Forensic Analysis of the Chatsecure Instant Messaging Application on Android Smartphones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Privacy Resources 2018
Privacy Resources 2018 By Marcus P. Zillman, M.S., A.M.H.A. Executive Director – Virtual Private Library [email protected] Privacy Resources 2018 is a comprehensive listing of privacy resources currently available on the Internet. These include associations, indexes, search engines as well as individual websites and sources that supply the latest technology and information about privacy and how it relates to you and the Internet. The below list of sources is taken from my Subject Tracer™ Information Blog titled Privacy Resources and is constantly updated with Subject Tracer™ bots from the following URL: http://www.PrivacyResources.info/ These resources and sources will help you to discover the many pathways available to you through the Internet to find the latest privacy sources and sites. Figure 1: Privacy Resources 2018 Subject Tracer™ Information Blog 1 [Updated: April 1, 2018] Privacy Resources 2018 White Paper Link Compilation http://www.PrivacyResources.info/ [email protected] Voice: 800-858-1462 © 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Marcus P. Zillman, M.S., A.M.H.A. Privacy Resources 2018: 10 Best Security and Privacy Apps for Smartphones and Tablets http://drippler.com/drip/10-best-security-privacy-apps-smartphones-tablets 10 Minute Mail http://10minutemail.com/10MinuteMail/index.html 10 Privacy Gadgets To Help You Keep a Secret http://www.popsci.com/keep-your-secrets-a-secret 10 Reasons to Use a VPN for Private Web Browsing http://netforbeginners.about.com/od/readerpicks/tp/Reasons-to-Use-a-VPN-Service.htm -
Cisco SCA BB Protocol Reference Guide
Cisco Service Control Application for Broadband Protocol Reference Guide Protocol Pack #60 August 02, 2018 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Multi-Device for Signal
Multi-Device for Signal S´ebastienCampion3, Julien Devigne1, C´elineDuguey1;2, and Pierre-Alain Fouque2 1 DGA Maˆıtrisede l’information, Bruz, France [email protected] 2 Irisa, Rennes, France, [email protected], [email protected] Abstract. Nowadays, we spend our life juggling with many devices such as smartphones, tablets or laptops, and we expect to easily and efficiently switch between them without losing time or security. However, most ap- plications have been designed for single device usage. This is the case for secure instant messaging (SIM) services based on the Signal proto- col, that implements the Double Ratchet key exchange algorithm. While some adaptations, like the Sesame protocol released by the developers of Signal, have been proposed to fix this usability issue, they have not been designed as specific multi-device solutions and no security model has been formally defined either. In addition, even though the group key exchange problematic appears related to the multi-device case, group solutions are too generic and do not take into account some properties of the multi-device setting. Indeed, the fact that all devices belong to a single user can be exploited to build more efficient solutions. In this paper, we propose a Multi-Device Instant Messaging protocol based on Signal, ensuring all the security properties of the original Signal. Keywords: cryptography, secure instant messaging, ratchet, multi-device 1 Introduction 1.1 Context Over the last years, secure instant messaging has become a key application ac- cessible on smartphones. In parallel, more and more people started using several devices - a smartphone, a tablet or a laptop - to communicate. -
A History of End-To-End Encryption and the Death of PGP
25/05/2020 A history of end-to-end encryption and the death of PGP Hey! I'm David, a security engineer at the Blockchain team of Facebook (https://facebook.com/), previously a security consultant for the Cryptography Services of NCC Group (https://www.nccgroup.com). I'm also the author of the Real World Cryptography book (https://www.manning.com/books/real-world- cryptography?a_aid=Realworldcrypto&a_bid=ad500e09). This is my blog about cryptography and security and other related topics that I Ûnd interesting. A history of end-to-end encryption and If you don't know where to start, you might want to check these popular the death of PGP articles: posted January 2020 - How did length extension attacks made it 1981 - RFC 788 - Simple Mail Transfer Protocol into SHA-2? (/article/417/how-did-length- extension-attacks-made-it-into-sha-2/) (https://tools.ietf.org/html/rfc788) (SMTP) is published, - Speed and Cryptography the standard for email is born. (/article/468/speed-and-cryptography/) - What is the BLS signature scheme? (/article/472/what-is-the-bls-signature- This is were everything starts, we now have an open peer-to-peer scheme/) protocol that everyone on the internet can use to communicate. - Zero'ing memory, compiler optimizations and memset_s (/article/419/zeroing-memory- compiler-optimizations-and-memset_s/) 1991 - The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations The US government introduces the 1991 Senate Bill 266, (/article/461/the-9-lives-of-bleichenbachers- which attempts to allow "the Government to obtain the cat-new-cache-attacks-on-tls- plain text contents of voice, data, and other implementations/) - How to Backdoor Di¸e-Hellman: quick communications when appropriately authorized by law" explanation (/article/360/how-to-backdoor- from "providers of electronic communications services di¸e-hellman-quick-explanation/) and manufacturers of electronic communications - Tamarin Prover Introduction (/article/404/tamarin-prover-introduction/) service equipment". -
An Empirical Survey on How Much Security and Privacy Customers Want in Instant Messengers
SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies An Empirical Survey on how Much Security and Privacy Customers Want in Instant Messengers Thomas Paul Hans-Joachim Hof MuSe – Munich IT Security Research Group Munich University of Applied Sciences Munich University of Applied Sciences Lothstrasse 64, Munich, Germany Lothstraße 64, Munich, Germany e-mail: [email protected] e-mail: [email protected] Abstract— Instant messengers are popular communication developers of future instant messengers to decide on tools used by many people for everyday communication, as security features to implement. well as for work related communication. Following the This paper is structured as follows: Section II discusses disclosure of a massive surveillance system by Edward related work. Section III presents the design of the user Snowden, many users became aware of the risks of unsecure survey. Section IV discusses in detail the findings of the communication. Users increasingly ask for secure communication. However, unsecure instant messengers are still user survey. Section V presents the features of an ideal popular nowadays. This could be due to the fact, that, besides instant messenger fulfilling all the user preferences the large number of available instant messengers, no instant identified by the survey. A market simulation is used to messenger fully satisfies the users preferences. To research the show the potential of this ideal instant messenger. Section acceptance of security mechanisms in instant messengers, this VI summarizes the findings of the paper. paper presents an evaluation of user preferences for secure instant messengers. A user survey was conducted to rate the II. -
Security System for Mobile Messaging Applications Pejman Dashtinejad
Security System for Mobile Messaging Applications Pejman Dashtinejad Master of Science Thesis Stockholm, Sweden TRITA–ICT–EX-2015:2 Introduction | 1 Security System for Mobile Messaging Applications Pejman Dashtinejad 8 January 2015 Master of Science Thesis Examiner Professor Sead Muftic Department of ICT KTH University SE-100 44 Stockholm, Sweden TRITA–ICT–EX-2015:2 Abstract | iii Abstract Instant messaging (IM) applications are one of the most popular applications for smartphones. The IMs have the capability of sending messages or initiating voice calls via Internet which makes it almost cost free for the users to communicate with each other. Unfortunately, like any other type of applications, majority of these applications are vulnerable to malicious attacks and have privacy issues. The motivation for this thesis is the need to identifying security services of an IM application and to design a secure system for any mobile messaging application. This research proposes an E2EE (End-to-End Encryption) approach which provides a secure IM application design which protects its users with better integrity, confidentiality and privacy. To achieve this goal a research is conducted to investigate current security features of popular messaging applications in the mobile market. A list of requirements for good security is generated and based on those requirements an architecture is designed. A demo is also implemented and evaluated. Keywords: Mobile, Application, messaging, Chat, Encryption, Security Acknowledgments | v Acknowledgments First and foremost, thank you God to give me another chance to complete my higher education and to learn enormous skills and knowledge through all these years of study at the university. -
Enterprise Edition
Secure Communication. Simplified. SAFECHATS Problem Most companies use popular insecure email and ⛔ messaging services to communicate confidential information P The information flow within the Company is ⛔ disorganized Metadata is exposed and available to third-party ⛔ services SAFECHATS Introducing SAFECHATS Ultra-secure communication solution P Designed with security in mind SAFECHATS Why SAFECHATS? ✔ Information is always end-to-end encrypted by default P ✔ All-in-one communication suite: • Text messaging (one-on-one and group chats) • Voice calls • File transfers (no size and file type limits) SAFECHATS How does SAFECHATS solve the problem? ✔ Customizable white label solution ✔ Integrates with existing softwareP infrastructure ✔ Enterprise-wide account and contact list management, supervised audited chats for compliance SAFECHATS What makes SAFECHATS different? ✔ Your own isolated cloud environment or on-premise deployment P ✔ Customizable solution allows to be compliant with internal corporate security policies ✔ No access to your phone number and contact list SAFECHATS Screenshot Protection ✔ Notifications on iOS P ✔ DRM protection on Android SAFECHATS Identity Verification ✔ Protection from man-in-the-middle attacksP ✔ SMP Protocol SAFECHATS Privacy Features ✔ Show / hide messages and files P ✔ Recall messages and files ✔ Self-destructing messages and files SAFECHATS Additional Protection ✔ History retention control P ✔ Application lock: • PIN-code • Pattern-lock on Android devices • Touch ID on iOS devices SAFECHATS How does SAFECHATS -
Improving Signal's Sealed Sender
Improving Signal’s Sealed Sender Ian Martiny∗, Gabriel Kaptchuky, Adam Avivz, Dan Rochex, Eric Wustrow∗ ∗University of Colorado Boulder, fian.martiny, [email protected] yBoston University, [email protected] zGeorge Washington University, [email protected] xU.S. Naval Avademy, [email protected] Abstract—The Signal messaging service recently deployed a confidential support [25]. In these cases, merely knowing to sealed sender feature that provides sender anonymity by crypto- whom Alice is communicating combined with other contextual graphically hiding a message’s sender from the service provider. information is often enough to infer conversation content with- We demonstrate, both theoretically and empirically, that this out reading the messages themselves. Former NSA and CIA one-sided anonymity is broken when two parties send multiple director Michael Hayden succinctly illustrated this importance messages back and forth; that is, the promise of sealed sender of metadata when he said the US government “kill[s] people does not compose over a conversation of messages. Our attack is in the family of Statistical Disclosure Attacks (SDAs), and is made based on metadata” [29]. particularly effective by delivery receipts that inform the sender Signal’s recent sealed sender feature aims to conceal this that a message has been successfully delivered, which are enabled metadata by hiding the message sender’s identity. Instead of by default on Signal. We show using theoretical and simulation- based models that Signal could link sealed sender users in as seeing a message from Alice to Bob, Signal instead observes few as 5 messages. Our attack goes beyond tracking users via a message to Bob from an anonymous sender. -
How to Use Encryption and Privacy Tools to Evade Corporate Espionage
How to use Encryption and Privacy Tools to Evade Corporate Espionage An ICIT White Paper Institute for Critical Infrastructure Technology August 2015 NOTICE: The recommendations contained in this white paper are not intended as standards for federal agencies or the legislative community, nor as replacements for enterprise-wide security strategies, frameworks and technologies. This white paper is written primarily for individuals (i.e. lawyers, CEOs, investment bankers, etc.) who are high risk targets of corporate espionage attacks. The information contained within this briefing is to be used for legal purposes only. ICIT does not condone the application of these strategies for illegal activity. Before using any of these strategies the reader is advised to consult an encryption professional. ICIT shall not be liable for the outcomes of any of the applications used by the reader that are mentioned in this brief. This document is for information purposes only. It is imperative that the reader hires skilled professionals for their cybersecurity needs. The Institute is available to provide encryption and privacy training to protect your organization’s sensitive data. To learn more about this offering, contact information can be found on page 41 of this brief. Not long ago it was speculated that the leading world economic and political powers were engaged in a cyber arms race; that the world is witnessing a cyber resource buildup of Cold War proportions. The implied threat in that assessment is close, but it misses the mark by at least half. The threat is much greater than you can imagine. We have passed the escalation phase and have engaged directly into full confrontation in the cyberwar. -
Policy Options and Regulatory Mechanisms for Managing Radicalization on the Internet
Policy options and regulatory mechanisms for managing radicalization on the Internet Paris, 30 September 2016 “[…] I firmly believe that in a free democratic society, freedom of speech and expression is one of the most prized freedoms which must be defended and upheld at any cost and this should be particularly so in the land of Voltaire. It is indeed unfortunate that in the world of today, when science and technology have advanced the frontiers of knowledge and mankind is beginning to realize that human happiness can be realized only through inter-dependence and cooperation, the threshold of tolerance should be going down. It is high time man should realize his spiritual dimension and replace bitterness and hatred by love and compassion, tolerance and forgiveness.” Justice Prafullachandra Bhagwati Dan Shefet (Individual Specialist) ACKNOWLEDGEMENTS The author wishes to thank the following for their support, valuable advice and input throughout the drafting of the Report: Dr. Indrajit Banerjee and his team in UNESCO’s Knowledge Societies Division The UNESCO Delegates and Ministries of Justice/Interior of countries that have participated in the Country Survey. Alexander Linden, Honorary advisor to the French Supreme Court Janice Duffy, Researcher, Australia Pavan Duggal, Supreme Court Lawyer, India Tom Høyem, Former Minister in Denmark under Poul Schlüter Francesca Musiani, Researcher at the CNRS Institute for Communication Sciences and Member of the French National Assembly’s Commission on the Law and Rights in the Digital Era Sami Mahbouli, Lawyer at The Tunisian Supreme Court and Columnist Sabine Leutheusser-Schnarrenberger, Former Minister of Justice under Angela Merkel Marc Randazza, First Amendment Attorney, United States Viswa Sadasivan, CEO of Strategic Moves (Consultancy agency in Singapore) and former member of the Singaporean Parliament Mr K. -
Improving Signal's Sealed Sender
Improving Signal’s Sealed Sender Ian Martiny∗, Gabriel Kaptchuky, Adam Avivz, Dan Rochex, Eric Wustrow∗ ∗University of Colorado Boulder, fian.martiny, [email protected] yBoston University, [email protected] zGeorge Washington University, [email protected] xU.S. Naval Avademy, [email protected] Abstract—The Signal messaging service recently deployed a confidential support [25]. In these cases, merely knowing to sealed sender feature that provides sender anonymity by crypto- whom Alice is communicating combined with other contextual graphically hiding a message’s sender from the service provider. information is often enough to infer conversation content with- We demonstrate, both theoretically and empirically, that this out reading the messages themselves. Former NSA and CIA one-sided anonymity is broken when two parties send multiple director Michael Hayden succinctly illustrated this importance messages back and forth; that is, the promise of sealed sender of metadata when he said the US government “kill[s] people does not compose over a conversation of messages. Our attack is in the family of Statistical Disclosure Attacks (SDAs), and is made based on metadata” [29]. particularly effective by delivery receipts that inform the sender Signal’s recent sealed sender feature aims to conceal this that a message has been successfully delivered, which are enabled metadata by hiding the message sender’s identity. Instead of by default on Signal. We show using theoretical and simulation- based models that Signal could link sealed sender users in as seeing a message from Alice to Bob, Signal instead observes few as 5 messages. Our attack goes beyond tracking users via a message to Bob from an anonymous sender. -
A Framework for Identifying Host-Based Artifacts in Dark Web Investigations
Dakota State University Beadle Scholar Masters Theses & Doctoral Dissertations Fall 11-2020 A Framework for Identifying Host-based Artifacts in Dark Web Investigations Arica Kulm Dakota State University Follow this and additional works at: https://scholar.dsu.edu/theses Part of the Databases and Information Systems Commons, Information Security Commons, and the Systems Architecture Commons Recommended Citation Kulm, Arica, "A Framework for Identifying Host-based Artifacts in Dark Web Investigations" (2020). Masters Theses & Doctoral Dissertations. 357. https://scholar.dsu.edu/theses/357 This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact [email protected]. A FRAMEWORK FOR IDENTIFYING HOST-BASED ARTIFACTS IN DARK WEB INVESTIGATIONS A dissertation submitted to Dakota State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cyber Defense November 2020 By Arica Kulm Dissertation Committee: Dr. Ashley Podhradsky Dr. Kevin Streff Dr. Omar El-Gayar Cynthia Hetherington Trevor Jones ii DISSERTATION APPROVAL FORM This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of Philosophy in Cyber Defense degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department or university. Student Name: Arica Kulm Dissertation Title: A Framework for Identifying Host-based Artifacts in Dark Web Investigations Dissertation Chair: Date: 11/12/20 Committee member: Date: 11/12/2020 Committee member: Date: Committee member: Date: Committee member: Date: iii ACKNOWLEDGMENT First, I would like to thank Dr.