Linnaeus' Sexual System De Jussieu's System

Total Page:16

File Type:pdf, Size:1020Kb

Linnaeus' Sexual System De Jussieu's System Biology 211 Flowering Plant Taxonomy Fall 2004 Linnaeus’ Sexual System Species Plantarum (1753) Class 1. Monandria Stamens one 2. Diandria Stamens two 3. Triandria Stamens three 4. Tetrandria Stamens four 5. Pentandria Stamens five 6. Hexandria Stamens six 7. Heptandria Stamens seven 8. Octandria Stamens eight 9. Enneandria Stamens nine 10. Decandria Stamens ten 11. Dodecandria Stamens 11-19 12. Icosandria Stamens 20 or more, on the calyx 13. Polyandria Stamens 20 or more, on the receptacle 14. Didynamia Stamens didynamous (2 + 2 arrangement) 15. Tetradynamia Stamens tetradynamous (4 + 2 arrangement) 16. Monadelphia Stamens monadelphous (all fused) 17. Diadelphia Stamens diadelphous (all fused except 1 or in fused in 2 groups 18. Polyadelphia Stamens polyadelphous (fused in several clusters) 19. Syngenesia Stamens syngenesious 20. Gynandria Stamens united to the gynoecium 21. Monecia Plants monoecious (unisexual flowers, and both sexes on one plant) 22. Dioecia Plants dioecious (unisexual flowers, but only 1 sex/plant) 23. Polygamia Plants polygamous (both unisexual and hermaphroditic flowers on one plant) 24. Cryptogamia Flowerless plants de Jussieu’s System Genera Plantarum (1789) Class 1. Acotyledones (fungi, algae, mosses) Monocotyledones 2. Stamens hypogynous 3. Stamens perigynous 4. Stamens epigynous Dicotyledones Apetalae (no petals) 5. Stamens epigynous 6. Stamens perigynous 7. Stamens hypogynous Monopetalae (Petals fused) 8. Corolla hypogynous 9. Corolla perigynous Corolla epigynous 10. Anthers connate (fused) 11. Anthers distinct (separate) Polypetalae (Petals separate) 12. Stamens epigynous 13. Stamens hypogynous 14. Stamens perigynous 15. Diclines irregulares (unisexual plants with no corolla) (100 total orders = families) Page 2 de Candolle’s System Prodromus (1819) I. Vasculares (vascular plants with cotyledons) Class 1. Exogenae (vascular bundles in a ring; dicotyledons) A. Diplochlamydeae (both calyx and corolla present) a. Thalamiflorae (polypetalous, hypogynous) Orders 1-46 b. Calyciflorae (perigynous or epigynous, polypetalous or sympetalous) Orders 47-84 c. Corolliflorae (gamopetalous, hypogynous) Orders 85-108 B. Monochlamydeae (calyx only present) Orders 109-128 Class 2. Endogenae (vascular bundles scattered; monocotyledons) A. Phanerogamae (flowers present) Orders 129-150 B. Cryptogamae (flowers absent, hidden, or unknown) II. Cellulares (plants without vascular bundles or cotyledons) Class 1. Foliaceae (leafy, sexuality unknown) Class 2. Aphyllae (not leafy, sexuality unknown) Bentham and Hooker’s System Genera Plantarum (1862) DICOTYLEDONS I. Polypetalae (petals separate) Series 1. Thalaminflorae (hypogynous) Orders 1-33 Series 2. Disciflorae (receptacle expanded as a disc) Orders 34-55 Series 3. Calciflorae (perigynous, sometimes epigynous) Orders 56-82 II. Gamopetalae (petals united) Series 1. Inferae (epigynous) Orders 83-91 Series 2. Heteromerae (ovary usually superior, carpels more than 2) Orders 92-103 Series 3. Bicarpellatae (ovary usually superior, carpels usually 2) Orders 104-127 III. Monochlamydeae (only one perianth whorl, i.e., only sepals) Series 1. Curvembryeae (embryo curved) Orders 128-134 Series 2. Multiovulatae Aquaticae (submerged herbs) Order 135 Series 3. Multiovulatae Terrestres (terrestrial plants) Orders 136-138 Series 4. Micrembryeae (embryo very small) Orders 139-142 Series 5. Daphnales (ovary of 1 carpel, ovule 1) Orders 143-147 Series 6. Achlamydosporeae (pistil 1-loculed, ovules 1-3) Orders 148-150 Series 7. Unisexuales (flowers unisexual) Orders 151-159 Series 8. Ordines Anomali (relationships uncertain) Orders 160-163 GYMNOSPERMAE Orders 164-166 MONOCOTYLEDONS Series 1. Microspermae (no endosperm) Orders 167-169 Series 2. Epigynae (with endosperm, ovary inferior) Orders 170-176 Series 3. Coronarieae (ovary superior) Orders 177-184 Series 4. Calycineae (perianth sepaloid) Orders 185-187 Series 5. Nudiflorae (perianth lacking) Orders 188-192 Series 6. Apocarpae (carpels single or separate) Orders 193-195 Series 7. Glumaceae (flowers in spikelets or heads) Orders 196-200 Page 3 Engler and Prantl’s System Die Naturlichen Pflanzenfamilien (1887-1911) Division Embryophyta Siphonogama — Seed-bearing plants Subdivision Gymnospermae — Plants with naked ovules that are directly pollinated Subdivision Angiospermae — The flowering plants; ovules enclosed in carpels Class I. Monocotyledonae Class II. Dicotyledonae Subclass I. Archichlamydae — No petals or separate petals “Amentiferae” ament or catkin, primitive according to Pseudantial Theory Subclass II. Metachlamydae — Fused petals Bessey’s System Ann. Mo. Bot. Gard. 2:109-164 (1915) Class Alternifoliae (Monotyledoneae) Subclass Strobiloideae Subclass Cotyloideae Class Oppositifoliae (Dicotyledoneae) Subclass Strobiloideae (hypogynous) Superorder Apopetalae-Polycarpellatae (separate petals and many carpels) - Euanthial Superorder Sympetalae-Polycarpellatae (fused petals and many carpels) Superorder Sympetalae-Dicarpellatae (fused petals, two carpels) Subclass Cotyloideae (epigynous or perigynous) Superorder Apopetalae (separate petals) Superorder Sympetalae (fused petals) Hutchinson’s System Families of Flowering Plants (1959) Phylum Angiosperms Subphylum Dicotyledons Division Lignosae (woody plants) Division Herbaceae (harbaceous plants) Subphylum Monocotyledons Division Calyciferae (calyx bearers) Division Corolliferae (corolla bearers) Division Glumiflorae (reduced flowers) Cronquist’s System An Integrated System of Classification of Flowring Plants (1981) Division Magnoliophyta Class Magnoliopsida (Dicotyledons) Subclass Magnoliidae – undifferentiated perianth, many separate stamens and carpels Subclass Hamamelidae – shrubs or trees, flowers reduced, often clustered in catkins Subclass Caryophyllidae – free-central placentation, betalains Subclass Dilleniidae – tendency toward epigyny, sympetaly, clustered stamens Subclass Rosidae – well developed nectary disk Subclass Asteridae – sympetalous, many epigynous, few stamens, 2 carpels, one integument Class Liliopsida (Monocotyledons) Subclass Alismatidae – aquatic, herbs, separate carpels, Subclass Arecidae – flowers small, in spadix with subtending spathe Subclass Commelinidae – fused carpels, distinct sepals and petals or absent Subclass Zingiberidae – flowers zygomorphic, epigynous, septal nectaries Subclass Liliidae – sepals are petaloid, nectarines often present .
Recommended publications
  • Classification of Living Things
    AN ACTIVE AUSTRALIAN SCIENCE 7 CURRICULUM MODULE AUS BS7 SU STRAND MODULE 1: CLASSIFICATION OF LIVING THINGS STUDENT’S NAME: TUTORIAL: TEACHER’S NAME: DATE: _______________________________________________________________________________________ AUS Biological Sciences 7: Science Understanding Strand Module 1: Key Conceptual Understandings • Students understand that the structure of an organism refers to the nature and arrangement of its body parts. • Students understand that living things have a particular structure or body organisation and particular ways of behaving and functioning by which they may be distinguished. • Students understand that classification is the process of sorting objects into groups based upon likeness between them, i.e., upon those characteristics that they have in common. • Students classify some familiar animals into different groups on the basis of both structural and functional characteristics using a dichotomous schematic chart provided to them by their teacher. • Students apply a classification scheme to sort some familiar plants into different groups on the basis of characteristics such as method of nutrition, structural features, and the way they reproduce. • Students classify, by referring to a dichotomous schematic chart, some familiar animals into different classes of vertebrates on the basis of type of fertilization and development of zygote. _______________________________________________________________________________________ An Introduction to Classification 1. A science fiction show on ABC3 is Dex Hamilton, Alien Entomologist. What do entomologists do? [1 mark] There are about one million species of insects living on earth. 2. How do biologists define the scientific word species? [2 marks] AUS BS7 SU STRAND: MODULE 1 © M. J. McGarry (2011) Page 1 • Science Concept: A species is a grouping of organisms that in nature are capable of interbreeding to produce fertile offspring.
    [Show full text]
  • Towards a Management Hierarchy (Classification) for the Catalogue of Life
    TOWARDS A MANAGEMENT HIERARCHY (CLASSIFICATION) FOR THE CATALOGUE OF LIFE Draft Discussion Document Rationale The Catalogue of Life partnership, comprising Species 2000 and ITIS (Integrated Taxonomic Information System), has the goal of achieving a comprehensive catalogue of all known species on Earth by the year 2011. The actual number of described species (after correction for synonyms) is not presently known but estimates suggest about 1.8 million species. The collaborative teams behind the Catalogue of Life need an agreed standard classification for these 1.8 million species, i.e. a working hierarchy for management purposes. This discussion document is intended to highlight some of the issues that need clarifying in order to achieve this goal beyond what we presently have. Concerning Classification Life’s diversity is classified into a hierarchy of categories. The best-known of these is the Kingdom. When Carl Linnaeus introduced his new “system of nature” in the 1750s ― Systema Naturae per Regna tria naturae, secundum Classes, Ordines, Genera, Species …) ― he recognised three kingdoms, viz Plantae, Animalia, and a third kingdom for minerals that has long since been abandoned. As is evident from the title of his work, he introduced lower-level taxonomic categories, each successively nested in the other, named Class, Order, Genus, and Species. The most useful and innovative aspect of his system (which gave rise to the scientific discipline of Systematics) was the use of the binominal, comprising genus and species, that uniquely identified each species of organism. Linnaeus’s system has proven to be robust for some 250 years. The starting point for botanical names is his Species Plantarum, published in 1753, and that for zoological names is the tenth edition of the Systema Naturae published in 1758.
    [Show full text]
  • Phylum Arthropoda
    Phylum Arthropoda General Characteristics of phylum shared by members of all subphyla: -chitinous, hardened exoskeleton that must be shed to grow -obvious segmentation (metamerism) -paired, jointed appendages on many segments Subphylum: Trilobita body plan: head, thorax, pygidium compound eyes antennae mandibles for feeding? branched (biramous) lappendages respiration by gills? able to roll up like pill bugs once most common arthropod, now completely extinct Subphylum: Myriopoda (centipedes, millipedes) body plan: head, long trunk lack compound eyes single pair of antennae mandibles for feeding Major Groups : unbranched legs on most segments Chilopoda (centipedes) respiration by tracheae Diplopoda (millipedes) Subphylum Chelicerata: (spiders, horshoe crab, scorpions, mites, ticks) body plan: cephalothorax, abdomen most lack compound eyes no antennae Major Classes : chelicerae for feeding (no mandibles) Merostomata (horshoe crabs) four pairs of unbranched legs Arachnida (spiders, scorpions, mites & ticks) respiration by gills, book lungs, book gills or tracheae Pycnogonida (sea spiders) Subphylum Crustacea: (crabs, shrimp, crayfish, barnacles, pill bugs, water fleas) body plan: cephalothorax, abdomen, tail compound eyes two pairs of antennae Major Classes : mandibles for feeding Malacostraca (shrimp, crab, pill bugs, amphipods) branched (biramous) appendages Branchiopoda (water fleas, brine shrimp, fairy shrimp) respiration by gills Maxillipoda (copepods, seed shrimp, barnacles) only subphylum that is mostly aquatic Subphylum: Hexapoda (beetles, flies, bugs, crickets, mayflies, dragonflies, moths, wasps, etc.) body plan: head, thorax, abdomen compound eyes single pair of antennae mandibles for feeding three pairs of unbranched legs Major Groups : two pairs of wings Apterygota (wingless insects; springtails, silverfish) respiration by tracheae Pterygota (flying insects; dragonflies, butterflies, etc) includes only invertebrates that can fly.
    [Show full text]
  • TOPIC: Bentham and Hooker's System of Classification FACULTY: Isha Gaurav Department of Botany Email: [email protected]
    Course: B.Sc Botany SEMESTER IV PAPER CODE: BOT CC 410 PAPER: Plant Systematics TOPIC: Bentham and Hooker's system of classification FACULTY: Isha Gaurav Department of Botany Email: [email protected] Bentham and Hooker's system of classification It is a natural system of classification and is based on important characters of the plants. Even today this system is being followed in India, United Kingdom and several other Commonwealth countries. It is also used in a number of herbaria and botanical gardens all over the world. It is a well known and widely accepted classification of seeded plants. It was proposed by two English botanists George Bentham (1800-1884) and Sir Joseph Dalton Hooker (1817- 1911). Their system of classification was published in 'Genera Plantarum' in three volumes and they had described 97,205 species of seeded plants in 202 orders (now referred to as families). In Bentham and Hooker's classification of plants, the present day 'orders' were referred to as 'cohorts' and 'families' as 'orders'. The seeded plants are divided into three classes 'Dicotyledonae,Gymnospermae and Monocotyledonae. Class I Dicotyledonae: Seeds of dicotyledonous plants contain two cotyledons. Leaves show reticulate venation. Flowers are tetramerous or pentamerous having four or five members in various floral whorls respectively. It includes three sub-classes ' Polypetalae, Gamopetalae and Monochlamydeae. Sub-class I Polypetalae:Plants having flowers with free petals come under polypetalae. The flowers are with distinct calyx and corolla. It is further divided into three series - Thalamiflorae, Disciflorae and Calyciflorae. Series (i) Thalamiflorae:It includes plants having flowers with dome or conical thalamus.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Botanical Classification and Nomenclature an Introduction —
    Botanical classification and nomenclature an introduction — Marc S.M. Sosef Jérôme Degreef Henry Engledow Pierre Meerts Botanical classification and nomenclature an introduction — Marc S.M. Sosef Jérôme Degreef Henry Engledow Pierre Meerts by Marc S.M. Sosef1, Jérôme Degreef1,2, Henry Engledow1 & Pierre Meerts3 1 Meise Botanic Garden, Nieuwelaan 38, B-1860 Meise, Belgium 2 Service Général de l’Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. Lavallée 1, B-1080 Brussels, Belgium 3 Herbarium et bibliothèque de botanique africaine, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP 265, B-1050 Brussels, Belgium Copyright © 2020 Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium. Printed in Belgium by Gewadrupo, Arendonk. This publication is published and distributed in Open Access under the Creative Commons Attribution 4.0 International license (CC-BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. A PDF file of this publication can be ordered, free of charge (send an email to [email protected]), or downloaded from the webshop of Meise Botanic Garden at http://shopbotanicgarden.weezbe.com. DOI: 10.5281/zenodo.3706707 CIP Royal Library Albert I, Brussels Botanical classification and nomenclature, an introduction. Marc S.M. Sosef, Jérôme Degreef, Henry Engledow & Pierre Meerts - Meise, Meise Botanic Garden, 2020. - 72 p.; ill.; 22 x 15 cm. ISBN 9789492663207 Subject: Botany D/2020/0325/002 Content Introduction . 5 1. The history of classification . 9 1.1 Theophrastus to the Middle Ages . 11 1.2 Renaissance, Pre-Linnean period . 13 1.3 Linnaeus and the Linnaeans .
    [Show full text]
  • Phylum Chordata
    Phylum Chordata 3 Subphyla ‘URO-CEPHALO-VERT’ Subphylum Urochordata Subphylum Cephalochordata Subphylum Vertebrata Adult Has only 1 Chordate characteristic: Pharyngeal gill bars have become a filter feeding basket Subphylum Urochordata Larva Has all 4 Chordate characteristics Subphylum Urochordata Tunicate tadpole larvae Note 4 chordate characteristics: 1. Dorsal hollow nerve cord 2. Notochord 3. Pharyngeal gill slits or bars A 4. Post-anal tail (A) Subphylum Cephalochordata Post anal tail Notochord Nerve cord Anus Atriopore Pharyngeal gill Cirri Metapleural Folds bars & slits Phylum A Chordata Subphylum Cephalochordata B C B D Dorsal region Note: fin ray (A), myomeres (B), dorsal hollow nerve cord (nerve tube) (C), notochord (D) B P. gill bar O Ovary B O C P gill slit C B D A B Phylum C Chordata Subphylum B C Cephalochordata E Endostyl MF e MF Anterior region Note: (D) pharynx, (E) endostyle – (produces mucus to help catch food in between the gill bars - Yummy!) (MF) - Meta pleural folds (A) atrium Phylum Chordata Subphylum Vertebrata 7 Classes - Agnatha Hagfish & Lampreys Chondrichthyes Sharks Osteichthyes Bony fish Amphibia Frogs & Salamanders Reptilia Turtles & Crocs Aves Birds Mammalia Your lab partner! Phylum Chordata Subphylum Vertebrata TYPES of SKELETON Cartilaginous Skeleton (2 classes) Agnatha Chondrichthyes Bony Skeleton (5 classes) Osteichthyes ‘RAAMO’ Amphibia Reptilia Aves Mammalia Phylum Chordata Subphylum Vertebrata NUMBER OF HEART CHAMBERS Agnatha 2 Chondrichthyes Osteichthyes Amphibia 3 Reptilia (except crocs) Crocs 4 Aves Mammalia Phylum Chordata Subphylum Vertebrata WHO HAS AN AMNIOTIC EGG? Amniotes – ‘RAM’ Reptilia Aves Mammalia Phylum Chordata Subphylum Vertebrata Always take the shortest route…… If you can’t remember all the classes that are ectothermic… just remember those that aren’t! Endothermic Aves Mammalia Endothermy – ability to maintain body temperature by internal metabolic processes Don’t forget the dissections…….
    [Show full text]
  • Bentham and Hooker Classification Faculty Name - Dr Piyush Kumar Rai Email – [email protected]
    Course - B.Sc. Botany Semester - II Paper Code - BOT GE202 Paper Name – Plant Ecology and Taxonomy Topic - Bentham and Hooker Classification Faculty Name - Dr Piyush Kumar Rai Email – [email protected] Bentham and Hooker Classification George Bentham (1800 – 1884) Joseph Hooker (1817 – 1911) It was Proposed by George Bentham ( 1800 – 1884 ) and Joseph Dalton Hooker (1817 – 1911 ) in their Genera Plantarum published during July (1862 ) & April ( 1883 ) George Bentham (1800 – 1884) and Joseph Dalton Hooker ( 1817 ) – 1911) , the two British botanist who were associated with the Royal Botanic garden at kew ( England) gave most important and easily workable system of classification of angiosperms and published it in three volume of ‘Genera plantarum ‘ The first part of Genera plantarum appeared in July 1882 and the last part in April 1883 . This was the greatest taxonomic work ever produced in the united kingdom and ever since been an inspiration to generations of kew botanists . Although Bentham and Hooker’s system of classification was based on that of A.P. de Candolle but greater stress was given on contrast between free and fused petals . Their symptom was widely accepted in Britain and commonwealth countries but in Europe and North America it did not hold the much ground . Bentham and Hooker divided the seed plants into Dicotyledons, Gymnosperms and Monocotyledons. They placed Ranales in beginning and grasses at the end . The following is the summary of Bentham & Hooker’s system. DICOTYLEDONS : A . Polypetalae ( petals are free ) Series l Thalamiflorae Order 1. Ranales eg. Ranunculaceae, Magnollaceae e.t.c Order 2. Parietales eg. Papaveraceae , Cruciferae e.t.c Order 3.
    [Show full text]
  • Marine Biodiversity in India
    MARINEMARINE BIODIVERSITYBIODIVERSITY ININ INDIAINDIA MARINE BIODIVERSITY IN INDIA Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR Zoological Survey of India CITATION Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR; 2012. Marine Biodiversity : 1-164 (Published by the Director, Zool. Surv. India, Kolkata) Published : May, 2012 ISBN 978-81-8171-307-0 © Govt. of India, 2012 Printing of Publication Supported by NBA Published at the Publication Division by the Director, Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 Printed at Calcutta Repro Graphics, Kolkata-700 006. ht³[eg siJ rJrJ";t Œtr"fUhK NATIONAL BIODIVERSITY AUTHORITY Cth;Govt. ofmhfUth India ztp. ctÖtf]UíK rvmwvtxe yÆgG Dr. Balakrishna Pisupati Chairman FOREWORD The marine ecosystem is home to the richest and most diverse faunal and floral communities. India has a coastline of 8,118 km, with an exclusive economic zone (EEZ) of 2.02 million sq km and a continental shelf area of 468,000 sq km, spread across 10 coastal States and seven Union Territories, including the islands of Andaman and Nicobar and Lakshadweep. Indian coastal waters are extremely diverse attributing to the geomorphologic and climatic variations along the coast. The coastal and marine habitat includes near shore, gulf waters, creeks, tidal flats, mud flats, coastal dunes, mangroves, marshes, wetlands, seaweed and seagrass beds, deltaic plains, estuaries, lagoons and coral reefs. There are four major coral reef areas in India-along the coasts of the Andaman and Nicobar group of islands, the Lakshadweep group of islands, the Gulf of Mannar and the Gulf of Kachchh . The Andaman and Nicobar group is the richest in terms of diversity.
    [Show full text]
  • Paper 03,Group B;BENTHAM and HOOKER SYSTEM of CLASSIFICATION,Dr.Dilip Kumar Jha, (Lecture Series No
    BOTANY,Degrre 2(H. ),Paper 03,group B;BENTHAM AND HOOKER SYSTEM OF CLASSIFICATION,Dr.Dilip Kumar Jha, (lecture series No. 08). Among all the natural system of classification,the system jointly proposed by George Bentham (1800_1884) and Sir Joseph Dalton Hooker (1817_1911) has gained much popularity. Both of them were working in Royal Botanical Garden,Kew,England. They jointly published their natural system in three volume of Genera Plantarum (1862_1883) In which all the genera of seed plants known upto that time,were described and classified on the basis of all available natural characters or affinities. In their classification they described 97205 species of 7569 genera belonging to 202 families of Angiosperm under 40 orders and 15 series. This system is based on that of A.P.deCandole but its text differs from latter system. Important Features of the System: 1. This was the last natural system and was not affected by concept of evolution,although it was proposed after publication of Darwin’s theory of evolution. 2. They have placed Gymnosperm between two groups (Dicot and Monocot ) of Angiosperm. 3. They have replaced the term order and family by Cohorts and Natural Orders respectively. 4. In their system,every genus was studied anew;the materials were made available from the British and continental herbaria. OUTLINE OF THE CLASSIFICATION Kingdom:PLANTAE Subkingdom: 1.CRYPTOGAMIA Subkingdom: 2.PHANEROGAMIA or SPERMATOPHYTA. Cryptogamia includes all the flower less plants whereas Spermatophyta includes all the flowering plants which bear seed. Subkingdom Phanerogamia has been divided into one Groups/Divisions: 1.DICOTYLEDONAE 2.GYMNOSPERMAE 3.MONOCOTYLEDONAE All the groups have been further divided into Classes,classes into series ,series into Cohorts and cohorts into Natural orders.
    [Show full text]
  • Nomenclature and Taxonomy
    c01.qxd 8/18/03 4:06 PM Page 5 1 NOMENCLATURE AND TAXONOMY Nomenclature (Scientific ● Common) When casually discussing nature, whether verbally or in print, we typi- cally use pretty informal language. Simple, everyday terms for plants and animals are more than adequate for expressing ourselves. We do not talk about Malus and Citrus sinensis (taxonomic terms) when referring to apples and oranges because it is simply not effective communication. However, we do use such terms when we want to make specific scientific distinctions—say, between the prairie crab apple, which botanists identify as Malus ioensis, and the sweet crab apple, which they have designated Malus coronaria. Because this book deals with differences, many of them technical and somewhat detailed, the reader will encounter quite a few such scientific names, some of which may appear not only needlessly elaborate but also virtually unpronounceable—although nothing as tongue twisting as Paracoccidioides brasilensis, a lung-infecting fungus, or Brachyta inter- rogationis interrogationis var. nigrohumeralisscutellohumeroconjuncta, a longhorn beetle. As for pronunciation, unless one really feels that the word will be used in conversation, there is no need to be concerned with “getting it right.” But why does science eschew common names and instead encumber itself with such a seemingly inexplicable vocabulary? Because, in part, “common” does not necessarily mean “universal.” What may be an organism’s common name in one part of the country may be quite dif- ferent in another, making any initial exchange of information suspect. For example, in the Midwest the thirteen-lined ground squirrel (Spermophilus tridecemlineatus) is commonly, but mistakenly, called a gopher, which is 5 c01.qxd 8/18/03 4:06 PM Page 6 6 This Is Not a Weasel really the rightful name of a much larger rodent (Geomys bursarius).
    [Show full text]
  • Kingdom =Animalia Phylum =Chordata Subphylum =Vertebrata Class =Mammalia Order =Primates I. PARTIAL
    Kingdom =Animalia '' Phylum =Chordata '' Subphylum =Vertebrata '' Class =Mammalia '' Order =Primates 130-132 I. PARTIAL TAXONOMIC CLASSIFICATION OF PREHISTORIC AND CONTEMPORARY PRIMATES 176-187 197-198/Lab 7.II. Suborder Infraorder Superfamily Family Genus Species Common Name Prosimii [tree shrew = insectivore] (Strepsirhini) lemur 132-134 aye-aye 188-191 loris and bush baby tarsier Anthropoidea Platyrrhini *Parapithecus (basal anthropoid) (Haplorhini) 134-136 *Apidium (basal anthropoid) 134-138 Ceboidea New World monkey 188-191 Catarrhini *Propliopithecus (basal catarrhine) 136-138 *Aegyptopithecus (basal catarrhine) Cercopithecoidea Cercopithecidae Old World monkey 124-126 Macaca macaque Papio baboon Colobidae Colobus colobus monkey Presbytis langur Hominoidea *Proconsulidae *Proconsul 138-143 191-193 Lab 7. II. D. *Oreopithecidea *Oreopithecus Hylobatidae Hylobates gibbon *Pliopithecidae *Pliopithecus Pongidae *Dryopithecus *dryopithecus *Sivapithecus *ramapithecus *kenyapithecus *ouranopithecus *Gigantopithecus Pongo orangutan Panidae Pan traglodytes chimpanzee Pan paniscus bonobo (“pygmy chimpanzee”) Pan ? Gorilla gorilla Mountain gorilla Gorilla Western lowland g. 202-204 Hominidae *Ardipithecus *ramidus 213-218 1 228-237 *Australopithecus *anamensis 241-245 *afarensis Lucy / First Family Lab 8 *africanus southern ape *garhi *[aka Paranthropus]1 *aethiopicus *boisei Zinj *robustus *Kenyanthropus *platyops 1 237-238 Homo *rudolfensis ER-1470 245-247 *habilis human Ch. 11 *erectus Java / Peking “Man” Lab 10 sapiens Mary / John Chs. 12-13 Lab 12 An * marks groups known only through fossils. Compare: FIGURE 6-7 Primate taxonomic classification, p. 131 FIGURE 6-8 Revised partial classification of the primates, p. 132 FIGURE 8-1 Classification chart, modified from Linnaeus p. 177 FIGURE 8-15 Major events in early primate evolution, p. 191 Virtual Lab 1, section II, parts A-D Primate Classification 1(Note: Australopithecus and Paranthropus make up a “Subfamily” called Australopithecinae, more commonly known as Australopithecines.
    [Show full text]