org/10.18388/abp.2018_2631 Review Characteristics of virophages and giant viruses Beata Tokarz-Deptuła1*, Paulina Czupryńska2, Agata Poniewierska-Baran1 and Wiesław Deptuła2 1Department of Immunology, 2Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland Five years after being discovered in 2003, some giant genus, Mimiviridae family (Table 3). It was found in the viruses were demonstrated to play a role of the hosts protozoan A. polyphaga in a water-cooling tower in Brad- for virophages, their parasites, setting out a novel and ford (Table 1). Sputnik has a spherical dsDNA genome yet unknown regulatory mechanism of the giant virus- closed in a capsid with icosahedral symmetry, 50–74 nm es presence in an aqueous. So far, 20 virophages have in size, inside which there is a lipid membrane made of been registered and 13 of them have been described as phosphatidylserine, which probably protects the genetic a metagenomic material, which indirectly impacts the material of the virophage (Claverie et al., 2009; Desnues number of single- and multi-cell organisms, the environ- et al., 2012). Sputnik’s genome has 18343 base pairs with ment where giant viruses replicate. 21 ORFs that encode proteins of 88 to 779 amino ac- ids. They compose the capsids and are responsible for Key words: virophages, giant viruses, MIMIVIRE, Sputnik N-terminal acetylation of amino acids and transposases Received: 14 June, 2018; revised: 21 August, 2018; accepted: (Claverie et al., 2009; Desnues et al., 2012; Tokarz-Dep- 09 September, 2018; available on-line: 23 October, 2018 tula et al., 2015).
    [Show full text]
  • Genome of Phaeocystis Globosa Virus Pgv-16T Highlights the Common Ancestry of the Largest Known DNA Viruses Infecting Eukaryotes
    Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes Sebastien Santinia, Sandra Jeudya, Julia Bartolia, Olivier Poirota, Magali Lescota, Chantal Abergela, Valérie Barbeb, K. Eric Wommackc, Anna A. M. Noordeloosd, Corina P. D. Brussaardd,e,1, and Jean-Michel Claveriea,f,1 aStructural and Genomic Information Laboratory, Unité Mixte de Recherche 7256, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille Cedex 9, France; bCommissariat à l’Energie Atomique–Institut de Génomique, 91057 Evry Cedex, France; cDepartment of Plant and Soil Sciences, University of Delaware, Newark, DE 19711; dDepartment of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg (Texel), The Netherlands; eAquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; and fService de Santé Publique et d’Information Médicale, Hôpital de la Timone, Assistance Publique–Hôpitaux de Marseille, FR-13385 Marseille, France Edited by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved May 1, 2013 (received for review February 22, 2013) Large dsDNA viruses are involved in the population control of many viruses: 730 kb and 1.28 Mb for CroV and Megavirus chilensis, globally distributed species of eukaryotic phytoplankton and have respectively. Other studies, targeting virus-specific genes [e.g., a prominent role in bloom termination. The genus Phaeocystis (Hap- DNA polymerase B (8) or capsid proteins (9)] have suggested tophyta, Prymnesiophyceae) includes several high-biomass-forming a close phylogenetic relationship between Mimivirus and several phytoplankton species, such as Phaeocystis globosa, the blooms of giant dsDNA viruses infecting various unicellular algae such as which occur mostly in the coastal zone of the North Atlantic and the Pyramimonas orientalis (Chlorophyta, Prasinophyceae), Phaeocys- North Sea.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • Virus Goes Viral: an Educational Kit for Virology Classes
    Souza et al. Virology Journal (2020) 17:13 https://doi.org/10.1186/s12985-020-1291-9 RESEARCH Open Access Virus goes viral: an educational kit for virology classes Gabriel Augusto Pires de Souza1†, Victória Fulgêncio Queiroz1†, Maurício Teixeira Lima1†, Erik Vinicius de Sousa Reis1, Luiz Felipe Leomil Coelho2 and Jônatas Santos Abrahão1* Abstract Background: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. Methods: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus.
    [Show full text]
  • Genomic Exploration of Individual Giant Ocean Viruses
    The ISME Journal (2017) 11, 1736–1745 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Genomic exploration of individual giant ocean viruses William H Wilson1,2, Ilana C Gilg1, Mohammad Moniruzzaman3, Erin K Field1,4, Sergey Koren5, Gary R LeCleir3, Joaquín Martínez Martínez1, Nicole J Poulton1, Brandon K Swan1,6, Ramunas Stepanauskas1 and Steven W Wilhelm3 1Bigelow Laboratory for Ocean Sciences, Boothbay, ME, USA; 2School of Marine Science and Engineering, Plymouth University, Plymouth, UK; 3Department of Microbiology, The University of Tennessee, Knoxville, TN, USA; 4Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC, USA; 5Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA and 6National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on ‘giant viruses’ that are readily distinguishable by flow cytometry. From a single- milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on a detailed genome analysis of 12. A wide diversity of viruses was identified that included Iridoviridae, extended Mimiviridae and even a taxonomically novel (unresolved) giant virus.
    [Show full text]
  • Bacterial Species Library with Validly Published Names (Green Curve); and Sequenced Viral Genomes (Blue)
    17 March 2014 ESCMID-ESCAR PGEC MARSEILLE «Ignorance and blindness for a post-modern microbiology ! » © by author ESCMID Online Lecture Library Didier Raoult Marseille - France [email protected] www.mediterranee-infection.com © by author « ESCMIDPostmodern scienceOnline makes Lecture the theory Library of its own evolution as discontinuous, catastrophic, nonrectifiable, paradoxical.» P.97 2 INFECTIONS IN THE XXIST CENTURY Infections in the world : 17 million deaths - 30% - The big 3s : HIV - TB – malaria : no vaccine - Respiratory infections : Etiology? - Digestive infections : Etiology? - Vaccine-prevented infections© by : authorAdhesion - Nosocomial infections : Circuits? - EmergingESCMID infections Online : LectureSource Library - Cancer : Communicable 3 IGNORANCE that decreases but reveals ou ARROGANCE BLINDNES that persists and leads to FALSE DEDUCTIONS © by author and UNVERIFIED PREDICTIONSESCMID Online Lecture Library 4 EMERGING DISEASES IGNORANCE: Major and unique acceleration of knowledge in history Blindness False deductions© by author ESCMID Unverified Online predictions Lecture Library So what ? 5 Viruses: Essential Agents of Life by Günther Witzany © by author ESCMID Online Lecture Library p.64 By F.Rohwer 6 Viruses: Essential Agents of Life by Günther Witzany © by author ESCMID Online Lecture Library p.64 By F.Rohwer 7 PROGRESSES MADE IN MICROBIOLOGY FROM 1979 TO 2012 THANKS TO THE DEVELOPMENT OF NEW TECHNOLOGIES Cultured Sequenced © by author a) the ESCMIDleft ordinate axis refers toOnline the cumulative numbers
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • A Distinct Lineage of Giant Viruses Brings a Rhodopsin Photosystem to Unicellular Marine Predators
    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators David M. Needhama,1, Susumu Yoshizawab,1, Toshiaki Hosakac,1, Camille Poiriera,d, Chang Jae Choia,d, Elisabeth Hehenbergera,d, Nicholas A. T. Irwine, Susanne Wilkena,2, Cheuk-Man Yunga,d, Charles Bachya,3, Rika Kuriharaf, Yu Nakajimab, Keiichi Kojimaf, Tomomi Kimura-Someyac, Guy Leonardg, Rex R. Malmstromh, Daniel R. Mendei, Daniel K. Olsoni, Yuki Sudof, Sebastian Sudeka, Thomas A. Richardsg, Edward F. DeLongi, Patrick J. Keelinge, Alyson E. Santoroj, Mikako Shirouzuc, Wataru Iwasakib,k,4, and Alexandra Z. Wordena,d,4 aMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; bAtmosphere & Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan; cLaboratory for Protein Functional & Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; dOcean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; eDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; fGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; gLiving Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4SB, United Kingdom; hDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; iDaniel K. Inouye Center for Microbial Oceanography, University of Hawaii, Manoa, Honolulu, HI 96822; jDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106; and kDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved August 8, 2019 (received for review May 27, 2019) Giant viruses are remarkable for their large genomes, often rivaling genomes that range up to 2.4 Mb (Fig.
    [Show full text]
  • Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere
    viruses Review Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere Clara Rolland 1, Julien Andreani 1, Amina Cherif Louazani 1, Sarah Aherfi 1,3, Rania Francis 1 , 1,2 1, 1 1 Rodrigo Rodrigues , Ludmila Santos Silva y, Dehia Sahmi , Said Mougari , 1 1, 1,2 1,§ 1, Nisrine Chelkha , Meriem Bekliz z, Lorena Silva , Felipe Assis ,Fábio Dornas k, Jacques Yaacoub Bou Khalil 3, Isabelle Pagnier 1,3, Christelle Desnues 1,¶, Anthony Levasseur 1,3, Philippe Colson 1,3,Jônatas Abrahão 1,2 and Bernard La Scola 1,3,* 1 MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France; [email protected] (C.R.); [email protected] (J.A.); cherifl[email protected] (A.C.L.); aherfi[email protected] (S.A.); [email protected] (R.F.); [email protected] (R.R.); [email protected] (L.S.S.); [email protected] (D.S.); [email protected] (S.M.); [email protected] (N.C.); [email protected] (M.B.); [email protected] (L.S.); [email protected] (F.A.); [email protected] (F.D.); [email protected] (I.P.); [email protected] (C.D.); [email protected] (A.L.); [email protected] (P.C.); [email protected] (J.A.) 2 Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil 3 IHU IHU-Méditerranée Infection, 13005 Marseille, France; [email protected] * Correspondence: [email protected] Present address: Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, y 67000 Strasbourg, France.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • The Virome Hunters Diversity Was—And Still Is to This Day— Mostly Uncharacterized
    NEWS FEATURE Virus images: colematt / iStock Getty Images Plus The virome hunters diversity was—and still is to this day— mostly uncharacterized. Scientists have since Ambitious efforts to catalog viruses across the globe may facilitate expanded their analyses into other many environments, as well as animal and human our understanding of viral communities and ecology, boost viromes. Indeed, a pure metagenomic analysis infectious disease diagnostics and surveillance, and spur new of human fecal samples revealed a previously unknown virus that represents a large part therapeutics. Charles Schmidt investigates. of the dark matter—as much as 90%—of the human gut virome. Dubbed the crAssphage by Robert Edwards and collaborators from In July, scientists from UC Davis and Columbia and our questions about the viral world are San Diego State because it was pieced together University announced they had isolated a new profound,” says Edward Holmes, a virologist by tool they invented called cross assembly species of the Ebola virus from bats roosting and professor at the University of Sydney in analysis (although its origin in stool seems to inside houses in Sierra Leone. Dubbed Bombali Australia. Along with new species, investigators have been in the minds of the researchers), it after the district where the bats were captured, are turning up vast stretches of what they call was called “one of the most striking feats of this new species is the first Ebola virus to have dark matter—viral sequences unlike any seen metagenomics at that time” by Eugene Koonin its initial identification in an animal host previously. They’re using sophisticated bioin- at US National Center for Biotechnology rather than from a sick person.
    [Show full text]