Intel Itanium Architecture Alex Crawford Matt Ofalt Brief History
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to the Poulson (Intel 9500 Series) Processor Openvms Advanced Technical Boot Camp 2015 Keith Parris / September 29, 2015
Introduction to the Poulson (Intel 9500 Series) Processor OpenVMS Advanced Technical Boot Camp 2015 Keith Parris / September 29, 2015 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Information on Poulson from Intel’s ISSCC Paper © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Poulson information from Intel’s ISSCC Paper http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/itanium-poulson-isscc-paper.pdf 3 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Poulson information from Intel’s ISSCC Paper http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/itanium-poulson-isscc-paper.pdf 4 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Poulson information from Intel’s ISSCC Paper http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/itanium-poulson-isscc-paper.pdf 5 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Poulson information from Intel’s ISSCC Paper • Intel presented a paper on Poulson at the International Solid-State Chips Conference (ISSCC) in July 2011. From this, we learned: • Poulson would be in a 32 nm process (2 process generations ahead from Tukwila, which was at 65 nm, skipping the 45 nm process) • The socket would be compatible with Tukwila • Poulson would have 8 cores, of a brand new core design • The front end (instruction fetch) would be decoupled from the back end (instruction execution) • Poulson could execute and retire as many as 12 instructions per cycle, double Tukwila’s 6 instructions http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/itanium-poulson-isscc-paper.pdf 6 © Copyright 2015 Hewlett-Packard Development Company, L.P. -
UNIT 8B a Full Adder
UNIT 8B Computer Organization: Levels of Abstraction 15110 Principles of Computing, 1 Carnegie Mellon University - CORTINA A Full Adder C ABCin Cout S in 0 0 0 A 0 0 1 0 1 0 B 0 1 1 1 0 0 1 0 1 C S out 1 1 0 1 1 1 15110 Principles of Computing, 2 Carnegie Mellon University - CORTINA 1 A Full Adder C ABCin Cout S in 0 0 0 0 0 A 0 0 1 0 1 0 1 0 0 1 B 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 C S out 1 1 0 1 0 1 1 1 1 1 ⊕ ⊕ S = A B Cin ⊕ ∧ ∨ ∧ Cout = ((A B) C) (A B) 15110 Principles of Computing, 3 Carnegie Mellon University - CORTINA Full Adder (FA) AB 1-bit Cout Full Cin Adder S 15110 Principles of Computing, 4 Carnegie Mellon University - CORTINA 2 Another Full Adder (FA) http://students.cs.tamu.edu/wanglei/csce350/handout/lab6.html AB 1-bit Cout Full Cin Adder S 15110 Principles of Computing, 5 Carnegie Mellon University - CORTINA 8-bit Full Adder A7 B7 A2 B2 A1 B1 A0 B0 1-bit 1-bit 1-bit 1-bit ... Cout Full Full Full Full Cin Adder Adder Adder Adder S7 S2 S1 S0 AB 8 ⁄ ⁄ 8 C 8-bit C out FA in ⁄ 8 S 15110 Principles of Computing, 6 Carnegie Mellon University - CORTINA 3 Multiplexer (MUX) • A multiplexer chooses between a set of inputs. D1 D 2 MUX F D3 D ABF 4 0 0 D1 AB 0 1 D2 1 0 D3 1 1 D4 http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html 15110 Principles of Computing, 7 Carnegie Mellon University - CORTINA Arithmetic Logic Unit (ALU) OP 1OP 0 Carry In & OP OP 0 OP 1 F 0 0 A ∧ B 0 1 A ∨ B 1 0 A 1 1 A + B http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html 15110 Principles of Computing, 8 Carnegie Mellon University - CORTINA 4 Flip Flop • A flip flop is a sequential circuit that is able to maintain (save) a state. -
Evolution of Microprocessor Performance
EvolutionEvolution ofof MicroprocessorMicroprocessor PerformancePerformance So far we examined static & dynamic techniques to improve the performance of single-issue (scalar) pipelined CPU designs including: static & dynamic scheduling, static & dynamic branch predication. Even with these improvements, the restriction of issuing a single instruction per cycle still limits the ideal CPI = 1 Multiple Issue (CPI <1) Multi-cycle Pipelined T = I x CPI x C (single issue) Superscalar/VLIW/SMT Original (2002) Intel Predictions 1 GHz ? 15 GHz to ???? GHz IPC CPI > 10 1.1-10 0.5 - 1.1 .35 - .5 (?) Source: John P. Chen, Intel Labs We next examine the two approaches to achieve a CPI < 1 by issuing multiple instructions per cycle: 4th Edition: Chapter 2.6-2.8 (3rd Edition: Chapter 3.6, 3.7, 4.3 • Superscalar CPUs • Very Long Instruction Word (VLIW) CPUs. Single-issue Processor = Scalar Processor EECC551 - Shaaban Instructions Per Cycle (IPC) = 1/CPI EECC551 - Shaaban #1 lec # 6 Fall 2007 10-2-2007 ParallelismParallelism inin MicroprocessorMicroprocessor VLSIVLSI GenerationsGenerations Bit-level parallelism Instruction-level Thread-level (?) (TLP) 100,000,000 (ILP) Multiple micro-operations Superscalar /VLIW per cycle Simultaneous Single-issue CPI <1 u Multithreading SMT: (multi-cycle non-pipelined) Pipelined e.g. Intel’s Hyper-threading 10,000,000 CPI =1 u uuu u u Chip-Multiprocessors (CMPs) u Not Pipelined R10000 e.g IBM Power 4, 5 CPI >> 1 uuuuuuu u AMD Athlon64 X2 u uuuuu Intel Pentium D u uuuuuuuu u u 1,000,000 u uu uPentium u u uu i80386 u i80286 -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
With Extreme Scale Computing the Rules Have Changed
With Extreme Scale Computing the Rules Have Changed Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 11/17/15 1 • Overview of High Performance Computing • With Extreme Computing the “rules” for computing have changed 2 3 • Create systems that can apply exaflops of computing power to exabytes of data. • Keep the United States at the forefront of HPC capabilities. • Improve HPC application developer productivity • Make HPC readily available • Establish hardware technology for future HPC systems. 4 11E+09 Eflop/s 362 PFlop/s 100000000100 Pflop/s 10000000 10 Pflop/s 33.9 PFlop/s 1000000 1 Pflop/s SUM 100000100 Tflop/s 166 TFlop/s 1000010 Tflop /s N=1 1 Tflop1000/s 1.17 TFlop/s 100 Gflop/s100 My Laptop 70 Gflop/s N=500 10 59.7 GFlop/s 10 Gflop/s My iPhone 4 Gflop/s 1 1 Gflop/s 0.1 100 Mflop/s 400 MFlop/s 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2015 1 Eflop/s 1E+09 420 PFlop/s 100000000100 Pflop/s 10000000 10 Pflop/s 33.9 PFlop/s 1000000 1 Pflop/s SUM 100000100 Tflop/s 206 TFlop/s 1000010 Tflop /s N=1 1 Tflop1000/s 1.17 TFlop/s 100 Gflop/s100 My Laptop 70 Gflop/s N=500 10 59.7 GFlop/s 10 Gflop/s My iPhone 4 Gflop/s 1 1 Gflop/s 0.1 100 Mflop/s 400 MFlop/s 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2015 1E+10 1 Eflop/s 1E+09 100 Pflop/s 100000000 10 Pflop/s 10000000 1 Pflop/s 1000000 SUM 100 Tflop/s 100000 10 Tflop/s N=1 10000 1 Tflop/s 1000 100 Gflop/s N=500 100 10 Gflop/s 10 1 Gflop/s 1 100 Mflop/s 0.1 1996 2002 2020 2008 2014 1E+10 1 Eflop/s 1E+09 100 Pflop/s 100000000 10 Pflop/s 10000000 1 Pflop/s 1000000 SUM 100 Tflop/s 100000 10 Tflop/s N=1 10000 1 Tflop/s 1000 100 Gflop/s N=500 100 10 Gflop/s 10 1 Gflop/s 1 100 Mflop/s 0.1 1996 2002 2020 2008 2014 • Pflops (> 1015 Flop/s) computing fully established with 81 systems. -
Theoretical Peak FLOPS Per Instruction Set on Modern Intel Cpus
Theoretical Peak FLOPS per instruction set on modern Intel CPUs Romain Dolbeau Bull – Center for Excellence in Parallel Programming Email: [email protected] Abstract—It used to be that evaluating the theoretical and potentially multiple threads per core. Vector of peak performance of a CPU in FLOPS (floating point varying sizes. And more sophisticated instructions. operations per seconds) was merely a matter of multiplying Equation2 describes a more realistic view, that we the frequency by the number of floating-point instructions will explain in details in the rest of the paper, first per cycles. Today however, CPUs have features such as vectorization, fused multiply-add, hyper-threading or in general in sectionII and then for the specific “turbo” mode. In this paper, we look into this theoretical cases of Intel CPUs: first a simple one from the peak for recent full-featured Intel CPUs., taking into Nehalem/Westmere era in section III and then the account not only the simple absolute peak, but also the full complexity of the Haswell family in sectionIV. relevant instruction sets and encoding and the frequency A complement to this paper titled “Theoretical Peak scaling behavior of current Intel CPUs. FLOPS per instruction set on less conventional Revision 1.41, 2016/10/04 08:49:16 Index Terms—FLOPS hardware” [1] covers other computing devices. flop 9 I. INTRODUCTION > operation> High performance computing thrives on fast com- > > putations and high memory bandwidth. But before > operations => any code or even benchmark is run, the very first × micro − architecture instruction number to evaluate a system is the theoretical peak > > - how many floating-point operations the system > can theoretically execute in a given time. -
Misleading Performance Reporting in the Supercomputing Field David H
Misleading Performance Reporting in the Supercomputing Field David H. Bailey RNR Technical Report RNR-92-005 December 1, 1992 Ref: Scientific Programming, vol. 1., no. 2 (Winter 1992), pg. 141–151 Abstract In a previous humorous note, I outlined twelve ways in which performance figures for scientific supercomputers can be distorted. In this paper, the problem of potentially mis- leading performance reporting is discussed in detail. Included are some examples that have appeared in recent published scientific papers. This paper also includes some pro- posed guidelines for reporting performance, the adoption of which would raise the level of professionalism and reduce the level of confusion in the field of supercomputing. The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center, Moffett Field, CA 94035. 1 1. Introduction Many readers may have read my previous article “Twelve Ways to Fool the Masses When Giving Performance Reports on Parallel Computers” [5]. The attention that this article received frankly has been surprising [11]. Evidently it has struck a responsive chord among many professionals in the field who share my concerns. The following is a very brief summary of the “Twelve Ways”: 1. Quote only 32-bit performance results, not 64-bit results, and compare your 32-bit results with others’ 64-bit results. 2. Present inner kernel performance figures as the performance of the entire application. 3. Quietly employ assembly code and other low-level language constructs, and compare your assembly-coded results with others’ Fortran or C implementations. 4. Scale up the problem size with the number of processors, but don’t clearly disclose this fact. -
Intel Xeon & Dgpu Update
Intel® AI HPC Workshop LRZ April 09, 2021 Morning – Machine Learning 9:00 – 9:30 Introduction and Hardware Acceleration for AI OneAPI 9:30 – 10:00 Toolkits Overview, Intel® AI Analytics toolkit and oneContainer 10:00 -10:30 Break 10:30 - 12:30 Deep dive in Machine Learning tools Quizzes! LRZ Morning Session Survey 2 Afternoon – Deep Learning 13:30 – 14:45 Deep dive in Deep Learning tools 14:45 – 14:50 5 min Break 14:50 – 15:20 OpenVINO 15:20 - 15:45 25 min Break 15:45 – 17:00 Distributed training and Federated Learning Quizzes! LRZ Afternoon Session Survey 3 INTRODUCING 3rd Gen Intel® Xeon® Scalable processors Performance made flexible Up to 40 cores per processor 20% IPC improvement 28 core, ISO Freq, ISO compiler 1.46x average performance increase Geomean of Integer, Floating Point, Stream Triad, LINPACK 8380 vs. 8280 1.74x AI inference increase 8380 vs. 8280 BERT Intel 10nm Process 2.65x average performance increase vs. 5-year-old system 8380 vs. E5-2699v4 Performance varies by use, configuration and other factors. Configurations see appendix [1,3,5,55] 5 AI Performance Gains 3rd Gen Intel® Xeon® Scalable Processors with Intel Deep Learning Boost Machine Learning Deep Learning SciKit Learn & XGBoost 8380 vs 8280 Real Time Inference Batch 8380 vs 8280 Inference 8380 vs 8280 XGBoost XGBoost up to up to Fit Predict Image up up Recognition to to 1.59x 1.66x 1.44x 1.30x Mobilenet-v1 Kmeans Kmeans up to Fit Inference Image up to up up Classification to to 1.52x 1.56x 1.36x 1.44x ResNet-50-v1.5 Linear Regression Linear Regression Fit Inference Language up to up to up up Processing to 1.44x to 1.60x 1.45x BERT-large 1.74x Performance varies by use, configuration and other factors. -
A 65 Nm 2-Billion Transistor Quad-Core Itanium Processor
18 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 1, JANUARY 2009 A 65 nm 2-Billion Transistor Quad-Core Itanium Processor Blaine Stackhouse, Sal Bhimji, Chris Bostak, Dave Bradley, Brian Cherkauer, Jayen Desai, Erin Francom, Mike Gowan, Paul Gronowski, Dan Krueger, Charles Morganti, and Steve Troyer Abstract—This paper describes an Itanium processor imple- mented in 65 nm process with 8 layers of Cu interconnect. The 21.5 mm by 32.5 mm die has 2.05B transistors. The processor has four dual-threaded cores, 30 MB of cache, and a system interface that operates at 2.4 GHz at 105 C. High speed serial interconnects allow for peak processor-to-processor bandwidth of 96 GB/s and peak memory bandwidth of 34 GB/s. Index Terms—65-nm process technology, circuit design, clock distribution, computer architecture, microprocessor, on-die cache, voltage domains. I. OVERVIEW Fig. 1. Die photo. HE next generation in the Intel Itanium processor family T code named Tukwila is described. The 21.5 mm by 32.5 mm die contains 2.05 billion transistors, making it the first two billion transistor microprocessor ever reported. Tukwila combines four ported Itanium cores with a new system interface and high speed serial interconnects to deliver greater than 2X performance relative to the Montecito and Montvale family of processors [1], [2]. Tukwila is manufactured in a 65 nm process with 8 layers of copper interconnect as shown in the die photo in Fig. 1. The Tukwila die is enclosed in a 66 mm 66 mm FR4 laminate package with 1248 total landed pins as shown in Fig. -
5 Microprocessors
Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 5 Microprocessors “MEGAHERTZ: This is a really, really big hertz.” —DAVE BARRY In this chapter, you will learn or all practical purposes, the terms microprocessor and central processing how to Funit (CPU) mean the same thing: it’s that big chip inside your computer ■ Identify the core components of a that many people often describe as the brain of the system. You know that CPU CPU makers name their microprocessors in a fashion similar to the automobile ■ Describe the relationship of CPUs and memory industry: CPU names get a make and a model, such as Intel Core i7 or AMD ■ Explain the varieties of modern Phenom II X4. But what’s happening inside the CPU to make it able to do the CPUs amazing things asked of it every time you step up to the keyboard? ■ Install and upgrade CPUs 124 P:\010Comp\BaseTech\380-8\ch05.vp Friday, December 18, 2009 4:59:24 PM Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 Historical/Conceptual ■ CPU Core Components Although the computer might seem to act quite intelligently, comparing the CPU to a human brain hugely overstates its capabilities. A CPU functions more like a very powerful calculator than like a brain—but, oh, what a cal- culator! Today’s CPUs add, subtract, multiply, divide, and move billions of numbers per second. -
Opinion Ten Reasons Why HP’S Itanium-Based Servers Have Reached the Point-Of-No-Return
Opinion Ten Reasons Why HP’s Itanium-based Servers Have Reached the Point-of-No-Return Executive Summary Hewlett-Packard (HP) refers to its HP Integrity and Integrity NonStop Itanium-based servers as “business critical systems”. In Q4, 2007, HP sold over $1 billion of these business critical systems. But, since then, due to a number of factors, Itanium-based server sales have declined significantly. Over the past year, business critical systems sales have hovered in the $400 million range per quarter, an almost 60% decline as compared with the 2007 high-mark. From our perspective, HP’s Itanium-based servers have now achieved a form of stasis (a medical term that refers to an inactive state). We expect a rise in Itanium business this quarter (due to pent-up demand for the new Itanium 9500), but we also expect that – within in a few quarters – underlying, dogging problems will again drive Itanium business downward. These problems include HP’s financial woes; increased competition (particularly from Intel x86-based servers); market factors (such as the market move toward Linux and a market preference for x86 architecture); a broken ecosystem (where HP has actually had to take legal action to get a business partner to keep supporting its independent software on Itanium-based platforms); an ill-founded Itanium recovery plan known as “converged infrastructure”; and more (in fact, we list a total of ten reasons why we believe HP’s Itanium-based servers have reached the point-of-no- return on page 2 of this Opinion)… In this Opinion , Clabby Analytics describes why we believe that HP’s business critical Integrity servers have now reached the point-of-no-return. -
Course #: CSI 440/540 High Perf Sci Comp I Fall ‘09
High Performance Computing Course #: CSI 440/540 High Perf Sci Comp I Fall ‘09 Mark R. Gilder Email: [email protected] [email protected] CSI 440/540 This course investigates the latest trends in high-performance computing (HPC) evolution and examines key issues in developing algorithms capable of exploiting these architectures. Grading: Your grade in the course will be based on completion of assignments (40%), course project (35%), class presentation(15%), class participation (10%). Course Goals Understanding of the latest trends in HPC architecture evolution, Appreciation for the complexities in efficiently mapping algorithms onto HPC architectures, Familiarity with various program transformations in order to improve performance, Hands-on experience in design and implementation of algorithms for both shared & distributed memory parallel architectures using Pthreads, OpenMP and MPI. Experience in evaluating performance of parallel programs. Mark R. Gilder CSI 440/540 – SUNY Albany Fall '08 2 Grades 40% Homework assignments 35% Final project 15% Class presentations 10% Class participation Mark R. Gilder CSI 440/540 – SUNY Albany Fall '08 3 Homework Usually weekly w/some exceptions Must be turned in on time – no late homework assignments will be accepted All work must be your own - cheating will not be tolerated All references must be sited Assignments may consist of problems, programming, or a combination of both Mark R. Gilder CSI 440/540 – SUNY Albany Fall '08 4 Homework (continued) Detailed discussion of your results is expected – the program is only a small part of the problem Homework assignments will be posted on the class website along with all of the lecture notes ◦ http://www.cs.albany.edu/~gilder Mark R.