DIGITAL IMMERSIVE GIANT SCREEN SPECIFICATIONS (DIGSS) V 1.2.A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CINERAMA: the First Really Big Show
CCINEN RRAMAM : The First Really Big Show DIVING HEAD FIRST INTO THE 1950s:: AN OVERVIEW by Nick Zegarac Above left: eager audience line ups like this one for the “Seven Wonders of the World” debut at the Cinerama Theater in New York were short lived by the end of the 1950s. All in all, only seven feature films were actually produced in 3-strip Cinerama, though scores more were advertised as being shot in the process. Above right: corrected three frame reproduction of the Cypress Water Skiers in ‘This is Cinerama’. Left: Fred Waller, Cinerama’s chief architect. Below: Lowell Thomas; “ladies and gentlemen, this is Cinerama!” Arguably, Cinerama was the most engaging widescreen presentation format put forth during the 1950s. From a visual standpoint it was the most enveloping. The cumbersome three camera set up and three projector system had been conceptualized, designed and patented by Fred Waller and his associates at Paramount as early as the 1930s. However, Hollywood was not quite ready, and certainly not eager, to “revolutionize” motion picture projection during the financially strapped depression and war years…and who could blame them? The standardized 1:33:1(almost square) aspect ratio had sufficed since the invention of 35mm celluloid film stock. Even more to the point, the studios saw little reason to invest heavily in yet another technology. The induction of sound recording in 1929 and mounting costs for producing films in the newly patented 3-strip Technicolor process had both proved expensive and crippling adjuncts to the fluidity that silent B&W nitrate filming had perfected. -
Square Vs Non-Square Pixels
Square vs non-square pixels Adapted from: Flash + After Effects By Chris Jackson Square vs non square pixels can cause problems when exporting flash for TV and video if you get it wrong. Here Chris Jackson explains how best to avoid these mistakes... Before you adjust the Stage width and height, you need to be aware of the pixel aspect ratio. This refers to the width and height of each pixel that makes up an image. Computer screens display square pixels. Every pixel has an aspect ratio of 1:1. Video uses non-square rectangular pixels, actually scan lines. To make matters even more complicated, the pixel aspect ratio is not consistent between video formats. NTSC video uses a non-square pixel that is taller than it is wide. It has a pixel aspect ratio of 1:0.906. PAL is just the opposite. Its pixels are wider than they are tall with a pixel aspect ratio of 1:1.06. Figure 1: The pixel aspect ratio can produce undesirable image distortion if you do not compensate for the difference between square and non-square pixels. Flash only works in square pixels on your computer screen. As the Flash file migrates to video, the pixel aspect ratio changes from square to non-square. The end result will produce a slightly stretched image on your television screen. On NTSC, round objects will appear flattened. PAL stretches objects making them appear skinny. The solution is to adjust the dimensions of the Flash Stage. A common Flash Stage size used for NTSC video is 720 x 540 which is slightly taller than its video size of 720 x 486 (D1). -
History of Widescreen Aspect Ratios
HISTORY OF WIDESCREEN ASPECT RATIOS ACADEMY FRAME In 1889 Thomas Edison developed an early type of projector called a Kinetograph, which used 35mm film with four perforations on each side. The frame area was an inch wide and three quarters of an inch high, producing a ratio of 1.37:1. 1932 the Academy of Motion Picture Arts and Sciences made the Academy Ratio the standard Ratio, and was used in cinemas until 1953 when Paramount Pictures released Shane, produced with a Ratio of 1.66:1 on 35mm film. TELEVISION FRAME The standard analogue television screen ratio today is 1.33:1. The Aspect Ratio is the relationship between the width and height. A Ratio of 1.33:1 or 4:3 means that for every 4 units wide it is 3 units high (4 / 3 = 1.33). In the 1950s, Hollywood's attempt to lure people away from their television sets and back into cinemas led to a battle of screen sizes. Fred CINERAMA Waller of Paramount's Special Effects Department developed a large screen system called Cinerama, which utilised three cameras to record a single image. Three electronically synchronised projectors were used to project an image on a huge screen curved at an angle of 165 degrees, producing an aspect ratio of 2.8:1. This Is Cinerama was the first Cinerama film released in 1952 and was a thrilling travelogue which featured a roller-coaster ride. See Film Formats. In 1956 Metro Goldwyn Mayer was planning a CAMERA 65 ULTRA PANAVISION massive remake of their 1926 silent classic Ben Hur. -
A Brief Intro to Photoshop. Four by Three (4:3): That's For
A brief intro to Photoshop. Although many other image manipulation tools are cheaper and a bit more user friendly, Photoshop is the leading tool for digital image manipulation. As you will see, our uses of Photoshop are basic, but for the introductory student they do require a little bit of work. Please don’t become bogged down in Photoshop. Complete these simple tasks and move on. Four by three (4:3): that’s for me! The industry standard for video and digital video production is an aspect ratio of 4:3. That means the measurements of the screen on which you will see your story finished is 4:3 and we must make all the images you scan fit into that size. The standard measurement for a computer is 640 pixels by 480 pixels (640 x 480 is 4:3!) If an image is scanned or cropped to be a different ratio, then in the end your image will be stretched and distorted to fit the screen, whether you like it or not. Example: You have to put your image through a sizing operation if you want to avoid this distortion. These are your options: 1 Option 1: The Black Bars 1. Open the picture you are working on. Go to FILE > OPEN. Select your file. 2. First make sure that the background is set to black. At the bottom of the tool bar are two little boxes, one on the top left, and one on the bottom right. Click on the bottom left corner box of the COLOR PICKER and choose black in the color picker window. -
Cinerama to Digital Cinema: from the Zenith to the Decline Written by Enric Mas ( ) January 11, 2016
Enric Mas nitsenblanc.cat Cinerama to digital cinema: from the zenith to the decline Written by Enric Mas ( http://nitsenblanc.cat ) January 11, 2016 I try to imagine what the audience felt when they first saw a movie in Cinerama... but I cannot. I wonder, did they feel the same as I did when I saw a projection in 70 mm IMAX for the first time? Some clues tell me the answer is no. Howard Rust, of the International Cinerama Society, gave me an initial clue: “I was talking to a chap the other day who’d just been to see IMAX. ‘Sensational’, he said. ‘But, you know… it still doesn’t give you the same pins and needles up and down the back of your spin that Cinerama does’ ”. 1 What is its secret? Why is every film seen in Cinerama a unique event that is remembered for decades? We have another clue in a man who had worked with D.W. Griffith in That Royle Girl (1925), who produced and directed technically innovative short films, where black performers appeared, a rarity at the time, including the first appearance of Billie Holiday (Symphony in Black: A Rhapsody of Negro Life , 1935). He created a new imaging system (Vitarama) for the World’s Fair in New York (1939), joining 11 projectors of 16 mm, which reached a vertical image of 75 degrees high and 130 degrees wide, 2,3 developments which led to the most advanced artillery simulator in the world, which was used to train future aircraft gunners in World War II. -
FILM FORMATS ------8 Mm Film Is a Motion Picture Film Format in Which the Filmstrip Is Eight Millimeters Wide
FILM FORMATS ------------------------------------------------------------------------------------------------------------ 8 mm film is a motion picture film format in which the filmstrip is eight millimeters wide. It exists in two main versions: regular or standard 8 mm and Super 8. There are also two other varieties of Super 8 which require different cameras but which produce a final film with the same dimensions. ------------------------------------------------------------------------------------------------------------ Standard 8 The standard 8 mm film format was developed by the Eastman Kodak company during the Great Depression and released on the market in 1932 to create a home movie format less expensive than 16 mm. The film spools actually contain a 16 mm film with twice as many perforations along each edge than normal 16 mm film, which is only exposed along half of its width. When the film reaches its end in the takeup spool, the camera is opened and the spools in the camera are flipped and swapped (the design of the spool hole ensures that this happens properly) and the same film is exposed along the side of the film left unexposed on the first loading. During processing, the film is split down the middle, resulting in two lengths of 8 mm film, each with a single row of perforations along one edge, so fitting four times as many frames in the same amount of 16 mm film. Because the spool was reversed after filming on one side to allow filming on the other side the format was sometime called Double 8. The framesize of 8 mm is 4,8 x 3,5 mm and 1 m film contains 264 pictures. -
Liberty Science Center March 2018 Jan 31, 2019 |
Vol. 47, No. 1 March 2018 Journal of the International Planetarium Society A convergence at the Liberty Science Center Page 12 Executive Editor Sharon Shanks 484 Canterbury Ln Boardman, Ohio 44512 USA +1 330-783-9341 [email protected] March 2018 Webmaster Alan Gould Vol 47 No 1 Lawrence Hall of Science Planetarium University of California Articles Berkeley CA 94720-5200 USA [email protected] 8 Minutes of the 2017 IPS Council Meeting Rachel Thompson Advertising Coordinator Dale Smith 10 It’s easier than ever to join IPS (See Publications Committee on page 3) 11 New affiliate representatives and Vision2020 members 11 The international spread of our voices from the dome Membership 12 A convergence leads to excitement at the Liberty Individual: $65 one year; $100 two years Institutional: $250 first year; $125 annual renewal Science Center Rudith Jubin Library Subscriptions: $50 one year; $90 two years 18 Building and training an effective planetarium staff All amounts in US currency Tom Arnold Direct membership requests and changes of address to the Treasurer/Membership Chairman 24 Dome immerses world leaders in fight against pollution Daniel Chu Owen, Susan Murabana, Samyuktar Manikumar Printed Back Issues of Planetarian Kark Subba Rao, Kyle Doane IPS Back Publications Repository 26 Evaluating the impact of live presentations maintained by the Treasurer/Membership Chair (See contact information on next page) Ryan Wyatt, Akemi Mease 28 A musical planetarium play with an astronomical theme Final Deadlines Gloria McMillan March: January 21 30 Unusual need led to calibration innovation June: April 21 September: July 21 Alma Talbot December: October 21 32 How many people visit the world’s planetariums? Mark C. -
Digital Signage Guidelines
DIGITAL SIGNAGE GUIDELINES Content on your displays is the electronic process of bringing posters and fliers to life. In preparation for designing content there are some specifications that should be followed to ensure a high-quality presentation. Display Template Display Orientation: Landscape Displays/TV resolutions: 1920 x 1080 Aspect Ratio: 16:9 (Recommended) can be 4:3 The entire template should be 1920 x 1080 as shown below. The region where main content will be (the area where rotating content will be displayed) should be in a ratio of 16:9 (recommended) or 4:3. Example below as indicated by the arrow is 1344 x 720 which is a 16:9 ratio. Just be consistent. If the main content area is 16:9 then graphics need to be 16:9. If main content area is 4:3 then graphics needs to be 4:3. All other regions can be built around this area to fill the template. 1080 1920 Digital Content Most presentations start with an event or information that needs to reach a wide audience. Information that is pertinent to this event is jotted down and the evolution of a “flier” forms. For print purposes, most users would go to Word or Publisher and start creating a flier. However when making digital content, Word is not recommended. So, what program is best suited for this? PowerPoint This happens to be the most popular program. Powerpoint is designed for presentations that will be projected to a wide variety of screens, so orientation and aspect ratios are already taken into account. -
4. Reconfigurations of Screen Borders: the New Or Not-So-New Aspect Ratios
4. Reconfigurations of Screen Borders: The New or Not-So-New Aspect Ratios Miriam Ross Abstract The ubiquity of mobile phone cameras has resulted in many videos foregoing the traditional horizontal (landscape) frame in favour of a vertical (portrait) mode. While vertical framing is often derided as amateur practice, these new framing techniques are part of a wider contemporary screen culture in which filmmakers and artists are using unconventional aspect ratios and/or expanding and contracting aspect ratios over the course of their audio-visual work. This chapter briefly outlines historical contexts in which the border of the screen has been more flexible and open to changing configurations than is widely acknowledged. It then uses recent case studies to consider how our understanding of on-screen and off-screen space is determined by these framing configurations. Keywords: Aspect ratios, embodiment, framing, cinema In recent years, the increasing ubiquity of mobile phone videos has drawn attention to a radical challenge to traditional screen culture. It is not just that a wide variety of amateur users now have a filmmaking device at their fingertips—rather, that many of them are foregoing the more than a century- long norm for shooting with a horizontal frame. Appearing on social media sites such as YouTube, Facebook, and Twitter as well as in commercial news broadcasts, their footage stands tall in a vertical format. When replayed on horizontal screens, the startling strangeness of wide black bands on either side of the content focuses attention on the border of the frame as well as seem- ingly absent screen space. -
IMAX Technician Robert Kilburn Uses Aspect Ratios to Make Sure Audiences Enjoy the Movie
THE Scenes from upcoming IMAX releases Star Trek and (below) Monsters vs. Aliens f you've ever seen a movie in an IMAX theater—with a huge screen and excellent sound and picture—you know how realistic it can be. You might have even felt like you were inside the movie. It takes many people to make sure that the film looks the way it's supposed to. One of those people is Robert kilburn, the manager of system installations at IMAX. His job is to IMAX technician supervise the installation of IMAX screens and projection Robert Kilburn and sound systems. Kilburn's favorite films to uses aspect work on might also be your favorites to watch. "I like the ratios to make visually spectacular films that take you places you sure audiences wouldn't normally be able to go, from the deepest depths enjoy the movie. of our oceans to the magical Continued on next page world of Harry Potter," Kilburn OA modem flat-screen television Some IMAX theaters use the told MATH. "The Harry Potter M(LCD or plasma) could have a 416:9 aspect ratio. If the height of films are my favorites." width of 64 inches and a height of an image at this ratio is 51.3 feet... In order to make sure the 36 inches, a. what proportion could you picture looks perfect on an a. To find the aspect ratio for write to find the width? IMAX screen, Kilburn uses flat-screen TVs, write those aspect ratios. A ratio compares dimensions as a ratio in two different numbers of the simplest form: same unit. -
The Missing Planet
66 Irénée Scalbert 3 London After the Green Belt Thomas Weaver 16 In Conversation with Hilla Becher Mathew Holmes 37 A Garden of Earthly Delights Tom Brooks 42 The Curious Case of Brian Housden Helen Thomas 54 Joseph Rykwert and the Use of History Mathew Aitchison 59 The Boyd Ultimatum H T Cadbury-Brown 68 In Conversation with Ludwig Mies van der Rohe Pedro Ignacio Alonso 81 Mountaineering Joshua Mardell 87 Far From the Madding Crowd Adrian Forty 100 Happy Ghost of a Possible City Ilaria Abbondandolo 108 ‘A Calligraphy I Have Invented Many Times Before’ Ryan Dillon 114 In Conversation with Moshe Safdie William Firebrace 126 The Missing Planet Laurent Stalder 145 No Limits to Growth Mark Campbell 153 Blood Simple 156 Contributors 66 aa Files The contents of aa Files are derived from the activities Architectural Association of the Architectural Association School of Architecture. 36 Bedford Square Founded in 1847, the aa is the uk’s only independent London wc1b 3es school of architecture, offering undergraduate, t +44 (0)20 7887 4000 postgraduate and research degrees in architecture and f +44 (0)20 7414 0782 related fields. In addition, the Architectural Association aaschool.ac.uk is an international membership organisation, open to anyone with an interest in architecture. Publisher The Architectural Association For Further Information Visit aaschool.ac.uk Editorial Board or contact the Admissions Office Mark Cousins aa School of Architecture George L Legendre 36 Bedford Square Joanna Merwood-Salisbury London wc1b 3es Irénée Scalbert Brett -
Progress in Rendering and Modeling for Digital Planetariums
EUROGRAPHICS 2010/ M. Cooper and K. Pulli Areas Paper Progress in Rendering and Modeling for Digital Planetariums M. Magnor1,2† and P. Sen2 and J. Kniss2 and E.Angel2 and S. Wenger1 1 TU Braunschweig, Germany 2 University of New Mexico, USA Abstract Contemporary challenges in the production of digital planetarium shows include real-time rendering realism as well as the creation of authentic content. While interactive, live performance is a standard feature of professional digital-dome planetarium software today, support for physically correct rendering of astrophysical phenomena is still often limited. Similarly, the tools currently available for planetarium show production do not offer much assistance towards creating scientifically accurate models of astronomical objects. Our paper presents recent results from computer graphics research, offering solutions to contemporary challenges in digital planetarium rendering and modeling. Incorporating these algorithms into the next generation of dome display software and production tools will help advance digital planetariums toward make full use of their potential. Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling— Physically based modeling I.3.8 [Computer Graphics]: Applications—Digital Planetariums J.2 [Computer Appli- cations]: Physical Sciences and Engineering—Astronomy 1. Introduction A challenging task for digital fulldome planetariums is to decide on how to present scientific content in the vi- While researchers are currently exploring many innovative sually most intuitive way, given the innumerable possibil- new uses for digital domes, the main application of public ities offered by digital dome projection.