921 CIE 2014 Abstract Booklet.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

921 CIE 2014 Abstract Booklet.Pdf CIE 2014 Lighting Quality & Energy Efficiency Kuala Lumpur, MALAYSIA 23-26 April, 2014 ABSTRACTS (as of January 31, 2014) CIE 2014 Lighting Quality & Energy Efficiency • Kuala Lumpur, MALAYSIA • 23-26 April, 2014 Contents INVITED PRESENTATIONS .................................................................................. 3 ORAL PRESENTATIONS .................................................................................... 12 Lighting Quality with LED Sources .................................................................... 13 Daylighting ..................................................................................................... 23 Colour Quality (1) ............................................................................................ 33 Roadway and Street Lighting (1) ...................................................................... 39 Lighting and Health (1) .................................................................................... 44 Colour Quality (2) ............................................................................................ 49 Roadway and Street Lighting (2) ...................................................................... 57 Lighting and Health (2) .................................................................................... 64 Colour Quality and Mesopic Vision ................................................................... 70 OLED for Lighting............................................................................................ 78 Lighting Design ............................................................................................... 84 Outdoor Lighting ............................................................................................. 95 SSL Measurement and Testing ........................................................................ 105 Right Lighting in Outdoor ................................................................................ 113 Advancement in Photometry and Radiometry.................................................... 122 POSTER PRESENTATIONS .............................................................................. 131 Colour Rendering ........................................................................................... 132 Mesopic Vision ............................................................................................... 143 Colorimetry .................................................................................................... 147 Photometry and Measurement ......................................................................... 152 Measurement of Photobiological Effects ........................................................... 162 Daylighting .................................................................................................... 167 Efficiency and Visual Perception Quality .......................................................... 176 Visual Comfort ............................................................................................... 195 Right Lighting and Energy Efficiency ................................................................ 214 Exterior Applications....................................................................................... 222 Photobiological Effects ................................................................................... 251 WORKSHOPS ................................................................................................... 258 2 CIE 2014 Lighting Quality & Energy Efficiency • Kuala Lumpur, MALAYSIA • 23-26 April, 2014 INVITED PRESENTATIONS 3 CIE 2014 Lighting Quality & Energy Efficiency • Kuala Lumpur, MALAYSIA • 23-26 April, 2014 IT02 EXPLORING THE POWER OF LIGHT: FROM PHOTONS TO HUMAN HEALTH G. Brainard Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, UNITED STATES. In the art and science of lighting building interiors, four traditional objectives have been to provide light that: 1) is optimum for visual performance; 2) is visually comfortable; 3) permits aesthetic appreciation of the space; and 4) conserves energy. In the past, the Commission Internationale de l'Eclairage (CIE) has published a technical committee monograph and hosted two international symposia addressing the broad topic of how light effects human health (1-3). This emergent topic provides the basis for major changes in future architectural lighting strategies. Light has been used to successfully treat patients with selected affective and sleep disorders as well as healthy individuals who have circadian disruption due to shift work, transcontinental jet travel, or space exploration (1-5). Along with these benefits of light, it is important to note that inappropriate exposure to light at night is being examined as a potential risk factor for cancer (6, 7). Over the past decade, there has been an upheaval in the understanding of photoreceptive input to the circadian, neuroendocrine and neurobehavioral systems of humans and other mammals. Studies on human subjects confirmed that the three-cone photopic visual system is not the primary photoreceptor system that transduces light stimuli for melatonin suppression and that 446-477 nm is the most potent wavelength region for this response (8, 9). Those data suggested that a novel photosensory system, distinct from the visual rods and cones, is primarily responsible for regulating melatonin in humans. Further studies, based on selected wavelength comparisons, indicate that circadian phase-shifting and the acute alerting effects of light are shifted towards the shorter wavelength or blue part of the spectrum for humans (10-13). Similarly, a Phase I clinical trial of light therapy for winter depression indicates that narrow bandwidth blue light may be particularly potent for treating this affective disorder (14). Studies are beginning to clarify the basic anatomy and physiology of the photosensory system that supplies input to the circadian and neuroendocrine systems (15, 16 for reviews). It is clear that a small population of widely dispersed retinal ganglion cells is directly responsive to light and project to the suprachiasmatic nuclei. These intrinsically photosensitive retinal ganglion cells (ipRGCs) form an expansive arbor of dendrites that create a "photoreceptive net" for circadian phototransduction. The ipRGCs contain melanopsin, a vitamin A photopigment that mediates phototransduction in these cells. Although the light detection for neurobehavioral regulation seems to be mediated principally by this novel photosensory system in the eye, the classic rod and cone visual photoreceptors appear to have a role in modulating these responses. Together, these findings open the door to major changes in future lighting architectural strategies. Support: NSBRI under NASA Agreement NCC 9-58; NIH NS36590; NCI CA85408, NIH ES11659, NIH MH066453, NSF EEC-0812056, The Institute for Integrative Health, Philadelphia IES Chapter; and Philips Lighting, BV. References 1. Commission Internationale De L’Eclairage, Ocular Lighting Effects on Human Physiology and Behaviour, CIE, Vienna, Technical Report 158, pp. 1-54, 2004 2. Commission Internationale De L’Eclairage, Proceedings of the Symposium on Light and Health: Non-Visual Effects, CIE, Vienna, x027, 1-262, 2004 3. Commission Internationale De L’Eclairage, Proceedings of the Second Expert Symposium on Light and Health, CIE, Vienna, x031, 1-230, 2006 4 CIE 2014 Lighting Quality & Energy Efficiency • Kuala Lumpur, MALAYSIA • 23-26 April, 2014 4. Lam R.W., Ed. Seasonal Affective Disorder and Beyond: Light Treatment for SAD and Non-SAD Disorders, Amer. Psychiatric Press, Wash. D.C., pp. 1-327, 1998 5. Illuminating Engineering Society of North America (2008) Light and Human Health: An Overview of the Impact of Optical Radiation on Visual, Circadian, Neuroendocrine, and Neurobehavioral Responses, IES TM-18-08, IESNA, NY, pp. 1-23, 2008 6. Blask D.E. et al., Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res., 65, pp. 11174-11184, 2005 7. Stevens R.G. et al., Adverse health effects of nighttime lighting: comments on american medical association policy statement. Amer. J. Prev. Med., 45, pp. 343-346, 2013 8. Brainard G.C. et al., Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor, J. Neurosci. 21, pp. 6405-6412, 2001 9. Thapan K. et al., An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans, J. Physiol. 535, pp. 261-267, 2001 10. Lockley S.W. et al., High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light, J. Clin. Endocrinol. Metab. 88, pp. 4502-4505, 2003 11. Cajochen C. et al., High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light, J. Clin. Endocrinol. Metab. 90, pp. 1311-1316, 2005 12. Lockley S.W. et al., Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans, Sleep 29, pp. 161- 168, 2006 13. Gooley J.J. et al., Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci. Transl. Med. 2, 31ra33, 2010 14. Glickman G. et al., Light therapy for Seasonal Affective Disorder with blue narrow-band light-emitting diodes (LED), Biol. Psychiatry 59, pp. 502-507, 2006 15. Brainard G.C. and Hanifin
Recommended publications
  • Understanding Color and Gamut Poster
    Understanding Colors and Gamut www.tektronix.com/video Contact Tektronix: ASEAN / Australasia (65) 6356 3900 Austria* 00800 2255 4835 Understanding High Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Definition Video Poster Belgium* 00800 2255 4835 Brazil +55 (11) 3759 7627 This poster provides graphical Canada 1 (800) 833-9200 reference to understanding Central East Europe and the Baltics +41 52 675 3777 high definition video. Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 To order your free copy of this poster, please visit: Germany* 00800 2255 4835 www.tek.com/poster/understanding-hd-and-3g-sdi-video-poster Hong Kong 400-820-5835 India 000-800-650-1835 Italy* 00800 2255 4835 Japan 81 (3) 6714-3010 Luxembourg +41 52 675 3777 MPEG-2 Transport Stream Advanced Television Systems Committee (ATSC) Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 ISO/IEC 13818-1 International Standard Program and System Information Protocol (PSIP) for Terrestrial Broadcast and cable (Doc. A//65B and A/69) System Time Table (STT) Rating Region Table (RRT) Direct Channel Change Table (DCCT) ISO/IEC 13818-2 Video Levels and Profiles MPEG Poster ISO/IEC 13818-1 Transport Packet PES PACKET SYNTAX DIAGRAM 24 bits 8 bits 16 bits Syntax Bits Format Syntax Bits Format Syntax Bits Format 4:2:0 4:2:2 4:2:0, 4:2:2 1920x1152 1920x1088 1920x1152 Packet PES Optional system_time_table_section(){ rating_region_table_section(){ directed_channel_change_table_section(){ High Syntax
    [Show full text]
  • Applications of High Dynamic Range Imaging Stereo Matching and Mesopic Rendering
    Applications of High Dynamic Range Imaging Stereo Matching and Mesopic Rendering PhD THESIS submitted in partial fulfillment of the requirements for the degree of Doctor of Technical Sciences within the Vienna PhD School of Informatics by Eng. Tara Akhavan Registration Number 1128895 to the Faculty of Informatics at the Vienna University of Technology Advisor: Assoc. Prof. Mag. Dr. Hannes Kaufmann External reviewers: . Alan Chalmers, WMG, University of Warwick, United Kingdom. Kadi Bouatouch, ISTIC, University of Rennes I, France. Vienna, 8th April, 2017 Tara Akhavan Hannes Kaufmann Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Declaration of Authorship Eng. Tara Akhavan Address I hereby declare that I have written this Doctoral Thesis independently, that I have completely specified the utilized sources and resources and that I have definitely marked all parts of the work - including tables, maps and figures - which belong to other works or to the internet, literally or extracted, by referencing the source as borrowed. Vienna, 8th April, 2017 Tara Akhavan iii Acknowledgements Firstly, I would like to express my deepest gratitude to my supervisor Hannes Kaufmann for his unlimited support, inspiration, motivation, belief, and guidance. My special thanks to Christian Breiteneder who was always there to help resolving hardest problems with wisdom and vision. I am very thankful to Alan Chalmers and Kadi Bouatouch who agreed to be my thesis external reviewers but most importantly planned valuable workshops through the course of my PhD and invited me to network with and learn from the experts in the field. Part of my PhD research was conducted at Tandemlaunch Inc.
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs
    sustainability Article Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs Enrique Navarrete-de Galvez 1 , Alfonso Gago-Calderon 1,* , Luz Garcia-Ceballos 2, Miguel Angel Contreras-Lopez 2 and Jose Ramon Andres-Diaz 1 1 Proyectos de Ingeniería, Departamento de Expresión Gráfica Diseño y Proyectos, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (E.N.-d.G.); [email protected] (J.R.A.-D.) 2 Expresión Gráfica en la Ingeniería, Departamento de Expresión Gráfica Diseño y Proyectos, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (L.G.-C.); [email protected] (M.A.C.-L.) * Correspondence: [email protected]; Tel.: +34-951-952-268 Abstract: The sensitivity of the human eye varies with the different lighting conditions to which it is exposed. The cone photoreceptors perceive the color and work for illuminance conditions greater than 3.00 cd/m2 (photopic vision). Below 0.01 cd/m2, the rods are the cells that assume this function (scotopic vision). Both types of photoreceptors work coordinately in the interval between these values (mesopic vision). Each mechanism generates a different spectral sensibility. In this work, Citation: Navarrete-de Galvez, E.; the emission spectra of common sources in present public lighting installations are analyzed and Gago-Calderon, A.; Garcia-Ceballos, their normative photopic values translated to the corresponding mesopic condition, which more L.; Contreras-Lopez, M.A.; faithfully represents the vision mechanism of our eyes in these conditions. Based on a common Andres-Diaz, J.R. Adjustment of street urban configuration (ME6), we generated a large set of simulations to determine the ideal light Lighting Parameters from Photopic to point setup configuration (luminance and light point height vs.
    [Show full text]
  • S Selection of Intraocular Lens on the Basis of Light Transmittance Properties
    Eye (2017) 31, 258–272 OPEN Official journal of The Royal College of Ophthalmologists www.nature.com/eye 1 2 2 2 REVIEW The evidence informing XLi, D Kelly , JM Nolan , JL Dennison and S Beatty2,3 the surgeon’s selection of intraocular lens on the basis of light transmittance properties Abstract In recent years, manufacturers and distributors surgical procedure worldwide,1 and the need have promoted commercially available intrao- for such surgery is likely to rise because cular lenses (IOLs) with transmittance proper- of increasing longevity.2 Commercially fi ties that lter visible short-wavelength (blue) available IOLs can vary in terms of material light on the basis of a putative photoprotective (polymethylmethacrylate, polymers, silicone effect. Systematic literature review. Out of or acrylic),3,4 hydrophobicity (hydrophobic vs 21 studies reporting on outcomes following hydrophilic),5 sphericity (aspheric vs spheric)6 implantation of blue-light-filtering IOLs (invol- 1 and light-filtering properties. In this paper, Pharmaceutical & ving 8914 patients and 12 919 study eyes Molecular Biotechnology undergoing cataract surgery), the primary out- we review the evidence germane to the Research Centre, fi come was vision, sleep pattern, and photopro- putative and relative risks and/or bene ts of Department of Chemical & fi Life Sciences, Waterford tection in 9 (42.9%), 9 (42.9%), and 3 (14.2%) implanting IOLs that lter visible short- Institute of Technology, respectively, and, of these, only 7 (33.3%) can be wavelength light (ie, o500 nm), referred to as Waterford, Ireland classed as high as level 2b (individual cohort blue-light-filtering IOLs for the purpose of this study/low-quality randomized controlled trials), review.
    [Show full text]
  • Spectral Primary Decomposition for Rendering with RGB Reflectance
    Eurographics Symposium on Rendering (DL-only Track) (2019) T. Boubekeur and P. Sen (Editors) Spectral Primary Decomposition for Rendering with sRGB Reflectance Ian Mallett1 and Cem Yuksel1 1University of Utah Ground Truth Our Method Meng et al. 2015 D65 Environment 35 Error (Noise & Imprecision) Error (Color Distortion) E D CIE76 0:0 Lambertian Plane Figure 1: Spectral rendering of a texture containing the entire sRGB gamut as the Lambertian albedo for a plane under a D65 environment. In this configuration, ideally, rendered sRGB pixels should match the texture’s values. Prior work by Meng et al. [MSHD15] produces noticeable color distortion, whereas our method produces no error beyond numerical precision and Monte Carlo sampling noise (the magnitude of the DE induced by this noise varies with the image because sRGB is perceptually nonlinear). Contemporary work [JH19] is also nearly able to achieve this, but at a significant implementation and memory cost. Abstract Spectral renderers, as-compared to RGB renderers, are able to simulate light transport that is closer to reality, capturing light behavior that is impossible to simulate with any three-primary decomposition. However, spectral rendering requires spectral scene data (e.g. textures and material properties), which is not widely available, severely limiting the practicality of spectral rendering. Unfortunately, producing a physically valid reflectance spectrum from a given sRGB triple has been a challenging problem, and indeed until very recently constructing a spectrum without colorimetric round-trip error was thought to be impos- sible. In this paper, we introduce a new procedure for efficiently generating a reflectance spectrum from any given sRGB input data.
    [Show full text]
  • 1 Human Color Vision
    CAMC01 9/30/04 3:13 PM Page 1 1 Human Color Vision Color appearance models aim to extend basic colorimetry to the level of speci- fying the perceived color of stimuli in a wide variety of viewing conditions. To fully appreciate the formulation, implementation, and application of color appearance models, several fundamental topics in color science must first be understood. These are the topics of the first few chapters of this book. Since color appearance represents several of the dimensions of our visual experience, any system designed to predict correlates to these experiences must be based, to some degree, on the form and function of the human visual system. All of the color appearance models described in this book are derived with human visual function in mind. It becomes much simpler to understand the formulations of the various models if the basic anatomy, physiology, and performance of the visual system is understood. Thus, this book begins with a treatment of the human visual system. As necessitated by the limited scope available in a single chapter, this treatment of the visual system is an overview of the topics most important for an appreciation of color appearance modeling. The field of vision science is immense and fascinating. Readers are encouraged to explore the liter- ature and the many useful texts on human vision in order to gain further insight and details. Of particular note are the review paper on the mechan- isms of color vision by Lennie and D’Zmura (1988), the text on human color vision by Kaiser and Boynton (1996), the more general text on the founda- tions of vision by Wandell (1995), the comprehensive treatment by Palmer (1999), and edited collections on color vision by Backhaus et al.
    [Show full text]
  • Massimo Olivucci Director of the Laboratory for Computational Photochemistry and Photobiology
    Massimo Olivucci Director of the Laboratory for Computational Photochemistry and Photobiology September 12, 2012 Center for Photochemical Sciences & Department of Chemistry Bowling Green State University, Bowling Green, OH The Last Frontier of Sensitivity The research group working at the Laboratory for Computational Photochemistry and Photobiology (LCPP) at the Center for Photochemical Sciences, Bowling Green State University (Ohio) has been investigating the so- called Purkinje effect: the blue-shift in the perceived color under the decreasing levels of illumination that are experienced at dusk. Their results have appeared in the September 7 issue of Science Magazine. By constructing sophisticated computer models of rod rhodopsin, the dim-light visual “sensor” of vertebrates, the group has provided a first-principle explanation for this effect in atomic detail. The effect can now be understood as a result of quantum mechanical effects that may some day be used to design the ultimate sub-nanoscale light detector. The retina of vertebrate eyes, including humans, is the most powerful light detector that we know. In the human eye, light coming through the lens is projected onto the retina where it forms an image on a mosaic of photoreceptor cells that transmits information on the surrounding environment to the brain visual cortex, both during daytime and nighttime. Night (dim-light) vision represents the last frontier of light detection. In extremely poor illumination conditions, such as those of a star-studded night or of ocean depths, the retina is able to perceive intensities corresponding to only a few photons, the indivisible units of light. Such high sensitivity is due to specialized sensors called rod rhodopsins that appeared more than 250 million years ago on the retinas of vertebrate animals.
    [Show full text]
  • Chromatic Adaptation Transform by Spectral Reconstruction Scott A
    Chromatic Adaptation Transform by Spectral Reconstruction Scott A. Burns, University of Illinois at Urbana-Champaign, [email protected] February 28, 2019 Note to readers: This version of the paper is a preprint of a paper to appear in Color Research and Application in October 2019 (Citation: Burns SA. Chromatic adaptation transform by spectral reconstruction. Color Res Appl. 2019;44(5):682-693). The full text of the final version is available courtesy of Wiley Content Sharing initiative at: https://rdcu.be/bEZbD. The final published version differs substantially from the preprint shown here, as follows. The claims of negative tristimulus values being “failures” of a CAT are removed, since in some circumstances such as with “supersaturated” colors, it may be reasonable for a CAT to produce such results. The revised version simply states that in certain applications, tristimulus values outside the spectral locus or having negative values are undesirable. In these cases, the proposed method will guarantee that the destination colors will always be within the spectral locus. Abstract: A color appearance model (CAM) is an advanced colorimetric tool used to predict color appearance under a wide variety of viewing conditions. A chromatic adaptation transform (CAT) is an integral part of a CAM. Its role is to predict “corresponding colors,” that is, a pair of colors that have the same color appearance when viewed under different illuminants, after partial or full adaptation to each illuminant. Modern CATs perform well when applied to a limited range of illuminant pairs and a limited range of source (test) colors. However, they can fail if operated outside these ranges.
    [Show full text]
  • ARC Laboratory Handbook. Vol. 5 Colour: Specification and Measurement
    Andrea Urland CONSERVATION OF ARCHITECTURAL HERITAGE, OFARCHITECTURALHERITAGE, CONSERVATION Colour Specification andmeasurement HISTORIC STRUCTURESANDMATERIALS UNESCO ICCROM WHC VOLUME ARC 5 /99 LABORATCOROY HLANODBOUOKR The ICCROM ARC Laboratory Handbook is intended to assist professionals working in the field of conserva- tion of architectural heritage and historic structures. It has been prepared mainly for architects and engineers, but may also be relevant for conservator-restorers or archaeologists. It aims to: - offer an overview of each problem area combined with laboratory practicals and case studies; - describe some of the most widely used practices and illustrate the various approaches to the analysis of materials and their deterioration; - facilitate interdisciplinary teamwork among scientists and other professionals involved in the conservation process. The Handbook has evolved from lecture and laboratory handouts that have been developed for the ICCROM training programmes. It has been devised within the framework of the current courses, principally the International Refresher Course on Conservation of Architectural Heritage and Historic Structures (ARC). The general layout of each volume is as follows: introductory information, explanations of scientific termi- nology, the most common problems met, types of analysis, laboratory tests, case studies and bibliography. The concept behind the Handbook is modular and it has been purposely structured as a series of independent volumes to allow: - authors to periodically update the
    [Show full text]
  • 17-2021 CAMI Pilot Vision Brochure
    Visual Scanning with regular eye examinations and post surgically with phoria results. A pilot who has such a condition could progress considered for medical certification through special issuance with Some images used from The Federal Aviation Administration. monofocal lenses when they meet vision standards without to seeing double (tropia) should they be exposed to hypoxia or a satisfactory adaption period, complete evaluation by an eye Helicopter Flying Handbook. Oklahoma City, Ok: US Department The probability of spotting a potential collision threat complications. Multifocal lenses require a brief waiting certain medications. specialist, satisfactory visual acuity corrected to 20/20 or better by of Transportation; 2012; 13-1. Publication FAA-H-8083. Available increases with the time spent looking outside, but certain period. The visual effects of cataracts can be successfully lenses of no greater power than ±3.5 diopters spherical equivalent, at: https://www.faa.gov/regulations_policies/handbooks_manuals/ techniques may be used to increase the effectiveness of treated with a 90% improvement in visual function for most One prism diopter of hyperphoria, six prism diopters of and by passing an FAA medical flight test (MFT). aviation/helicopter_flying_handbook/. Accessed September 28, 2017. the scan time. Effective scanning is accomplished with a patients. Regardless of vision correction to 20/20, cataracts esophoria, and six prism diopters of exophoria represent series of short, regularly-spaced eye movements that bring pose a significant risk to flight safety. FAA phoria (deviation of the eye) standards that may not be A Word about Contact Lenses successive areas of the sky into the central visual field. Each exceeded.
    [Show full text]
  • The Eye and Night Vision
    Source: http://www.aoa.org/x5352.xml Print This Page The Eye and Night Vision (This article has been adapted from the excellent USAF Special Report, AL-SR-1992-0002, "Night Vision Manual for the Flight Surgeon", written by Robert E. Miller II, Col, USAF, (RET) and Thomas J. Tredici, Col, USAF, (RET)) THE EYE The basic structure of the eye is shown in Figure 1. The anterior portion of the eye is essentially a lens system, made up of the cornea and crystalline lens, whose primary purpose is to focus light onto the retina. The retina contains receptor cells, rods and cones, which, when stimulated by light, send signals to the brain. These signals are subsequently interpreted as vision. Most of the receptors are rods, which are found predominately in the periphery of the retina, whereas the cones are located mostly in the center and near periphery of the retina. Although there are approximately 17 rods for every cone, the cones, concentrated centrally, allow resolution of fine detail and color discrimination. The rods cannot distinguish colors and have poor resolution, but they have a much higher sensitivity to light than the cones. DAY VERSUS NIGHT VISION According to a widely held theory of vision, the rods are responsible for vision under very dim levels of illumination (scotopic vision) and the cones function at higher illumination levels (photopic vision). Photopic vision provides the capability for seeing color and resolving fine detail (20/20 of better), but it functions only in good illumination. Scotopic vision is of poorer quality; it is limited by reduced resolution ( 20/200 or less) and provides the ability to discriminate only between shades of black and white.
    [Show full text]