About the Development of a Process for the On-Purpose Production of Propene out of Ethene Via a Sequence of Dimerization, Isomerization and Cross-Metathesis

Total Page:16

File Type:pdf, Size:1020Kb

About the Development of a Process for the On-Purpose Production of Propene out of Ethene Via a Sequence of Dimerization, Isomerization and Cross-Metathesis About the Development of a Process for the On-Purpose Production of Propene out of Ethene via a Sequence of Dimerization, Isomerization and Cross-Metathesis Über die Entwicklung eines Prozesses für die selektive Umsetzung von Ethen zu Propen über eine Reaktionskaskade bestehend aus einer Dimerisierung, Isomerisierung und Kreuz-Metathese Der Technischen Fakultät der Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Dipl.-Ing. Judith Scholz Erlangen 2013 Als Dissertation genehmigt von der Technischen Fakultät der Universität Erlangen-Nürnberg Tag der Einreichung: 14.09.2012 Tag der Promotion: 12.04.2013 Dekan: Prof. Dr.-Ing. habil. Marion Merklein Berichterstatter: Prof. Dr. rer. nat. Peter Wasserscheid Prof. Dr.-Ing. Andreas Jess Die Ergebnisse der vorliegenden Doktorarbeit entstanden von August 2008 bis Februar 2012 am Lehrstuhl für Chemische Reaktionstechnik der Friedrich-Alexander-Universität Erlangen- Nürnberg. Danksagung Gerne denke ich an die Zeit meiner Promotion zurück. Viele Menschen haben zu dem Gelingen meiner Arbeit beigetragen und diese Episode zu etwas Besonderem gemacht. Daher möchte ich an dieser Stelle die Gelegenheit nutzen, mich für die tollen dreieinhalb Jahre zu bedanken. Dabei geht mein größter Dank an meinen Doktorvater Professor Dr. Peter Wasserscheid. Trotz teilweise herausfordernder Aufgabenstellungen habe ich aufgrund Deiner Motivationskunst nie die Hoffnung und den Spaß an meiner Arbeit verloren. Die Möglichkeiten, die Du im Rahmen einer Promotion bietest, sei es in Form von technischer Ausstattung, Konferenzreisen im In- und Ausland oder auch in Form von Unternehmungen mit dem Lehrstuhl wie Skifahren, Bogenschießen, Rafting und Wandern halte ich für außergewöhnlich. Ich möchte Dir dafür herzlich danken. Herrn Professor Dr. Andreas Jess danke ich für die Übernahme des Zweitgutachtens und für die interessanten Gespräche in Pruggern und auf Konferenzreisen. Darüber hinaus geht mein Dank an die weiteren Mitglieder des Prüfungskollegiums, Herrn Professor Dr. Wilhelm Schwieger und Herrn Professor Dr. Jörg Libuda. Letzteren danke ich zudem für die Übernahme des Mentoring im Rahmen der EAM Graduate School. Für die Finanzierung von industrieller Seite möchte ich mich bei der Süd-Chemie AG bedanken. Zudem danke ich Dr. Normen Szesni und Dr. Roman Bobka für die unkomplizierte Zusammenarbeit, ertragreichen Diskussionen und die Bereitstellung von Trägermaterialien. Der Deutschen Forschungsgemeinschaft (DFG), die in ihrer Exzellenzinitiative den Exzellenzcluster „Engineering of Advanced Materials“ unterstützt, danke ich ebenfalls für die finanzielle Unterstützung und die Möglichkeit im Rahmen eines solchen Clusters forschen zu können. Insbesondere allen Mitgliedern der Research Area D „Catalytic Materials“ bin ich für die gewinnbringende Zusammenarbeit dankbar. Dr. Wolfgang Hieringer danke ich für die Durchführung der DFT-Berechnungen, welche einen großen Teil zur Aufklärung des „Metathese- Mysteriums“ beigetragen haben. Bei Xinjiao Wang bedanke ich mich für die Synthese verschiedenster Nickelkomplexe. Dr. Carsten Schür, Monika Schenk und Kristina Muck danke ich herzlichst für alle organisatorischen Dinge rund ums Thema Cluster und Graduate School. Dr. Marco Haumann danke ich für die stets offene Bürotür, die hilfreichen Tipps rund ums Thema SILP, die interessanten Gespräche zu jeder Gelegenheit und natürlich für das Korrekturlesen meiner Arbeit. Bei Herrn Dr. Nicola Taccardi und Markus Berger möchte ich mich für die Synthese von Katalysatorkomplexen und Ionischen Flüssigkeiten, die Hilfestellung zu NMR-Analysen und die Beratung in chemischen Belangen bedanken. Auch Dr. Andreas Bösmann und Dr. Friderike Agel bin ich für ihre fachliche Unterstützung äußerst dankbar. Dr. Peter Schulz bin ich dankbar für seine Geduld und Beratung rund ums Thema Analytik und für das Korrekturlesen meiner Arbeit. Für die schnelle und kompetente Hilfe bei den Auf-, Um-, und Abbauarbeiten von Anlagen möchte ich mich herzlich bei Michael Schmacks, Achim Mahnke, Julian Karl und Gerhard Dommer bedanken. Kalle, Hendryk und Herrn Fischer danke ich für das Lösen sämtlicher computertechnischer Probleme. Frau Menuet und Frau Singer danke ich für die zuverlässige Unterstützung in allen organisatorischen Belangen. Carolin Meyer danke ich für sämtliche Korrekturlesearbeiten, für das reibungslose Teilen eines Abzuges, für die morgendlichen Kaffeerunden und für alle Erlebnisse die wir mit und ohne Silvaner und unseren Friends hatten. Meinen ehemaligen Arena-Kollegen Caspar, Eva, Joni, Jakitukki, Caro, Matz, Swetlana, Kerstin, Markus und Jens danke ich herzlichst für das super angenehme, lustige und meist konstruktive Arbeitsklima. Insgesamt möchte ich mich bei allen ehemaligen und jetzigen Mitarbeitern des CRT für die tolle Zeit am Lehrstuhl bedanken. Großer Dank geht zudem an Anne, Ferdinand, Clara, Steffi, Denise, Lisa, Simon und Mammut – ohne eure Hilfe im Labor hätte ich weit weniger Ergebnisse erlangt. Zu guter Letzt bedanke ich mich bei allen meinen Freunden und meiner Familie, die mir jederzeit zur Seite standen und ohne die diese Arbeit niemals zustande gekommen wäre. Teile dieser Arbeit wurden bereits in der folgenden Fachzeitschrift veröffentlicht: J. Scholz, S. Loekman, N. Szesni, W. Hieringer, A. Görling, M. Haumann, P. Wasserscheid, Advanced Synthesis and Catalysis 2011, 353, 2701 – 2707. Teile dieser Arbeit wurden bereits als Tagungsbeitrag veröffentlicht: J. Scholz, M. Haumann, P. Wasserscheid: Investigations on the deactivation behavior of Grubbs- type olefin metathesis catalysts. Vortrag, 8th European Congress of Chemical Engineering together with ProcessNet Annual Meeting, Berlin, Deutschland, 2011. J. Scholz, W. Hieringer, M. Haumann, P. Wasserscheid: Investigations on the activity profile of immobilized Grubbs metathesis catalysts in a Supported Ionic Liquid Phase (SILP) system. Poster, 4th Congress on Ionic Liquids, Washington DC, USA, 2011. J. Scholz, W. Hieringer, M. Haumann, P. Wasserscheid: Reversible deactivation of Grubbs metathesis catalysts. Poster, 22nd North American Catalysis Society Meeting, Detroit, USA, 2011. J. Scholz, M. Haumann, P. Wasserscheid: Ethene induced deactivation of Grubbs metathesis catalysts. Poster, 44. Jahrestreffen Deutscher Katalytiker mit Jahrestreffen Reaktionstechnik, Weimar, Deutschland, 2011. J. Scholz, M. Haumann, P. Wasserscheid: Immobilization of Grubbs metathesis catalysts. Poster, 3rd EuCheMS Chemistry Congress, Nürnberg, Deutschland, 2010. J. Scholz, M. Haumann, P. Wasserscheid: Olefin metathesis with supported ruthenium catalysts. Poster, EUCHEM Conference on Molten Salts and Ionic Liquids, Bamberg, Deutschland, 2010. J. Scholz, M. Haumann, P. Wasserscheid: Olefin metathesis with supported ruthenium catalysts. Poster, 43. Jahrestreffen Deutscher Katalytiker, Weimar, Deutschland, 2010. J. Scholz, M. Haumann, P. Wasserscheid: Alken-Metathese mit Hilfe geträgerter Ruthenium- Katalysatoren. Jahrestreffen Reaktionstechnik, Würzburg, Deutschland, 2010. J. Scholz, M. Haumann, P. Wasserscheid: Fast Optimization and Kinetic Measurements of Supported Ionic Liquid Phase (SILP) Catalysts in a Parallel Reactor Set-Up. ISHHC XIV International Symposium on Relations between Homogeneous and Heterogeneous Catalysis, Stockholm, Sweden, 2009. Table of contents 1 Introduction 2 2 General part 6 2.1 Propene 6 2.1.1 Significance 6 2.1.2 On-purpose routes for propene production 7 2.2 Dimerization and oligomerization of ethene 12 2.2.1 Catalytic systems 13 2.2.2 Nickel hydride mechanism 16 2.2.3 Cationic nickel complexes for selective ethene dimerization and butene isomerization 17 2.3 Olefin metathesis 21 2.3.1 Different kinds of metathesis reactions 21 2.3.2 Catalytic systems 23 2.3.3 Metallacyclobutane mechanism 25 2.3.4 Ruthenium based Grubbs-type catalysts 27 2.3.5 Proposed deactivation mechanism of Grubbs-type catalysts 30 2.3.6 Thermodynamic aspects of olefin metathesis 35 2.4 Immobilization of homogeneous catalysts 36 2.4.1 Overview of immobilization concepts 36 2.4.2 Immobilized nickel dimerization and oligomerization catalysts 40 2.4.3 Immobilized ruthenium Grubbs-type metathesis catalysts 44 2.5 Objectives of this work 52 3 Experimental 56 3.1 General working technique 56 3.2 Chemicals 56 3.2.1 Substrates 56 3.2.2 Homogeneous catalysts 57 3.2.3 Ionic liquids 58 3.2.4 Support materials 60 3.3 SILP catalyst preparation 61 3.4 Continuous gas-phase experiments 62 3.4.1 Tenfold screening-rig 62 3.4.2 Continuous test-rig 65 3.5 DFT calculations 70 4 Results and discussion 73 4.1 Conversion of ethene to 2-butene via dimerization and isomerization 73 4.1.1 Reproduction of catalytic performance with literature-known SILP system 73 4.1.2 Optimization of the composition of the SILP system 76 4.1.3 Investigations on the possible reasons for deactivation 87 4.1.4 Approaches for catalyst stabilization 97 4.1.5 Optimized SILP system 113 4.2 Cross-Metathesis 116 4.2.1 Summary of all beneficial trends reported in literature for immobilized ruthenium metathesis catalysts 116 4.2.2 Systematic investigations on the influence of ionic liquid on catalyst stability 118 4.2.3 Influence of ethene on catalyst stability 122 5 Summary / Zusammenfassung 140 5.1 Summary / Abstract 140 5.2 Zusammenfassung / Kurzfassung 145 6 Appendix 153 6.1 Detailed synthesis conditions and NMR-characterization of ionic liquids 153 6.2 Flow sheets of rigs for continuous gas-phase experiments 156 6.3 Further experimental results 158 6.4 Calculations 159 6.5 List of abbreviations and symbols 160 6.6
Recommended publications
  • Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture 2005)**
    NOBEL LECTURES DOI: 10.1002/adsc.200600523 Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture 2005)** Robert H. Grubbsa,* a Victor and Elizabeth Atkins Professor of Chemistry Arnold and Mabel Beckman Laboratories of Chemical Synthesis California Institute of Technology, Pasadena, CA 91125, USA Fax : (+1)-626–564–9297 [**] Copyright The Nobel Foundation 2005. We thank the Nobel Foundation, Stockholm, for permission to print this lecture Received: February 21, 2006 This is a story of our exploration of the olefin-meta- ly added to this reaction, 1-butene was again ob- thesis reaction, a reaction that has been the major served. This discovery has since served as the founda- emphasis of my independent research. As with all sto- tion for an amazing array of nickel chemistry and cat- ries of scientific discovery, there are three compo- alysis. In addition, as nickel had been found to possess nents: the discoveries, the resulting applications, and, unexpected reactivity, other metal salts were also in- perhaps the most important of all, the people in- vestigated. In particular, when titanium and zirconium volved. Starting from observations made from seem- halides were used in combination with alkyl alumi- ingly unrelated work, our investigations into the fun- num compounds, a new form of polyethylene was ob- damental chemistry of this transformation have been tained. Natta further demonstrated that similar cata- an exciting journey, with major advances often result- lysts could promote the formation of stereoregular ing from complete surprises, mistakes, and simple in- polymers from propylene. The 1963 Nobel Prize in tuition. Ultimately, these efforts have contributed to Chemistry was awarded to Ziegler and Natta for this olefin metathesis becoming the indispensable synthet- work.
    [Show full text]
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • Olefin Metathesis in Aqueous Media Offers a New, Broad M
    Green Chemistry CRITICAL REVIEW View Article Online View Journal | View Issue Olefin metathesis in aqueous media Cite this: Green Chem., 2013, 15, 2317 Jasmine Tomasek and Jürgen Schatz* The worldwide undisputable and unattainable chemist is nature, using water as a solvent of choice in biosynthesis. Water as a solvent not only indicates “green chemistry” but is also inevitable in biochemical reactions as well as syntheses of several pharmaceutical products. In the last few decades, several organic reactions were successfully carried out under aqueous conditions, a powerful and attractive tool in Received 3rd June 2013, organic synthesis metathesis reaction. This review summarises advances made in metathesis reaction in Accepted 12th July 2013 aqueous media. Two main strategies can be distinguished: the design of water soluble catalysts to obtain DOI: 10.1039/c3gc41042k homogeneous conditions and using commercially available catalysts to utilize the advantages of hetero- www.rsc.org/greenchem geneous conditions. reactions, meaning coupling reactions of cyclic and acyclic Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction alkenes or alkynes as well as polymerisation reactions In organic chemistry, C–C coupling reactions open a wide (Scheme 1).1 Accordingly, the metathesis has been of great range of applications for effective synthesis, which otherwise interest since its discovery in the mid-1950s3 and reveals a would be difficult or even hardly feasible. The olefin meta- powerful tool for both industrial applications,
    [Show full text]
  • Oxidative Addition & Reductive Elimination
    3/1/2021 Oxidative Addition & Reductive Elimination Robert H. Crabtree: Pages 159 – 182 and 235 - 266 1 Oxidative Addition Change in Example Group configuration • Oxidative addition is a key step in many transition-metal catalyzed reactions 10 8 I III • Basic reaction: d d Cu Cu 11 X X Pd0 PdII 10 LnM + LnM Pt0 PtII 10 Y Y d8 d6 PdII PdIV 10 • The new M-X and M-Y bonds are formed using the electron pair of the X-Y PtII PtIV 10 bond and one metal-centered lone pair IrI IrIII 9 RhI RhIII 9 • The metal goes up in oxidation state (+2), X-Y formally gets reduced to X-, Y- d6 d4 ReI ReIII 7 • The ease of addition (or elimination) can be tuned by the electronic and 0 II steric properties of the ancillary ligands Mo Mo 6 • OA favored by strongly e-donating L d4 d2 MoII MoIV 6 • The most common applications involve: a) Late transition metals (platinum metals: Ru, Rh, Pd, Ir, Pt) - not d7 d6 2CoII 2CoIII 9 too sensitive to O2 and H2O; routinely used in organic synthesis b) C-Halogen, H-H or Si-H bonds d4 d3 2CrII 2CrIII 6 • Common for transition metals, rare for main-group metals but: Grignard reagents! 2 1 3/1/2021 Oxidative addition – concerted mechanism Concerted addition - mostly with non-polar X-Y bonds X X X LnM + LnM LnM Y Y Y A Cr(CO)5: • H2, silanes, alkanes, ... coordinatively Cr(PMe3)5: • Arene C-H bonds more reactive than alkane C-H bonds unsaturated, but metal- centered lone pairs not phosphines are better • H-H, C-H strong bond, but M-H and M-C bonds can be very available donors, weaker acceptors full oxidative
    [Show full text]
  • Wacker Oxidation ~Anti-Markovnikov~
    Anti-Markovnikov Olefin Functionalization ~Prof. Robert H. Grubbs’ Work~ 4th Literature Seminar July 5, 2014 Soichi Ito (D1) Contents 1. Introduction • Flow of Prof. Grubbs’ Research • Markovnikov’s Rule • Wacker Oxidation 2. Grubbs’ Work • Substrate-Controlled Wacker Oxidation • Catalyst-Controlled Wacker-Type Oxidation 2 Introduction ~Flow of Research~ Olefin Metathesis Anti-Markovnikov Wacker Oxidation of Terminal Olefin Substrate-Controlled Wacker Oxidation of Internal Olefin Z-Selective Metathesis Hydration Ethenolysis + Reduction Hydroamination Z-Selective Ethenolysis Catalyst-Controlled Decarbonylative Dehydration Hydrophosphonation Production of Terminal Olefin Functionalization of Terminal Olefin 3 Introduction ~Markovnikov’s Rule~ Two-Step Two-Step (+1C) 4 Robert H. Grubbs et al. Science, 2011, 333, 1609. Anti-Markovnikov Hydration of Olefins • One-Step William C. Trogler et al. Science 1986, 233, 1069. This work was difficult to reproduce. Inorg. Chem. 1988, 27, 3151. • One-Step with Activated Olefins Robert G. Bergman and F. Dean Toste et al. J. Am. Chem. Soc. 2003, 125, 8696. Ben L. Feringa and Gerard Roelfes et al. Nat. Chem. 2010, 2, 991. • Three-Step 5 Shannon S. Stahl et al. J. Am. Chem. Soc. 2010, 132, 15116. Anti-Markovnikov Wacker Oxidation / Reduction Strategy Oxidation cycle must be compatible with the reduction cycle. aldehyde-selective Wacker Oxidation 6 Robert H. Grubbs et al. Science, 2011, 333, 1609. Introduction ~Wacker-Tsuji Oxidation~ • 1894 F. C. Phillips reported stoichiometric reaction. • 1959 J. Smidt et al. reported the Wacker process. (oxidation of ethylene to acetaldehyde) Investigations for convenient laboratory methods • 1976 J. Tsuji et al. reported PdCl2, CuCl / DMF, H2O method. “Terminal alkenes may be viewed as masked ketones.” 7 Jacques Muzart Tetrahedron 2007, 63, 7505.
    [Show full text]
  • Hoveyda–Grubbs Catalysts with an N→Ru Coordinate Bond in a Six-Membered Ring
    Hoveyda–Grubbs catalysts with an N→Ru coordinate bond in a six-membered ring. Synthesis of stable, industrially scalable, highly efficient ruthenium metathesis catalysts and 2-vinylbenzylamine ligands as their precursors Kirill B. Polyanskii1, Kseniia A. Alekseeva1, Pavel V. Raspertov1, Pavel A. Kumandin1, Eugeniya V. Nikitina1, Atash V. Gurbanov2,3 and Fedor I. Zubkov*1 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2019, 15, 769–779. 1Organic Chemistry Department, Faculty of Science, Peoples’ doi:10.3762/bjoc.15.73 Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, 2Centro Received: 23 October 2018 de Química Estrutural, Instituto Superior Técnico, Universidade de Accepted: 25 February 2019 Lisboa, Av. Rovisco Pais, 1049–001 Lisbon, Portugal and 3Organic Published: 22 March 2019 Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan This article is part of the thematic issue "Progress in metathesis chemistry III". Email: Fedor I. Zubkov* - [email protected] Guest Editors: K. Grela and A. Kajetanowicz * Corresponding author © 2019 Polyanskii et al.; licensee Beilstein-Institut. License and terms: see end of document. Keywords: CM; cross metathesis; Hoveyda–Grubbs catalyst; olefin metathesis; RCM; ring-closing metathesis; ring-opening cross metathesis; ROCM; ruthenium metathesis catalyst; styrene; 2-vinylbenzylamine Abstract A novel and efficient approach to the synthesis of 2-vinylbenzylamines is reported. This involves obtaining 2-vinylbenzylamine ligands from tetrahydroisoquinoline by alkylation and reduction followed by the Hofmann cleavage. The resultant 2-vinylbenzyl- amines allowed us to obtain new Hoveyda–Grubbs catalysts, which were thoroughly characterised by NMR, ESIMS, and X-ray crystallography.
    [Show full text]
  • Oxidative Addition of Polar Reagents
    OXIDATIVE ADDITION OF POLAR REAGENTS Organometallic chemistry has vastly expanded the practicing organic chemist’s notion of what makes a good nucleophile or electrophile. Pre-cross-coupling, for example, using unactivated aryl halides as electrophiles was largely a pipe dream (or possible only under certain specific circumstances). Enter the oxidative addition of polarized bonds: all of a sudden, compounds like bromobenzene started looking a lot more attractive as starting materials. Cross-coupling reactionsinvolving sp2- and sp-hybridized C–X bonds beautifully complement the “classical” substitution reactions at sp3electrophilic carbons. Oxidative addition of the C–X bond is the step that kicks off the magic of these methods. In this post, we’ll explore the mechanisms and favorability trends of oxidative additions of polar reagents. The landscape of mechanistic possibilities for polarized bonds is much more rich than in the non-polar case—concerted, ionic, and radical mechanisms have all been observed. Concerted Mechanisms 2 Oxidative additions of aryl and alkenyl Csp –X bonds, where X is a halogen or sulfonate, proceed through concertedmechanisms analogous to oxidative additions of dihydrogen. Reactions of N–H and O–H bonds in amines, alcohols, and water also appear to be concerted. A π complex involving η2-coordination is an intermediate in the mechanism of insertion into aryl halides at least, and probably vinyl halides too. As two open coordination sites are necessary for concerted oxidative addition, loss of a ligand from a saturated metal complex commonly precedes the actual oxidative addition event. Concerted oxidative addition of aryl halides and sulfonates. Trends in the reactivity of alkyl and aryl (pseudo)halides toward oxidative addition are some of the most famous in organometallic chemistry.
    [Show full text]
  • Recent Advances in Total Synthesis Via Metathesis Reactions
    SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2018, 50, 3749–3786 review 3749 en Syn thesis I. Cheng-Sánchez, F. Sarabia Review Recent Advances in Total Synthesis via Metathesis Reactions Iván Cheng-Sánchez Francisco Sarabia* Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos s/n. 29071- Málaga, Spain [email protected] Received: 16.04.2018 ly explained by the emergence, design, and development of Accepted after revision: 30.05.2018 powerful catalysts that are capable of promoting striking Published online: 18.07.2018 DOI: 10.1055/s-0037-1610206; Art ID: ss-2018-z0262-r transformations in highly efficient and selective fashions. In fact, the ability of many of them to forge C–C bonds be- Abstract The metathesis reactions, in their various versions, have be- tween or within highly functionalized and sensitive com- come a powerful and extremely valuable tool for the formation of car- pounds has allowed for the preparation of complex frame- bon–carbon bonds in organic synthesis. The plethora of available cata- lysts to perform these reactions, combined with the various works, whose access were previously hampered by the lim- transformations that can be accomplished, have positioned the me- itations of conventional synthetic methods. Among the tathesis processes as one of the most important reactions of this centu- myriad of recent catalysts, those developed and designed to ry. In this review, we highlight the most relevant synthetic contributions promote metathesis reactions have had a profound impact published between 2012 and early 2018 in the field of total synthesis, reflecting the state of the art of this chemistry and demonstrating the and created a real revolution in the field of total synthesis, significant synthetic potential of these methodologies.
    [Show full text]
  • 18- Electron Rule. 18 Electron Rule Cont’D Recall That for MAIN GROUP Elements the Octet Rule Is Used to Predict the Formulae of Covalent Compounds
    18- Electron Rule. 18 Electron Rule cont’d Recall that for MAIN GROUP elements the octet rule is used to predict the formulae of covalent compounds. Example 1. This rule assumes that the central atom in a compound will make bonds such Oxidation state of Co? [Co(NH ) ]+3 that the total number of electrons around the central atom is 8. THIS IS THE 3 6 Electron configuration of Co? MAXIMUM CAPACITY OF THE s and p orbitals. Electrons from Ligands? Electrons from Co? This rule is only valid for Total electrons? Period 2 nonmetallic elements. Example 2. Oxidation state of Fe? The 18-electron Rule is based on a similar concept. Electron configuration of Fe? [Fe(CO) ] The central TM can accommodate electrons in the s, p, and d orbitals. 5 Electrons from Ligands? Electrons from Fe? s (2) , p (6) , and d (10) = maximum of 18 Total electrons? This means that a TM can add electrons from Lewis Bases (or ligands) in What can the EAN rule tell us about [Fe(CO)5]? addition to its valence electrons to a total of 18. It can’t occur…… 20-electron complex. This is also known Effective Atomic Number (EAN) Rule Note that it only applies to metals with low oxidation states. 1 2 Sandwich Compounds Obeying EAN EAN Summary 1. Works well only for d-block metals. It does not apply to f-block Let’s draw some structures and see some new ligands. metals. 2. Works best for compounds with TMs of low ox. state. Each of these ligands is π-bonded above and below the metal center.
    [Show full text]
  • NIH Public Access Author Manuscript J Am Chem Soc
    NIH Public Access Author Manuscript J Am Chem Soc. Author manuscript; available in PMC 2013 August 29. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Am Chem Soc. 2012 August 29; 134(34): 14232–14237. doi:10.1021/ja306323x. A Mild, Palladium-Catalyzed Method for the Dehydrohalogenation of Alkyl Bromides: Synthetic and Mechanistic Studies Alex C. Bissember†,‡, Anna Levina†, and Gregory C. Fu†,‡ †Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States ‡Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States Abstract We have exploited a typically undesired elementary step in cross-coupling reactions, β-hydride elimination, to accomplish palladium-catalyzed dehydrohalogenations of alkyl bromides to form terminal olefins. We have applied this method, which proceeds in excellent yield at room temperature in the presence of a variety of functional groups, to a formal total synthesis of (R)- mevalonolactone. Our mechanistic studies establish that the rate-determining step can vary with the structure of the alkyl bromide, and, most significantly, that L2PdHBr (L=phosphine), an often- invoked intermediate in palladium-catalyzed processes such as the Heck reaction, is not an intermediate in the active catalytic cycle. INTRODUCTION The elimination of HX to form an olefin is one of the most elementary transformations in organic chemistry (eq 1).1,2 However, harsh conditions, such as the use of a strong Brønsted acid/base or a high temperature (which can lead to poor functional-group compatibility and to olefin isomerization) are often necessary for this seemingly straightforward process.
    [Show full text]
  • Dissertation Reactivity and Selectivity in The
    DISSERTATION REACTIVITY AND SELECTIVITY IN THE POLYMERIZATION OF MULTIFUNCTIONAL ACRYLIC MONOMERS BY CHIRAL ZIRCONOCENIUM CATALYSTS Submitted by Fernando Vidal Peña Department of Chemistry In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2017 Doctoral Committee: Advisor: Eugene Y.-X. Chen Richard G. Finke Steven Strauss Ellen Fisher David Wang Copyright by Fernando Vidal Peña 2017 All Rights Reserved ABSTRACT REACTIVITY AND SELECTIVITY IN THE POLYMERIZATION OF MULTIFUNCTIONAL ACRYLIC MONOMERS BY CHIRAL ZIRCONOCENIUM CATALYSTS Described in this dissertation are the results of investigating the reactivity and selectivity in the polymerization of multifunctional acrylic monomers by chiral cationic zirconocenium catalysts. The unprecedented precision polymer synthesis method developed in this workthe polymerization of polar divinyl monomers that is not only living but also simultaneously chemoselective and stereoselectivehas enabled the synthesis of well-defined highly stereoregular functionalized polymers bearing reactive C=C bonds on every chiral repeat unit. Thus, under ambient conditions, chiral ansa-ziroconocenium catalysts of the appropriate symmetry (C2- vs CS-ligated) have afforded highly isotactic and highly syndiotactic double-bond- carrying polymers, respectively, with controlled molecular weights and narrow dispersities. The enantiomorphic-site controlled, conjugate-addition coordination polymerization mechanism is responsible for the observed
    [Show full text]
  • Self-Metathesis of 1-Octene Using Alumina-Supported Re2o7 in Supercritical CO2
    Top Catal DOI 10.1007/s11244-008-9154-4 ORIGINAL PAPER Self-Metathesis of 1-Octene Using Alumina-Supported Re2O7 in Supercritical CO2 Massimo Fabris Æ Cindy Aquino Æ Antony J. Ward Æ Alvise Perosa Æ Thomas Maschmeyer Æ Maurizio Selva Ó Springer Science+Business Media, LLC 2009 Abstract In this contribution we describe the use of basic science has been applied for the benefit of man, heterogeneous catalysts for the liquid-phase self-metathesis society and the environment’’.1 Their contribution was of 1-octene in supercritical CO2. Our work aims at recognized for understanding the mechanism, and for addressing the mass-transfer problems associated with such developing very efficient and selective discrete metal- reaction systems. By coupling a heterogeneous supported based catalysts. Re2O7 catalyst with the use of scCO2, the self-metathesis Nonetheless, one should not forget that the metathesis of 1-octene takes place by and large much more rapidly reaction using heterogeneous catalysis has been an estab- than in traditional solvent media, and furthermore, by using lished industrial process since 1966, based on the use of scCO2 the overall efficiency and sustainability of the supported (usually on silica and alumina) metal oxides transformation can be improved. such as tungsten, nickel, cobalt, rhenium, and molybde- num. Three significant examples come to mind and are Keywords Metathesis Á 1-Octene Á Supercritical CO2 Á here recalled briefly. [1]. Re/Al O 2 3 1. The historic Phillips triolefin process for the produc- tion of ethene and 2-butene from propene using a WO /SiO catalyst, [2] that was shut down in 1972 1 Introduction 3 2 after 6 years of operation due to increased demand for propene, and later reutilized in the reverse direction to The metathesis of olefins is a very elegant and widely produce propene.
    [Show full text]